

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Bromo-2,4,6-trimethyl-3-methylsulfinyl-1-benzofuran

Hong Dae Choi,^a Pil Ja Seo,^a Byeng Wha Son^b and Uk Lee^b*

^aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and ^bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Received 1 October 2008; accepted 8 October 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; disorder in main residue; R factor = 0.042; wR factor = 0.112; data-to-parameter ratio = 13.8

In the title compound, C₁₂H₁₃BrO₂S, there are two symmetryindependent molecules, A and B, in the asymmetric unit. The crystal studied was an inversion twin with a 0.70 (2):0.30 (2) domain ratio. The methylsulfinyl group in molecule B is disordered over two positions with site-occupancy factors fixed at 0.6 and 0.4. The crystal structure is stabilized by C-H···O hydrogen bonds and intermolecular C-H··· π interactions. In addition, the crystal structure exhibits $C-Br\cdots\pi$ interactions, with $C - Br \cdots Cg1 = 3.646$ (8) Å where Cg1 is the centroid of the furan ring.

Related literature

For the crystal structures of similar 3-methylsulfinyl-1-benzofuran compounds, see: Choi et al. (2007a,b).

V = 2437.1 (5) Å³

Mo $K\alpha$ radiation $\mu = 3.53 \text{ mm}^{-1}$

 $0.40 \times 0.40 \times 0.30 \text{ mm}$

7147 measured reflections

4360 independent reflections

3737 reflections with $I > 2\sigma(I)$

T = 298 (2) K

 $R_{\rm int} = 0.020$

Z = 8

Experimental

Crystal data

C ₁₂ H ₁₃ BrO ₂ S	
$M_r = 301.19$	
Monoclinic, Cc	
a = 28.128 (4) Å	
b = 11.013(1) Å	
c = 8.052 (1) Å	
$\beta = 102.290 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1999) $T_{\rm min} = 0.269, \ T_{\rm max} = 0.345$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$vR(F^2) = 0.112$	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.09	$\Delta \rho_{\rm min} = -0.90 \text{ e } \text{\AA}^{-3}$
4360 reflections	Absolute structure: Flack (1983),
317 parameters	1736 Friedel pairs
2 restraints	Flack parameter: 0.70 (2)

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C2-C7 benzene ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C12 - H12A \cdots O2^{i}$	0.96	2.34	3.298 (9)	179
$C12 - H12C \cdot \cdot \cdot O4B^{ii}$	0.96	2.42	3.168 (12)	134
$C24A - H24A \cdots O4A^{iii}$	0.96	2.35	3.199 (13)	148
$C9-H9A\cdots Cg2^{iii}$	0.96	3.30	3.943 (9)	124

Symmetry codes: (i) $x, -y, z - \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $x, -y + 1, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2545).

References

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, 0521-0522

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, 01823o1824.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o2117 [doi:10.1107/S1600536808032467]

5-Bromo-2,4,6-trimethyl-3-methylsulfinyl-1-benzofuran

Hong Dae Choi, Pil Ja Seo, Byeng Wha Son and Uk Lee

S1. Comment

This work is related to our previous communications on the synthesis and structure of 3-methylsulfinyl-1-benzofuran analogues, *viz*. 5-bromo-2-methyl-3-methylsulfinyl-1-benzofuran (Choi *et al.*, 2007*a*) and 2,5-dimethyl-3-methyl-sulfinyl-1-benzofuran (Choi *et al.*, 2007*b*). Here we report the crystal structure of the title compound, 5-bromo-2,4,6-tri-methyl-3-methylsulfinyl-1-benzofuran which crystallizes with two unique molecules, A & B in the asymmetric unit (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.012 (6) Å for A and 0.0022 (7) Å for B, respectively, from the least-squares plane defined by the nine constituent atoms. The crystal studied was an inversion twin with a 0.70 (2):0.30 (2) domain ratio. The O4=S2—C24H₃ group in molecule B is disordered over two positions with site-occupancy factors fixed at 0.4 (for atoms labelled A) and 0.6 (for atoms labelled B) in Fig. 1. The crystal structure is stabilized by three intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 1; symmetry codes as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by a intermolecular C—H··· π interactions, with a C9—H9A···Cg2ⁱⁱⁱ separation of 3.30 Å (Fig. 2 and Table 1; *Cg2* is the centroid of the C2—C7 benzene ring, symmetry code as in Fig. 2). In addition, the molecular packing exhibits an intermolecular C—Br··· π interaction between the Br atom and the furan ring, with a C16—Br2···*Cg*1^{iv} separation of 3.646 (8) Å (Fig. 2; *Cg*1 is the centroid of C13—C14/C19/O3/C20 furan ring, symmetry code as in Fig. 2).

