metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[[aquatripyridinecobalt(II)]u-5-amino-2,4,6-triiodoisophthalato- $\kappa^2 O^1: O^3$] pyridine solvate]

Yu Zhang,* Jianying Zhao, Guodong Tang and Zhengjing liang

Department of Chemistry, Huaiyin Teachers College, Huai'an 223300, Jiangsu, People's Republic of China Correspondence e-mail: yuzhang@hytc.edu.cn

Received 20 September 2008; accepted 5 October 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.010 Å; R factor = 0.041; wR factor = 0.065; data-to-parameter ratio = 15.9.

The reaction of cobalt(II) nitrate with 5-amino-2,4,6-triiodoisophthalic acid (ATPA) in pyridine solution leads to the formation of the title compound, $\{[Co(C_8H_2I_3NO_4)(C_5H_5N)_3 (H_2O)$]·C₅H₅N]_n. The Co²⁺ ion is six-coordinated by three N atoms, one water O atom and two O atoms from two ATPA ligands to form a distorted octahedral geometry. The two carboxylate groups of ATPA act as bridging ligands connecting the Co^{II} metal centers to form one-dimensional zigzag chains along the c axis, with Co–O distances in the range 2.104 (4)–2.135 (4) Å. The average Co-N distance is 2.171 Å. A classical $O-H \cdots N$ hydrogen bond is formed by the coordinating water molecule and the pyridine solvent molecule. The structure was refined from a racemically twinned crystal with a twin ratio of approximately 8:1.

Related literature

For the structure of a monohydrate of ATPA, see: Beck & Sheldrick (2008). For the Co coordination polymer of 1,3,5benzenetricarboxylate, see: Livage et al. (2001). For the structure of diaquadiformatodipyridine Co^{II}, see: Zhu et al. (2004). For a reduction of the organic iodine contrast agents in wastewater load, see: Ziegler et al. (1997).

Z = 4

 $V = 3196.45 (12) \text{ Å}^3$

16692 measured reflections 6038 independent reflections

4577 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 3.48 \text{ mm}^{-1}$

T = 296 (2) K $0.30 \times 0.25 \times 0.08 \text{ mm}$

 $R_{\rm int} = 0.027$

Experimental

Crystal data

$[Co(C_8H_2I_3NO_4)(C_5H_5N)_3(H_2O)]$	
C ₅ H ₅ N	
$M_r = 950.15$	
Orthorhombic, $P2_12_12_1$	
a = 9.7759 (2) Å	
b = 16.9083 (4) Å	
c = 19.3380 (4) Å	

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min} = 0.38, \ T_{\max} = 0.75$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.065$	$\Delta \rho_{\rm max} = 0.68 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.04	$\Delta \rho_{\rm min} = -0.67 \ {\rm e} \ {\rm \AA}^{-3}$
6038 reflections	Absolute structure: Flack (1983),
379 parameters	with 2515 Friedel pairs
3 restraints	Flack parameter: 0.13 (2)

Table 1

Selected	geometric	parameters	(A,	0))
----------	-----------	------------	-----	----	---

Co1-O1 ⁱ	2.104 (4)	Co1-N2	2.161 (5)
Co1-O5	2.106 (3)	Co1-N3	2.173 (5)
Co1-O3	2.135 (4)	Co1-N4	2.180 (5)
O1 ⁱ -Co1-O3	170.52 (16)	O5-Co1-N3	172.68 (17)
O1 ⁱ -Co1-N3	102.93 (17)	N2-Co1-N4	178.48 (19)
Summatry and (i)			

Symmetry code: (i) $-x + \frac{3}{2}, -y, z + \frac{1}{2}$

Table 2 Hydrogen-bond geometry (Å, °).

2		0	0	2 (<i>' '</i>			
D	тт	4		D II		TT	4	

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdots A$ O5−H5A···N5ⁱⁱ 0.85 1.94 2.748 (7) 159

Symmetry code: (ii) $-x + \frac{1}{2}, -y, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

This work was financially supported by the Natural Science Foundation of Jiangsu Province Education Office (grant No. 04KJB150015). We also thank Dr Zaichao Zhang for his support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2113).

