organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Bromo-N′-(2-hydr­­oxy-1-naphthyl­methyl­ene)benzohydrazide

aCollege of Animal Science and Veterinary Medicine, Jilin University, Jilin 130062, People's Republic of China, bCollege of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China, and cSchool of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
*Correspondence e-mail: xumingdeng08@126.com

(Received 21 September 2008; accepted 28 September 2008; online 4 October 2008)

The title compound, C18H13BrN2O2, was synthesized by the reaction of 2-hydr­oxy-1-naphthaldehyde with 4-bromo­benzohydrazide. This Schiff base mol­ecule has an E configuration about the C=N bond and is almost planar, the dihedral angle between the mean planes through the substituted benzene ring and the naphthyl system being 6.6 (2)°. There is an intra­molecular O—H⋯N hydrogen bond involving the naphthyl hydr­oxy substituent and the N′ atom of the hydrazide group. In the crystal structure, mol­ecules are linked through inter­molecular N—-H⋯O hydrogen bonds to form chains extending along the b direction.

Related literature

For related structures, see: Brückner et al. (2000[Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100-6106.]); Diao (2007[Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.]); Diao et al. (2007[Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.], 2008[Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.]); Harrop et al. (2003[Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.]); Huang et al. (2007[Huang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.]); Li et al. (2007[Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13BrN2O2

  • Mr = 369.21

  • Monoclinic, P c

  • a = 6.185 (2) Å

  • b = 4.7638 (19) Å

  • c = 25.689 (10) Å

  • β = 95.449 (7)°

  • V = 753.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.74 mm−1

  • T = 298 (2) K

  • 0.30 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.494, Tmax = 0.514 (expected range = 0.446–0.464)

  • 5817 measured reflections

  • 3119 independent reflections

  • 2443 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.101

  • S = 0.90

  • 3119 reflections

  • 212 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1493 Friedel pairs

  • Flack parameter: 0.026 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.89 (3) 1.99 (3) 2.841 (4) 160 (6)
O2—H2⋯N2 0.82 1.86 2.580 (4) 145
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have been found to have potential pharmacological and antitumor properties (Brückner et al., 2000; Harrop et al., 2003; Ren et al., 2002). Recently, a few Schiff base compounds obtained from the reaction of aldehydes with benzohydrazides have been reported (Diao et al., 2008; Diao et al., 2007; Diao, 2007; Li et al., 2007; Huang et al., 2007). As a further study of such compounds, we report here on the structure of the title compound.

The title compound, a Schiff base synthesized by the reaction of 2-hydroxy-1-naphthaldehyde with 4-bromobenzohydrazide, is almost planar (Fig. 1), with the dihedral angle between the mean planes of the substituted benzene ring and the naphthyl ring being only 6.6 (2)°. The torsion angles C4—C6—N1—N2 and C8—C7—N2—N1 are 0.9 (3) and 2.9 (3)°, respectively. There is an intramolecular O-H···N hydrogen bond involving the naphthyl hydroxyl substituent and the NH H-atom of the hydrazide group (Table 1).

In the crystal molecules are linked via N–H···O intermolecular hydrogen bonds (Table 1), to form chains extending in the b direction (Fig. 2).

Related literature top

For related structures, see: Brückner et al. (2000); Diao (2007); Diao et al. (2007, 2008); Harrop et al. (2003); Huang et al. (2007); Li et al. (2007); Ren et al. (2002).

Experimental top

4-Bromobenzaldehyde (0.1 mmol, 18.5 mg) and 2-hydroxy-1-naphthaldehyde (0.1 mmol, 17.2 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 1 h and cooled to room temperature. After keeping the solution in air for alomost two weeks, yellow block-like crystals of the title compound were formed.