S2. Experimental

3-Chloroperoxybenzoic acid, 77% (197 mg, 0.88 mmol) was added in small portions to a stirred solution of 3-methylsulfanyl-2-phenyl-1-benzofuran (228 mg, 0.8 mmol) in dichloromethane (30 ml) at 273 K. After stirring for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 79%, m.p. 400–401 K; R_f = 0.61 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: ¹H NMR (CDCl₃, 400 MHz) δ 2.51 (s, 3H), 2.68 (s, 3H), 2.83 (s, 3H), 2.95 (s, 3H), 7.21 (s, 1H); EI—MS 302 [*M*+2], 300 [*M*⁺].

S3. Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms, 0.96 Å for methyl H atoms, respectively, and with $U_{iso}(H) = 1.2 \text{Ueq}(C)$ for aromatic H atoms and 1.5Ueq(C) for methyl H atoms.

The crystal studied was an inversion twin with a 0.70(2):0.30(2) domain ratio. The O4=S2—C24H₃ group in molecule B is disordered over two positions with site-occupancy factors fixed at 0.40 (for atoms labelled A) and 0.60 (for atoms

labelled B) in the final refinement. Atomic and anisotropic displacement parameters of C24A and C24B were restrained using the commands EXYZ and EADP.

Figure 1

The asymmetric unit of the title compound, showing displacement ellipsoids drawn at the 30% probability level. Bonds to atoms of the major disorder component of the disordered methylsulfinyl group are drawn as double dashed lines.

Figure 2

C—H···O, C—H··· π and C—Br··· π interactions (dotted lines) in the title compound. *Cg* denotes a ring centroid. [Symmetry code: (i) *x*, -*y*, *z* - 1/2; (ii) *x* - 1/2, -*y* + 1/2, *z* + 1/2; (iii) *x*, -*y* + 1, *z* + 1/2; (iv) *x*, -*y*, *z* - 1/2.]

5-Bromo-2,4,6-trimethyl-3-methylsulfinyl-1-benzofuran

Crystal data

C₁₂H₁₃BrO₂S $M_r = 301.19$ Monoclinic, Cc Hall symbol: C -2yc a = 28.128 (4) Å b = 11.013 (1) Å c = 8.052 (1) Å $\beta = 102.290$ (2)° V = 2437.1 (5) Å³ Z = 8

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.0 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1999) $T_{\min} = 0.269, T_{\max} = 0.345$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.0294P)^2 + 6.0617P]$
S = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
4360 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
317 parameters	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.90 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1736 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.70 (2)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 1216

 $\theta = 2.9 - 26.1^{\circ}$

 $\mu = 3.53 \text{ mm}^{-1}$

Block, colorless

 $0.40 \times 0.40 \times 0.30 \text{ mm}$

7147 measured reflections

 $\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 1.5^\circ$

4360 independent reflections

3737 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.020$

 $h = -35 \rightarrow 28$

 $k = -14 \rightarrow 12$ $l = -9 \rightarrow 10$

 $D_{\rm x} = 1.642 {\rm Mg m^{-3}}$

Melting point = 401 - 400 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3249 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Br1	0.21922 (3)	0.71294 (6)	0.66785 (9)	0.0659 (2)	
Br2	0.50554 (3)	-0.18594 (8)	0.33653 (9)	0.0854 (3)	

S1	0.17522 (7)	0.15294 (19)	0.6928 (2)	0.0577 (5)	
S2A	0.5460 (2)	0.4107 (6)	0.3537 (10)	0.0523 (16)	0.40
O4A	0.5400 (5)	0.4962 (11)	0.2811 (18)	0.067 (4)	0.40
C24A	0.5884 (2)	0.3483 (7)	0.5252 (9)	0.0616 (19)	0.40
H24A	0.5790	0.3678	0.6298	0.092*	0.40
H24B	0.6201	0.3813	0.5265	0.092*	0.40
H24C	0.5893	0.2617	0.5126	0.092*	0.40
S2B	0.5499 (2)	0.3607 (6)	0.3149 (7)	0.081 (2)	0.60
O4B	0.5586 (3)	0.3734 (12)	0.1963 (14)	0.099 (4)	0.60
C24B	0.5884 (2)	0.3483 (7)	0.5252 (9)	0.0616 (19)	0.60
H24D	0.5945	0.4278	0.5740	0.092*	0.60
H24E	0.6187	0.3109	0.5173	0.092*	0.60
H24F	0.5724	0.2996	0.5957	0.092*	0.60
01	0.30391 (17)	0.2256 (4)	0.5845 (6)	0.0485 (11)	
O2	0.1830 (2)	0.0201 (6)	0.7294 (9)	0.097 (3)	
03	0.42047 (19)	0.2988 (4)	0.4257 (7)	0.0614 (14)	
C1	0.2298 (2)	0.2149 (5)	0.6484 (9)	0.0366 (15)	
C2	0.2427 (2)	0.3433 (5)	0.6439 (7)	0.0354 (12)	
C3	0.2204 (3)	0.4548 (5)	0.6687 (10)	0.0403 (12)	
C4	0.2487 (2)	0.5563 (5)	0.6445 (8)	0.0413 (14)	
C5	0.2937 (3)	0.5551 (5)	0.6073 (8)	0.0462 (16)	
C6	0.3146 (2)	0.4447 (6)	0.5866 (9)	0.0467 (15)	
H6	0.3451	0.4398	0.5603	0.056*	
C7	0.2887 (2)	0.3417 (5)	0.6061 (8)	0.0412 (14)	
C8	0.2665 (3)	0.1512 (6)	0.6131 (9)	0.0485 (17)	
C9	0.1720 (2)	0.4603 (6)	0.7129 (10)	0.0507 (17)	
H9A	0.1729	0.5172	0.8038	0.076*	
H9B	0.1635	0.3814	0.7483	0.076*	
H9C	0.1481	0.4858	0.6154	0.076*	
C10	0.3211 (3)	0.6695 (7)	0.5822 (11)	0.075 (3)	
H10A	0.3019	0.7171	0.4926	0.112*	
H10B	0.3514	0.6482	0.5526	0.112*	
H10C	0.3275	0.7158	0.6856	0.112*	
C11	0.2774 (3)	0.0181 (6)	0.5924 (12)	0.071 (3)	
H11A	0.2569	-0.0305	0.6468	0.107*	
H11B	0.3109	0.0022	0.6436	0.107*	
H11C	0.2715	-0.0017	0.4737	0.107*	
C12	0.1395 (2)	0.1660 (6)	0.4814 (9)	0.0512 (15)	
H12A	0.1524	0.1130	0.4072	0.077*	
H12B	0.1405	0.2483	0.4431	0.077*	
H12C	0.1065	0.1437	0.4806	0.077*	
C13	0.4940 (3)	0.3120 (8)	0.3690 (11)	0.064 (2)	
C14	0.4821 (3)	0.1834 (6)	0.3652 (8)	0.0507 (17)	
C15	0.5031 (3)	0.0711 (7)	0.3397 (11)	0.0552 (16)	
C16	0.4782 (3)	-0.0334 (7)	0.3580 (10)	0.0565 (19)	
C17	0.4301 (3)	-0.0306 (7)	0.4013 (10)	0.059 (2)	
C18	0.4098 (3)	0.0785 (7)	0.4214 (10)	0.060 (2)	
H18	0.3788	0.0834	0.4447	0.072*	

C19	0.4362 (2)	0.1824 (7)	0.4064 (9)	0.0511 (17)
C20	0.4563 (3)	0.3746 (8)	0.4063 (11)	0.065 (2)
C21	0.5530 (3)	0.0662 (10)	0.2927 (12)	0.084 (3)
H21A	0.5767	0.0361	0.3877	0.126*
H21B	0.5622	0.1462	0.2639	0.126*
H21C	0.5515	0.0131	0.1971	0.126*
C22	0.4033 (3)	-0.1465 (8)	0.4158 (11)	0.079 (3)
H22A	0.3716	-0.1282	0.4355	0.118*
H22B	0.4211	-0.1936	0.5089	0.118*
H22C	0.4001	-0.1920	0.3123	0.118*
C23	0.4473 (4)	0.5046 (8)	0.4241 (14)	0.085 (3)
H23A	0.4274	0.5347	0.3204	0.128*
H23B	0.4778	0.5473	0.4477	0.128*
H23C	0.4309	0.5168	0.5158	0.128*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
Br1	0.0783 (5)	0.0482 (3)	0.0674 (4)	0.0096 (4)	0.0070 (3)	-0.0056 (3)
Br2	0.0915 (7)	0.0859 (5)	0.0720 (6)	0.0122 (5)	0.0022 (5)	-0.0039 (4)
S1	0.0518 (11)	0.0758 (13)	0.0445 (10)	-0.0326 (9)	0.0081 (8)	0.0092 (8)
S2A	0.026 (2)	0.063 (4)	0.063 (4)	-0.006(2)	0.000(2)	0.000 (3)
O4A	0.067 (8)	0.048 (6)	0.085 (10)	-0.015 (6)	0.011 (7)	0.037 (6)
C24A	0.044 (4)	0.080 (4)	0.056 (5)	-0.009(3)	-0.001 (3)	-0.005 (3)
S2B	0.075 (3)	0.112 (5)	0.053 (3)	-0.062(3)	0.006 (2)	0.018 (3)
O4B	0.065 (6)	0.163 (11)	0.075 (7)	-0.021 (6)	0.027 (5)	0.026 (7)
C24B	0.044 (4)	0.080 (4)	0.056 (5)	-0.009 (3)	-0.001 (3)	-0.005 (3)
01	0.040 (3)	0.041 (2)	0.066 (3)	0.0064 (17)	0.013 (2)	0.0089 (19)
O2	0.091 (5)	0.082 (4)	0.103 (5)	-0.044 (4)	-0.015 (4)	0.058 (4)
O3	0.038 (3)	0.068 (3)	0.075 (4)	-0.005 (2)	0.005 (2)	0.004 (2)
C1	0.035 (4)	0.040 (3)	0.036 (3)	-0.013 (2)	0.009 (3)	0.006 (2)
C2	0.024 (3)	0.046 (3)	0.033 (3)	-0.008(2)	0.000 (2)	0.002 (2)
C3	0.029 (3)	0.055 (3)	0.034 (3)	-0.006(3)	0.000(2)	-0.001 (3)
C4	0.041 (4)	0.045 (3)	0.036 (3)	-0.009(3)	0.005 (3)	0.000 (2)
C5	0.049 (4)	0.044 (3)	0.043 (4)	-0.013 (3)	0.003 (3)	-0.002(2)
C6	0.030 (3)	0.059 (4)	0.052 (4)	-0.014 (3)	0.010 (3)	0.004 (3)
C7	0.037 (3)	0.041 (3)	0.044 (3)	-0.005 (2)	0.006 (3)	0.004 (2)
C8	0.051 (4)	0.043 (4)	0.045 (4)	-0.006(3)	-0.003 (3)	0.003 (3)
C9	0.041 (4)	0.058 (4)	0.055 (4)	0.000 (3)	0.015 (3)	-0.008 (3)
C10	0.069 (6)	0.061 (4)	0.090 (6)	-0.035 (4)	0.010 (5)	0.016 (4)
C11	0.078 (6)	0.045 (4)	0.082 (6)	-0.005 (4)	-0.002(5)	0.007 (4)
C12	0.038 (4)	0.058 (3)	0.056 (4)	-0.012 (3)	0.008 (3)	-0.007 (3)
C13	0.043 (5)	0.084 (5)	0.058 (5)	-0.020 (3)	-0.004(4)	0.016 (4)
C14	0.042 (4)	0.069 (4)	0.040 (4)	-0.021 (3)	0.004 (3)	0.009 (3)
C15	0.043 (4)	0.087 (5)	0.035 (3)	-0.005 (4)	0.008 (3)	0.008 (4)
C16	0.046 (4)	0.070 (4)	0.046 (4)	-0.001 (3)	-0.005 (3)	0.003 (3)
C17	0.047 (5)	0.066 (4)	0.061 (5)	-0.017 (3)	0.003 (4)	0.011 (3)
C18	0.038 (4)	0.072 (5)	0.067 (5)	-0.022 (3)	0.007 (3)	0.009 (3)

supporting information

C19	0.029 (3)	0.070 (4)	0.051 (4)	-0.015 (3)	0.001 (3)	0.007 (3)	
C20	0.047 (4)	0.081 (5)	0.066 (5)	-0.014 (4)	0.006 (4)	0.006 (4)	
C21	0.055 (5)	0.132 (9)	0.069 (6)	-0.004 (5)	0.023 (4)	-0.006(5)	
C22	0.073 (6)	0.089 (6)	0.068 (5)	-0.039 (5)	0.004 (4)	0.014 (4)	
C23	0.096 (7)	0.070 (6)	0.089 (7)	-0.019 (5)	0.018 (6)	-0.001 (5)	

Geometric parameters (Å, °)

Br1—C4	1.941 (6)	С9—Н9С	0.9600	
Br2—C16	1.871 (8)	C10—H10A	0.9600	
S1—O2	1.499 (7)	C10—H10B	0.9600	
S1—C1	1.783 (6)	C10—H10C	0.9600	
S1—C12	1.788 (7)	C11—H11A	0.9600	
S2A—O4A	1.102 (13)	C11—H11B	0.9600	
S2A—C24A	1.761 (10)	C11—H11C	0.9600	
S2A—C13	1.848 (10)	C12—H12A	0.9600	
C24A—H24A	0.9600	C12—H12B	0.9600	
C24A—H24B	0.9600	C12—H12C	0.9600	
C24A—H24C	0.9600	C13—C20	1.352 (14)	
S2B—O4B	1.044 (11)	C13—C14	1.454 (10)	
S2B—C13	1.801 (10)	C14—C19	1.401 (10)	
O1—C7	1.372 (7)	C14—C15	1.405 (11)	
O1—C8	1.392 (9)	C15—C16	1.372 (10)	
O3—C20	1.344 (10)	C15—C21	1.530 (12)	
O3—C19	1.375 (10)	C16—C17	1.469 (12)	
C1—C8	1.328 (10)	C17—C18	1.355 (11)	
C1—C2	1.462 (7)	C17—C22	1.498 (10)	
C2—C7	1.389 (9)	C18—C19	1.383 (9)	
C2—C3	1.413 (9)	C18—H18	0.9300	
C3—C4	1.411 (9)	C20—C23	1.466 (12)	
С3—С9	1.479 (11)	C21—H21A	0.9600	
C4—C5	1.362 (10)	C21—H21B	0.9600	
C5—C6	1.375 (9)	C21—H21C	0.9600	
C5—C10	1.513 (8)	C22—H22A	0.9600	
C6—C7	1.375 (8)	C22—H22B	0.9600	
С6—Н6	0.9300	C22—H22C	0.9600	
C8—C11	1.514 (10)	C23—H23A	0.9600	
С9—Н9А	0.9600	C23—H23B	0.9600	
С9—Н9В	0.9600	С23—Н23С	0.9600	
O2—S1—C1	108.4 (4)	S1—C12—H12A	109.5	
O2—S1—C12	107.1 (4)	S1—C12—H12B	109.5	
C1—S1—C12	96.4 (3)	H12A—C12—H12B	109.5	
O4A—S2A—C24A	138.7 (9)	S1—C12—H12C	109.5	
O4A—S2A—C13	120.3 (8)	H12A—C12—H12C	109.5	
C24A—S2A—C13	97.6 (5)	H12B—C12—H12C	109.5	
O4B—S2B—C13	130.4 (7)	C20—C13—C14	108.3 (7)	
C7—O1—C8	105.1 (5)	C20—C13—S2B	132.0 (7)	

C20—O3—C19	107.4 (7)	C14—C13—S2B	119.6 (8)
C8—C1—C2	107.2 (5)	C20—C13—S2A	112.6 (7)
C8—C1—S1	125.6 (4)	C14—C13—S2A	138.9 (8)
C2—C1—S1	127.2 (5)	C19—C14—C15	117.8 (6)
C7—C2—C3	120.3 (5)	C19—C14—C13	102.9 (7)
C7—C2—C1	104.1 (5)	C15—C14—C13	139.3 (7)
C3—C2—C1	135.7 (6)	C16—C15—C14	118.8 (7)
C4—C3—C2	112.8 (7)	C16—C15—C21	120.9 (8)
C4—C3—C9	125.2 (6)	C14—C15—C21	120.3 (7)
C2—C3—C9	122.0 (5)	C15—C16—C17	121.8 (7)
C5—C4—C3	127.0 (6)	C15—C16—Br2	120.9 (6)
C5—C4—Br1	117.8 (4)	C17—C16—Br2	117.3 (5)
C3—C4—Br1	115.2 (5)	C18—C17—C16	118.6 (6)
C4—C5—C6	118.4 (5)	C18—C17—C22	121.0 (8)
C4—C5—C10	123.1 (6)	C16—C17—C22	120.3 (8)
C6-C5-C10	118.5 (7)	C17—C18—C19	118.4 (7)
C7-C6-C5	117.7 (6)	C17—C18—H18	120.8
C7—C6—H6	121.1	C19—C18—H18	120.8
C5—C6—H6	121.1	03-C19-C18	124.8 (7)
01-C7-C6	124 5 (6)	03-C19-C14	110.7 (6)
01-C7-C2	111.7 (5)	C18—C19—C14	124.5 (8)
C6-C7-C2	123.7 (6)	03-C20-C13	110.6(7)
C1 - C8 - O1	112.0 (5)	03-C20-C23	116.5 (8)
C1 - C8 - C11	1361(7)	C_{13} C_{20} C_{23}	132.8 (8)
01-C8-C11	111.9 (7)	C15—C21—H21A	109.5
С3—С9—Н9А	109.5	С15—С21—Н21В	109.5
C3—C9—H9B	109.5	H21A—C21—H21B	109.5
Н9А—С9—Н9В	109.5	C15—C21—H21C	109.5
C3—C9—H9C	109.5	H21A—C21—H21C	109.5
Н9А—С9—Н9С	109.5	H21B—C21—H21C	109.5
H9B—C9—H9C	109.5	С17—С22—Н22А	109.5
C5-C10-H10A	109.5	С17—С22—Н22В	109.5
C5-C10-H10B	109.5	H22A—C22—H22B	109.5
H10A—C10—H10B	109.5	С17—С22—Н22С	109.5
C5—C10—H10C	109.5	H22A—C22—H22C	109.5
H10A—C10—H10C	109.5	H22B—C22—H22C	109.5
H10B—C10—H10C	109.5	С20—С23—Н23А	109.5
C8—C11—H11A	109.5	С20—С23—Н23В	109.5
C8—C11—H11B	109.5	H23A—C23—H23B	109.5
H11A—C11—H11B	109.5	С20—С23—Н23С	109.5
C8—C11—H11C	109.5	H23A—C23—H23C	109.5
H11A—C11—H11C	109.5	H23B—C23—H23C	109.5
H11B—C11—H11C	109.5		
02 - S1 - C1 - C8	14.9 (8)	04A—S2A—C13—C14	139.6 (14)
C12— $S1$ — $C1$ — $C8$	-95.6 (7)	C24A— $S2A$ — $C13$ — $C14$	-57.7 (11)
02 - S1 - C1 - C2	-165.0 (6)	04A—S2A—C13—S2B	115.7 (17)
C12—S1—C1—C2	84.5 (6)	C24A—S2A—C13—S2B	-81.5 (10)

C8—C1—C2—C7	-0.7 (7)	C20—C13—C14—C19	-1.2(9)
S1—C1—C2—C7	179.2 (5)	S2B-C13-C14-C19	-177.5 (6)
C8—C1—C2—C3	179.8 (8)	S2A-C13-C14-C19	173.1 (9)
S1—C1—C2—C3	-0.3 (11)	C20—C13—C14—C15	-178.4 (9)
C7—C2—C3—C4	2.2 (9)	S2B-C13-C14-C15	5.3 (14)
C1—C2—C3—C4	-178.3 (7)	S2A-C13-C14-C15	-4.2 (18)
C7—C2—C3—C9	-178.6 (7)	C19—C14—C15—C16	-0.7 (11)
C1—C2—C3—C9	0.9 (12)	C13—C14—C15—C16	176.2 (9)
C2—C3—C4—C5	-2.3 (11)	C19—C14—C15—C21	179.4 (7)
C9—C3—C4—C5	178.5 (7)	C13—C14—C15—C21	-3.6 (15)
C2—C3—C4—Br1	177.7 (5)	C14—C15—C16—C17	0.7 (11)
C9—C3—C4—Br1	-1.5 (10)	C21—C15—C16—C17	-179.4 (8)
C3—C4—C5—C6	1.5 (11)	C14—C15—C16—Br2	-176.9 (6)
Br1-C4-C5-C6	-178.6 (4)	C21—C15—C16—Br2	3.0 (10)
C3—C4—C5—C10	179.5 (7)	C15—C16—C17—C18	0.9 (11)
Br1-C4-C5-C10	-0.5 (9)	Br2-C16-C17-C18	178.6 (5)
C4—C5—C6—C7	-0.5 (9)	C15—C16—C17—C22	178.4 (7)
C10—C5—C6—C7	-178.6 (6)	Br2-C16-C17-C22	-3.9 (10)
C8—O1—C7—C6	-178.8 (6)	C16—C17—C18—C19	-2.4 (11)
C8—O1—C7—C2	-1.2 (7)	C22—C17—C18—C19	-179.9 (7)
C5—C6—C7—O1	177.9 (6)	C20—O3—C19—C18	178.4 (7)
C5—C6—C7—C2	0.6 (10)	C20—O3—C19—C14	-3.1 (8)
C3—C2—C7—O1	-179.2 (6)	C17—C18—C19—O3	-179.2 (7)
C1—C2—C7—O1	1.2 (7)	C17—C18—C19—C14	2.6 (11)
C3—C2—C7—C6	-1.5 (10)	C15—C14—C19—O3	-179.4 (6)
C1—C2—C7—C6	178.8 (6)	C13—C14—C19—O3	2.6 (8)
C2-C1-C8-O1	0.0 (8)	C15—C14—C19—C18	-1.0 (11)
S1—C1—C8—O1	-179.9 (5)	C13—C14—C19—C18	-178.9 (7)
C2-C1-C8-C11	-178.3 (8)	C19—O3—C20—C13	2.2 (9)
S1—C1—C8—C11	1.8 (13)	C19—O3—C20—C23	-179.3 (7)
C7—O1—C8—C1	0.7 (8)	C14—C13—C20—O3	-0.6 (10)
C7—O1—C8—C11	179.5 (6)	S2B-C13-C20-O3	175.1 (7)
O4B—S2B—C13—C20	-94.9 (16)	S2A-C13-C20-O3	-176.5 (6)
O4B—S2B—C13—C14	80.3 (15)	C14—C13—C20—C23	-178.7 (9)
O4B—S2B—C13—S2A	-117.4 (19)	S2B-C13-C20-C23	-3.1 (16)
O4A—S2A—C13—C20	-46.3 (13)	S2A—C13—C20—C23	5.3 (13)
C24A—S2A—C13—C20	116.4 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
C12—H12A····O2 ⁱ	0.96	2.34	3.298 (9)	179
C12—H12 <i>C</i> ···O4 <i>B</i> ⁱⁱ	0.96	2.42	3.168 (12)	134
C24A— $H24A$ ···· $O4A$ ⁱⁱⁱ	0.96	2.35	3.199 (13)	148
C9—H9 <i>A</i> ··· <i>Cg</i> 2 ⁱⁱⁱ	0.96	3.30	3.943 (9)	124

Symmetry codes: (i) x, -y, z-1/2; (ii) x-1/2, -y+1/2, z+1/2; (iii) x, -y+1, z+1/2.