References

- Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.
- Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,
- USA. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565.
- Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.

- Livage, C., Guillou, N., Marrot, J. & Férey, G. (2001). Chem. Mater. 13, 4387–4392.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Zhu, Z.-B., Gao, S., Liu, J.-W., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. E60, m808–m810.
- Ziegler, M., Schulze-Karal, C., Steiof, M. & Rüden, H. (1997). Korresp. Abwasser, 44, 1404–1408.

supporting information

Acta Cryst. (2008). E64, m1392-m1393 [doi:10.1107/S1600536808032017]

catena-Poly[[[aquatripyridinecobalt(II)]- μ -5-amino-2,4,6-triiodoisophthalato- $\kappa^2 O^1: O^3$] pyridine solvate]

Yu Zhang, Jianying Zhao, Guodong Tang and Zhengjing Jiang

S1. Comment

The crystal structure of ATPA (Beck & Sheldrick, 2008) is the precursor of the synthesis of a wide range of contrast agents with different amide-bound aliphatic side chains, which modulate their physical and physiological properties (Ziegler *et al.* 1997). However, to the best of our knowledge, there is no information about the structural characterization of its transition metal complexes.

The molecular structure of the title complex comprises of polymeric chains which extend along the *c*-axis. In the chain, each Co atom shows a distorted octahedron environment with a [3N+3O] coordination: three nitrogen atoms originate from pyridines, one oxygen from a water molecule and two oxygen atoms from two ATPA ligands. The two CO_2^{-} groups of the ATPA ligand coordinate to Co^{2+} , bridging the Co metal centers. The bond lengths of the distorted octahedron are presented in Table 1. The average Co—N bond distance of the three pyridine ligands is 2.171 Å. The Co—O bond lengths in the title complex are slightly longer than those in the reported coordination polymers of cobalt and 1,3,5-benzenetricarboxylate (2.055 (2) Å) (Livage *et al.*, 2001). The bond angles shown in Table 1 demonstrate the distorted octahedron in the Co coordination center. Compared with the data of the free ligand ATPA (Beck & Sheldrick, 2008), the C—O bond lengths are lengthened, the C—I and C—N bond distances are almost unchanged and the O—C—O bond angles are slightly expanded when the carboxylate groups are coordinated to central cations. The Co—N(py) and Co—O(H₂O) distances are in good agreement with those in diaqua-diformato-dipyridine-cobalt(II) (Zhu *et al.*, 2004), where they are equal to 2.159 (4) Å and 2.143 (3) Å, respectively. A classic O—H···N hydrogen bond is formed by the coordinating water and the uncoordinated pyridine molecule (Table 2).

S2. Experimental

 $0.29 \text{ g} (1 \text{ mmol}) \text{ Co}(\text{NO}_3)_2.6\text{H}_2\text{O}$ was dissolved in 10 ml ethanol, 0.54 g (1 mmol) 5-amino-2, 4, 6-triiodoisophthalic acid was dissolved in 10 ml pyridine. To mix two solutions gave a pale purple solution which was stirred at room temperature for 2 h, then filtered. After several days well formed light purple single crystals were obtained.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model with C—H distances = 0.93 Å, N—H distances = 0.86 Å, and O—H distances = 0.85 Å with $U_{iso}(H) = 1.2$ times $U_{eq}(C, N, O)$.