Refinement top

Atom H1 was located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The other H atoms were placed in calculated positions and treated as riding atoms, with C–H = 0.93 Å, O–H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement parameters drawn at the 30% probability level.
[Figure 2] Fig. 2. A persepctive view along the a axis of the crystal packing of the title compound.
(E)-4-Bromo-N'-(2-hydroxy-1-naphthylmethylene)benzohydrazide top
Crystal data top
C18H13BrN2O2F(000) = 372
Mr = 369.21Dx = 1.627 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 6.185 (2) ÅCell parameters from 1589 reflections
b = 4.7638 (19) Åθ = 2.6–24.5°
c = 25.689 (10) ŵ = 2.74 mm1
β = 95.449 (7)°T = 298 K
V = 753.5 (5) Å3Block, yellow
Z = 20.30 × 0.30 × 0.28 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3119 independent reflections
Radiation source: fine-focus sealed tube2443 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.494, Tmax = 0.514k = 66
5817 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + ]
S = 0.90(Δ/σ)max = 0.001
3119 reflectionsΔρmax = 0.31 e Å3
212 parametersΔρmin = 0.24 e Å3
3 restraintsAbsolute structure: Flack (1983), 1493 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.026 (12)
Crystal data top
C18H13BrN2O2V = 753.5 (5) Å3
Mr = 369.21Z = 2
Monoclinic, PcMo Kα radiation
a = 6.185 (2) ŵ = 2.74 mm1
b = 4.7638 (19) ÅT = 298 K
c = 25.689 (10) Å0.30 × 0.30 × 0.28 mm
β = 95.449 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3119 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2443 reflections with I > 2σ(I)
Tmin = 0.494, Tmax = 0.514Rint = 0.034
5817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101Δρmax = 0.31 e Å3
S = 0.90Δρmin = 0.24 e Å3
3119 reflectionsAbsolute structure: Flack (1983), 1493 Friedel pairs
212 parametersAbsolute structure parameter: 0.026 (12)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.08310 (11)0.22527 (11)1.13545 (4)0.0685 (2)
O10.2012 (5)0.3701 (5)0.99811 (12)0.0474 (7)
O20.3678 (6)0.2844 (6)0.91908 (13)0.0509 (8)
H20.24580.24810.93270.076*
N10.1759 (5)0.0647 (6)0.96274 (13)0.0379 (7)
N20.0057 (5)0.0129 (6)0.93167 (12)0.0377 (7)
C180.7851 (7)0.2520 (7)1.04481 (17)0.0407 (9)
H180.87750.39021.03420.049*
C10.8295 (7)0.1191 (9)1.09188 (16)0.0433 (9)
C20.6996 (7)0.0854 (9)1.10869 (16)0.0480 (10)
H2A0.73290.17111.14100.058*
C30.5173 (7)0.1632 (8)1.07685 (17)0.0432 (10)
H30.42820.30521.08750.052*
C40.4659 (6)0.0328 (7)1.02954 (15)0.0340 (8)
C50.6012 (6)0.1770 (7)1.01362 (16)0.0369 (8)
H50.56730.26690.98180.044*
C60.2705 (6)0.1305 (8)0.99609 (15)0.0350 (8)
C70.0776 (6)0.1545 (8)0.89501 (16)0.0357 (8)
H70.00230.31900.88930.043*
C80.2727 (6)0.0903 (7)0.86278 (15)0.0361 (8)
C90.4138 (6)0.1175 (8)0.87700 (16)0.0399 (9)
C100.6139 (7)0.1627 (9)0.8477 (2)0.0513 (11)
H100.70840.29750.85870.062*
C110.6716 (6)0.0146 (9)0.80394 (19)0.0527 (11)
H110.80650.04620.78570.063*
C120.5319 (7)0.1866 (8)0.78536 (19)0.0459 (10)
C130.5851 (8)0.3322 (10)0.7382 (2)0.0558 (12)
H130.71770.29630.71910.067*
C140.4491 (8)0.5229 (10)0.71980 (18)0.0596 (12)
H140.48610.61560.68830.071*
C150.2513 (8)0.5774 (10)0.74925 (17)0.0568 (11)
H150.15760.71010.73720.068*
C160.1927 (6)0.4422 (8)0.79472 (15)0.0441 (9)
H160.05870.48060.81290.053*
C170.3314 (6)0.2444 (7)0.81494 (17)0.0377 (9)
H10.209 (11)0.245 (4)0.969 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0451 (2)0.0994 (4)0.0583 (3)0.0070 (3)0.00903 (17)0.0151 (3)
O10.0489 (17)0.0246 (13)0.068 (2)0.0093 (12)0.0010 (14)0.0020 (13)
O20.055 (2)0.0432 (16)0.055 (2)0.0164 (13)0.0070 (15)0.0067 (14)
N10.0431 (18)0.0268 (15)0.0425 (18)0.0060 (14)0.0022 (14)0.0048 (13)
N20.0343 (15)0.0308 (15)0.0473 (19)0.0038 (13)0.0002 (13)0.0074 (14)
C180.036 (2)0.043 (2)0.044 (2)0.0092 (17)0.0070 (17)0.0058 (17)
C10.036 (2)0.047 (2)0.046 (3)0.0004 (18)0.0002 (17)0.0128 (19)
C20.050 (2)0.050 (3)0.042 (2)0.000 (2)0.0038 (19)0.0053 (19)