Figure 1

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. Atoms labelled with an A belong to the symmetry-related ligand ATPA with symmetry code [A = -x + 3/2, -y, z + 1/2)].

catena-Poly[[[aquatripyridinecobalt(II)]- μ -5-amino-2,4,6- triiodoisophthalato- $\kappa^2 O^1:O^3$] pyridine solvate]

Crystal data

 $[Co(C_8H2I_3NO_4)(C_5H_5N)_3(H_2O)] \cdot C_5H_5N$ $M_r = 950.15$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 9.7759 (2) Å b = 16.9083 (4) Å c = 19.3380 (4) Å V = 3196.45 (12) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.38, T_{\max} = 0.75$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.065$ S = 1.046038 reflections 379 parameters 3 restraints F(000) = 1812 $D_x = 1.974 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7120 reflections $\theta = 4.7-43.0^{\circ}$ $\mu = 3.48 \text{ mm}^{-1}$ T = 296 KSheet, light purple $0.30 \times 0.25 \times 0.08 \text{ mm}$

16692 measured reflections 6038 independent reflections 4577 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 1.6^\circ$ $h = -12 \rightarrow 9$ $k = -13 \rightarrow 20$ $l = -15 \rightarrow 23$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0243P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.68 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -0.67 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), with 2515 Friedel pairs Absolute structure parameter: 0.13 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.8251 (6)	0.2139 (3)	0.8550 (3)	0.0319 (15)
C2	0.8423 (6)	0.2494 (3)	0.7900 (3)	0.0344 (16)
C3	0.7752 (6)	0.2152 (3)	0.7335 (3)	0.0299 (15)
C4	0.6949 (6)	0.1483 (3)	0.7390 (3)	0.0229 (14)
C5	0.6819 (6)	0.1159 (3)	0.8047 (3)	0.0286 (15)
C6	0.7445 (6)	0.1478 (3)	0.8629 (3)	0.0243 (14)
C7	0.6216 (7)	0.1144 (3)	0.6765 (3)	0.0276 (15)
C8	0.7222 (7)	0.1122 (3)	0.9341 (3)	0.0305 (15)
C9	0.9902 (7)	0.0943 (4)	1.1534 (4)	0.052 (2)
H9	1.0468	0.0501	1.1540	0.063*
C10	1.0171 (8)	0.1565 (5)	1.1968 (4)	0.067 (2)
H10	1.0909	0.1528	1.2270	0.080*
C11	0.9406 (10)	0.2230 (5)	1.1973 (4)	0.078 (3)
H11	0.9607	0.2651	1.2266	0.093*
C12	0.8332 (9)	0.2254 (5)	1.1531 (4)	0.078 (3)
H12	0.7768	0.2697	1.1520	0.093*
C13	0.8073 (7)	0.1626 (4)	1.1100 (4)	0.060 (2)
H13	0.7342	0.1661	1.0793	0.072*
C14	1.1101 (6)	-0.0851 (4)	1.0269 (3)	0.0397 (18)
H14	1.0619	-0.1279	1.0447	0.048*
C15	1.2437 (7)	-0.0963 (4)	1.0090 (3)	0.0488 (19)
H15	1.2859	-0.1451	1.0151	0.059*
C16	1.3142 (7)	-0.0329 (5)	0.9817 (3)	0.053 (2)
H16	1.4044	-0.0391	0.9674	0.064*
C17	1.2528 (6)	0.0377 (4)	0.9759 (3)	0.0471 (19)
H17	1.3000	0.0815	0.9592	0.057*
C18	1.1168 (7)	0.0434 (4)	0.9955 (3)	0.0448 (18)
H18	1.0733	0.0921	0.9911	0.054*
C19	0.6591 (7)	-0.1424 (4)	0.9923 (4)	0.0470 (19)
H19	0.6114	-0.1305	1.0326	0.056*
C20	0.6061 (7)	-0.1985 (4)	0.9494 (4)	0.057 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H20	0.5249	-0.2240	0.9608	0.068*
C21	0.6717 (9)	-0.2166 (4)	0.8905 (4)	0.069 (2)
H21	0.6357	-0.2536	0.8599	0.082*
C22	0.7916 (9)	-0.1797 (4)	0.8766 (4)	0.063 (2)
H22	0.8416	-0.1925	0.8372	0.076*
C23	0.8384 (7)	-0.1222 (4)	0.9223 (4)	0.052 (2)
H23	0.9188	-0.0956	0.9113	0.062*
C24	-0.0436 (7)	0.0013 (4)	0.7430 (5)	0.062 (2)
H24	-0.1309	-0.0202	0.7465	0.074*
C25	0.0132 (9)	0.0325 (5)	0.8004 (4)	0.064 (2)
H25	-0.0337	0.0321	0.8422	0.076*
C26	0.1384 (11)	0.0640 (5)	0.7959 (5)	0.096 (3)
H26	0.1804	0.0855	0.8348	0.115*
C27	0.2020 (9)	0.0641 (6)	0.7351 (5)	0.101 (3)
H27	0.2884	0.0867	0.7309	0.121*
C28	0.1404 (9)	0.0313 (5)	0.6790 (4)	0.082 (3)
H28	0.1862	0.0311	0.6369	0.098*
Col	0.83021 (7)	-0.00406 (5)	1.04654 (4)	0.0312 (2)
I1	0.92570 (5)	0.26385 (3)	0.94026 (2)	0.05269 (14)
I2	0.78262 (5)	0.27575 (3)	0.63848 (2)	0.05874 (16)
I3	0.56454 (5)	0.01146 (3)	0.81795 (2)	0.05039 (14)
N1	0.9245 (6)	0.3143 (3)	0.7821 (3)	0.0630 (17)
H1A	0.9357	0.3349	0.7418	0.076*
H1B	0.9649	0.3345	0.8174	0.076*
N2	0.8833 (5)	0.0964 (3)	1.1102 (2)	0.0393 (14)
N3	1.0452 (5)	-0.0175 (3)	1.0205 (2)	0.0348 (13)
N4	0.7763 (6)	-0.1033 (3)	0.9799 (3)	0.0379 (14)
N5	0.0172 (7)	-0.0004 (4)	0.6829 (3)	0.0660 (19)
O1	0.6899 (4)	0.0730 (2)	0.6366 (2)	0.0386 (11)
O2	0.5004 (5)	0.1311 (3)	0.6709 (2)	0.0555 (14)
O3	0.8147 (4)	0.0677 (2)	0.95601 (19)	0.0329 (10)
O4	0.6139 (4)	0.1298 (2)	0.9646 (2)	0.0460 (12)
O5	0.6191 (3)	0.0161 (2)	1.05937 (18)	0.0423 (11)
H5B	0.5951	0.0603	1.0423	0.051*
H5A	0.5963	0.0143	1.1018	0.051*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.041 (4)	0.029 (4)	0.026 (4)	0.003 (3)	-0.003 (3)	-0.007 (3)
C2	0.043 (4)	0.029 (4)	0.032 (4)	-0.014 (3)	0.003 (3)	-0.004 (3)
C3	0.038 (3)	0.029 (4)	0.023 (3)	-0.005 (3)	-0.004 (3)	0.001 (3)
C4	0.026 (4)	0.022 (3)	0.020 (3)	0.004 (3)	-0.001 (3)	-0.007 (3)
C5	0.032 (3)	0.032 (4)	0.022 (4)	-0.002 (3)	0.003 (3)	-0.003 (3)
C6	0.033 (4)	0.022 (3)	0.017 (3)	0.006 (3)	-0.004 (3)	-0.002 (3)
C7	0.041 (4)	0.020 (4)	0.021 (4)	0.010 (3)	0.005 (3)	0.004 (3)
C8	0.045 (4)	0.027 (4)	0.019 (4)	-0.006 (3)	-0.005 (4)	-0.007 (3)
C9	0.050 (4)	0.053 (5)	0.053 (5)	-0.004 (4)	-0.023 (4)	0.006 (4)

C10	0.078 (6)	0.071 (6)	0.052 (5)	-0.045 (5)	-0.022 (5)	-0.004 (5)
C11	0.122 (8)	0.054 (6)	0.058 (5)	-0.033 (6)	0.009 (6)	-0.022 (5)
C12	0.103 (7)	0.056 (6)	0.075 (6)	0.004 (5)	-0.025 (5)	-0.024 (5)
C13	0.067 (5)	0.054 (5)	0.059 (5)	0.011 (5)	-0.006 (5)	-0.020 (4)
C14	0.042 (4)	0.043 (4)	0.035 (4)	0.004 (4)	0.001 (3)	0.000 (4)
C15	0.046 (5)	0.057 (5)	0.043 (5)	0.020 (4)	0.002 (4)	-0.008 (4)
C16	0.028 (4)	0.088 (6)	0.044 (5)	0.013 (4)	0.003 (3)	-0.009 (4)
C17	0.032 (4)	0.064 (6)	0.045 (4)	-0.008 (4)	-0.001 (3)	0.010 (4)
C18	0.046 (5)	0.041 (4)	0.048 (5)	0.001 (4)	0.003 (4)	0.004 (4)
C19	0.048 (5)	0.037 (4)	0.056 (5)	0.005 (4)	0.003 (4)	0.004 (4)
C20	0.047 (5)	0.043 (5)	0.080 (6)	-0.017 (4)	-0.010 (4)	0.001 (5)
C21	0.088 (7)	0.050 (5)	0.068 (5)	-0.009 (5)	-0.026 (5)	-0.008 (5)
C22	0.085 (6)	0.060 (6)	0.046 (5)	0.000 (5)	-0.004 (5)	-0.028 (4)
C23	0.055 (5)	0.051 (5)	0.049 (5)	-0.011 (4)	0.006 (4)	-0.005 (4)
C24	0.041 (5)	0.061 (5)	0.083 (6)	0.005 (4)	0.005 (5)	-0.002 (6)
C25	0.078 (6)	0.067 (6)	0.046 (5)	0.019 (5)	0.010 (5)	0.001 (5)
C26	0.115 (9)	0.122 (8)	0.050 (6)	-0.044 (7)	-0.034 (6)	0.010 (6)
C27	0.059 (6)	0.167 (10)	0.078 (7)	-0.047 (6)	-0.011 (6)	0.020 (8)
C28	0.063 (6)	0.131 (9)	0.051 (6)	-0.003 (6)	0.014 (5)	0.023 (6)
Col	0.0333 (4)	0.0350 (5)	0.0254 (5)	-0.0001 (4)	-0.0013 (4)	0.0022 (5)
I1	0.0737 (3)	0.0481 (3)	0.0363 (3)	-0.0171 (3)	-0.0127 (3)	-0.0058 (2)
I2	0.0883 (4)	0.0569 (3)	0.0311 (3)	-0.0191 (3)	0.0001 (3)	0.0134 (3)
I3	0.0633 (3)	0.0495 (3)	0.0384 (3)	-0.0231 (3)	-0.0053 (2)	0.0067 (2)
N1	0.092 (4)	0.062 (4)	0.035 (3)	-0.045 (4)	-0.014 (4)	0.007 (3)
N2	0.048 (4)	0.042 (4)	0.027 (3)	-0.004 (3)	0.000 (3)	-0.001 (3)
N3	0.031 (3)	0.038 (3)	0.035 (3)	0.002 (3)	0.003 (2)	0.006 (3)
N4	0.043 (3)	0.039 (4)	0.031 (3)	0.003 (3)	0.002 (3)	-0.002 (3)
N5	0.063 (4)	0.089 (5)	0.047 (4)	0.014 (4)	-0.012 (4)	-0.011 (4)
01	0.047 (3)	0.041 (3)	0.028 (2)	-0.001 (2)	0.002 (2)	-0.013 (2)
O2	0.048 (3)	0.075 (4)	0.044 (3)	0.015 (3)	-0.012 (3)	-0.020 (3)
03	0.037 (3)	0.036 (3)	0.026 (2)	0.001 (2)	-0.005 (2)	0.007 (2)
O4	0.049 (3)	0.064 (3)	0.025 (3)	0.021 (2)	0.010 (2)	0.001 (2)
05	0.045 (3)	0.048 (3)	0.034 (2)	0.007 (2)	0.006 (2)	0.010 (2)

Geometric parameters (Å, °)

C1—C6	1.376 (7)	C18—N3	1.336 (7)	
C1—C2	1.404 (7)	C18—H18	0.9300	
C1—I1	2.097 (6)	C19—N4	1.344 (7)	
C2—N1	1.368 (7)	C19—C20	1.363 (9)	
C2—C3	1.400 (7)	C19—H19	0.9300	
C3—C4	1.381 (7)	C20—C21	1.342 (9)	
C3—I2	2.105 (5)	C20—H20	0.9300	
C4—C5	1.389 (7)	C21—C22	1.355 (9)	
C4—C7	1.517 (8)	C21—H21	0.9300	
С5—С6	1.390 (7)	C22—C23	1.391 (8)	
C5—I3	2.122 (6)	C22—H22	0.9300	
C6—C8	1.519 (4)	C23—N4	1.309 (7)	

С7—О2	1.223 (6)	С23—Н23	0.9300
C7—O1	1.238 (6)	C24—N5	1.306 (8)
C8—O4	1.248 (6)	C24—C25	1.348 (9)
C8—O3	1.250 (6)	C24—H24	0.9300
C9—N2	1 337(7)	$C_{25} - C_{26}$	1 338 (10)
C9-C10	1 372 (9)	C25—H25	0.9300
C9H9	0.9300	$C_{25} = 1125$	1.331(11)
	1,250 (10)	C26_H26	0.0200
	1.550 (10)	C20—H20	0.9300
C10—H10	0.9300	$C_2/-C_{28}$	1.339 (11)
	1.355 (10)	C2/—H2/	0.9300
CII—HII	0.9300	C28—N5	1.321 (9)
C12—C13	1.373 (9)	C28—H28	0.9300
C12—H12	0.9300	Co1—O1 ⁱ	2.104 (4)
C13—N2	1.345 (7)	Co1—O5	2.106 (3)
C13—H13	0.9300	Co1—O3	2.135 (4)
C14—N3	1.312 (7)	Co1—N2	2.161 (5)
C14—C15	1.365 (8)	Co1—N3	2.173 (5)
C14—H14	0.9300	Co1—N4	2.180 (5)
C15—C16	1.379 (9)	N1—H1A	0.8600
С15—Н15	0.9300	N1—H1B	0.8600
C16—C17	1.342 (8)	$01-C01^{ii}$	2.104 (4)
C16—H16	0.9300	05—H5B	0.8500
C_{17} C_{18}	1 386 (8)	05 H5A	0.8700
C17_H17	0.0200	05—115А	0.0499
C1/—H1/	0.9300		
	101 0 (5)	C10 C20 H20	100.0
	121.0 (5)	C19—C20—H20	120.2
C6-C1-I1	120.6 (4)	C20—C21—C22	118.4 (8)
C2—C1—I1	118.4 (4)	C20—C21—H21	120.8
N1—C2—C3	121.3 (5)	C22—C21—H21	120.8
N1—C2—C1	120.9 (5)	C21—C22—C23	118.7 (8)
C3—C2—C1	117.8 (5)	C21—C22—H22	120.6
C4—C3—C2	123.0 (5)	С23—С22—Н22	120.6
C4—C3—I2	119.1 (4)	N4—C23—C22	124.0 (7)
C2—C3—I2	117.7 (4)	N4—C23—H23	118.0
C3—C4—C5	116.5 (5)	С22—С23—Н23	118.0
C3—C4—C7	121.1 (5)	N5-C24-C25	123.6 (7)
C5-C4-C7	122.5 (5)	N5—C24—H24	118.2
C4-C5-C6	122.3(5)	C_{25} C_{24} H_{24}	118.2
C_{4} C_{5} C_{6}	123.2(3) 110.2(4)	$C_{25} C_{24} H_{24}$	118.6 (8)
$C_{4} = C_{5} = 13$	119.2 (4) 117.6 (4)	$C_{20} = C_{23} = C_{24}$	110.0 (0)
$C_0 = C_3 = C_5$	117.0 (4)	$C_{20} = C_{23} = H_{23}$	120.7
	118.5 (5)	C24—C25—H25	120.7
C1—C6—C8	120.3 (5)	$C_2/-C_26-C_25$	119.0 (9)
C5—C6—C8	121.1 (5)	C2/—C26—H26	120.5
O2—C7—O1	126.7 (7)	C25—C26—H26	120.5
O2—C7—C4	116.2 (6)	C26—C27—C28	119.9 (8)
O1—C7—C4	117.2(5)	С26—С27—Н27	120.1
	117.2(3)	020 027 1127	12011
O4—C8—O3	126.7 (5)	C28—C27—H27	120.1

O3—C8—C6	116.2 (5)	N5—C28—H28	119.2
N2—C9—C10	120.7 (7)	C27—C28—H28	119.2
N2—C9—H9	119.6	Ol ⁱ —Col—O5	84.29 (15)
С10—С9—Н9	119.6	Ol ⁱ —Col—O3	170.52 (16)
C11—C10—C9	122.5 (8)	O5—Co1—O3	86.29 (15)
C11—C10—H10	118.7	Ol ⁱ —Col—N2	89.21 (16)
С9—С10—Н10	118.7	O5—Co1—N2	92.37 (17)
C10-C11-C12	116.7 (8)	O3—Co1—N2	92.18 (17)
C10-C11-H11	121.7	Ol ⁱ —Col—N3	102.93 (17)
C12—C11—H11	121.7	O5—Co1—N3	172.68 (17)
C11—C12—C13	120.2 (8)	O3—Co1—N3	86.47 (17)
C11—C12—H12	119.9	N2—Co1—N3	88.95 (19)
C13—C12—H12	119.9	Ol ⁱ —Col—N4	92.29 (17)
N2—C13—C12	122.7 (7)	O5—Co1—N4	87.53 (18)
N2—C13—H13	118.7	O3—Co1—N4	86.31 (16)
С12—С13—Н13	118.7	N2—Co1—N4	178.48 (19)
N3—C14—C15	124.1 (6)	N3—Co1—N4	91.0 (2)
N3—C14—H14	118.0	C2—N1—H1A	120.0
C15—C14—H14	118.0	C2—N1—H1B	120.0
C14—C15—C16	117.8 (7)	H1A—N1—H1B	120.0
C14—C15—H15	121.1	C9—N2—C13	117.2 (6)
C16—C15—H15	121.1	C9—N2—Co1	121.5 (5)
C17—C16—C15	120.0 (6)	C13—N2—Co1	121.3 (5)
C17—C16—H16	120.0	C14—N3—C18	116.9 (5)
C15—C16—H16	120.0	C14—N3—Co1	122.5 (4)
C16—C17—C18	117.9 (7)	C18—N3—Co1	120.7 (4)
C16—C17—H17	121.0	C23—N4—C19	115.3 (6)
C18—C17—H17	121.0	C23—N4—Co1	125.4 (5)
N3—C18—C17	123.2 (6)	C19—N4—Co1	118.7 (5)
N3—C18—H18	118.4	C24—N5—C28	117.2 (7)
C17—C18—H18	118.4	C7—O1—Co1 ⁱⁱ	141.2 (4)
N4—C19—C20	123.9 (7)	C8—O3—Co1	132.1 (4)
N4—C19—H19	118.0	Co1—O5—H5B	111.5
С20—С19—Н19	118.0	Co1—O5—H5A	111.4
C21—C20—C19	119.6 (7)	H5B—O5—H5A	109.4
C21—C20—H20	120.2		

Symmetry codes: (i) -*x*+3/2, -*y*, *z*+1/2; (ii) -*x*+3/2, -*y*, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O5—H5A····N5 ⁱⁱⁱ	0.85	1.94	2.748 (7)	159

Symmetry code: (iii) -x+1/2, -y, z+1/2.