C30.044 (2)0.035 (2)0.051 (3)0.0049 (17)0.0040 (19)0.0034 (17)
C40.038 (2)0.0274 (18)0.037 (2)0.0041 (15)0.0040 (15)0.0030 (15)
C50.038 (2)0.0343 (19)0.038 (2)0.0062 (15)0.0045 (16)0.0027 (15)
C60.038 (2)0.0250 (18)0.043 (2)0.0006 (16)0.0105 (17)0.0058 (16)
C70.035 (2)0.0306 (18)0.041 (2)0.0062 (15)0.0040 (16)0.0041 (16)
C80.036 (2)0.0308 (18)0.041 (2)0.0011 (16)0.0023 (16)0.0111 (16)
C90.041 (2)0.035 (2)0.044 (2)0.0055 (17)0.0084 (17)0.0101 (17)
C100.038 (2)0.049 (2)0.068 (3)0.0138 (19)0.008 (2)0.015 (2)
C110.031 (2)0.060 (3)0.064 (3)0.0061 (18)0.0082 (18)0.023 (2)
C120.038 (2)0.044 (2)0.055 (3)0.0017 (17)0.0037 (19)0.0178 (18)
C130.049 (3)0.057 (3)0.057 (3)0.009 (2)0.013 (2)0.015 (2)
C140.067 (3)0.068 (3)0.043 (3)0.010 (3)0.003 (2)0.001 (2)
C150.059 (3)0.066 (3)0.046 (3)0.002 (2)0.008 (2)0.001 (2)
C160.038 (2)0.051 (3)0.044 (2)0.0058 (18)0.0023 (17)0.0005 (19)
C170.033 (2)0.036 (2)0.043 (2)0.0018 (15)0.0005 (16)0.0104 (16)
Geometric parameters (Å, º) top
Br1—C11.907 (4)C7—C81.430 (5)
O1—C61.222 (5)C7—H70.9300
O2—C91.350 (5)C8—C91.391 (5)
O2—H20.8200C8—C171.448 (6)
N1—C61.359 (5)C9—C101.403 (6)
N1—N21.366 (4)C10—C111.346 (7)
N1—H10.89 (3)C10—H100.9300
N2—C71.281 (5)C11—C121.404 (6)
C18—C11.369 (6)C11—H110.9300
C18—C51.375 (6)C12—C131.407 (7)
C18—H180.9300C12—C171.419 (6)
C1—C21.359 (6)C13—C141.354 (7)
C2—C31.379 (6)C13—H130.9300
C2—H2A0.9300C14—C151.400 (7)
C3—C41.375 (5)C14—H140.9300
C3—H30.9300C15—C161.353 (6)
C4—C51.389 (5)C15—H150.9300
C4—C61.490 (5)C16—C171.406 (6)
C5—H50.9300C16—H160.9300
C9—O2—H2109.5C9—C8—C17118.1 (3)
C6—N1—N2117.7 (3)C7—C8—C17120.8 (3)
C6—N1—H1118 (5)O2—C9—C8122.7 (4)
N2—N1—H1121 (5)O2—C9—C10116.6 (4)
C7—N2—N1118.0 (3)C8—C9—C10120.8 (4)
C1—C18—C5118.7 (4)C11—C10—C9121.2 (4)
C1—C18—H18120.7C11—C10—H10119.4
C5—C18—H18120.7C9—C10—H10119.4
C2—C1—C18122.5 (4)C10—C11—C12121.3 (4)
C2—C1—Br1118.8 (3)C10—C11—H11119.4
C18—C1—Br1118.7 (3)C12—C11—H11119.4
C1—C2—C3118.6 (4)C11—C12—C13121.9 (4)
C1—C2—H2A120.7C11—C12—C17119.0 (4)
C3—C2—H2A120.7C13—C12—C17119.1 (4)
C4—C3—C2120.7 (4)C14—C13—C12121.9 (4)
C4—C3—H3119.7C14—C13—H13119.0
C2—C3—H3119.7C12—C13—H13119.0
C3—C4—C5119.3 (4)C13—C14—C15118.4 (4)
C3—C4—C6118.4 (3)C13—C14—H14120.8
C5—C4—C6122.2 (4)C15—C14—H14120.8
C18—C5—C4120.2 (4)C16—C15—C14121.8 (5)
C18—C5—H5119.9C16—C15—H15119.1
C4—C5—H5119.9C14—C15—H15119.1
O1—C6—N1122.3 (3)C15—C16—C17121.0 (4)
O1—C6—C4122.4 (3)C15—C16—H16119.5
N1—C6—C4115.3 (3)C17—C16—H16119.5
N2—C7—C8120.5 (3)C16—C17—C12117.7 (4)
N2—C7—H7119.8C16—C17—C8122.7 (4)
C8—C7—H7119.8C12—C17—C8119.5 (4)
C9—C8—C7121.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.89 (3)1.99 (3)2.841 (4)160 (6)
O2—H2···N20.821.862.580 (4)145
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H13BrN2O2
Mr369.21
Crystal system, space groupMonoclinic, Pc
Temperature (K)298
a, b, c (Å)6.185 (2), 4.7638 (19), 25.689 (10)
β (°) 95.449 (7)
V3)753.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.74
Crystal size (mm)0.30 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.494, 0.514
No. of measured, independent and
observed [I > 2σ(I)] reflections
5817, 3119, 2443
Rint0.034
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 0.90
No. of reflections3119
No. of parameters212
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.24
Absolute structureFlack (1983), 1493 Friedel pairs
Absolute structure parameter0.026 (12)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.89 (3)1.99 (3)2.841 (4)160 (6)
O2—H2···N20.821.862.580 (4)145.4
Symmetry code: (i) x, y+1, z.
 

References

First citationBrückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100–6106.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P. (2007). Acta Cryst. E63, m1453–m1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.  CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411.  Web of Science CSD CrossRef Google Scholar
First citationHuang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds