organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Chloro-N′-(2-hydr­­oxy-1-naphthyl­methyl­ene)benzohydrazide

aDepartment of Pharmacy, The Sheng Jing Hospital of Chinese Medical University, Shenyang 110004, People's Republic of China
*Correspondence e-mail: zhaolm08@126.com

(Received 26 September 2008; accepted 28 September 2008; online 4 October 2008)

In the structue of the title compound, C18H13ClN2O2, a new Schiff base, the dihedral angle between the benzene and naphthyl ring system mean planes is 22.5 (2)°. The mol­ecule has an E configuration about the C=N bond, and an intra­molecular hydrogen bond involving the hydoxyl substituent on the naphthyl ring and the N′ atom of the hydrazide. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds, forming one-dimensional chains running parallel to the a axis.

Related literature

For background on Schiff base compounds, hydrazone compounds and their biological properties, see: Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Khattab (2005[Khattab, S. N. (2005). Molecules 10, 1218-1228.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.]); Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Yang (2008[Yang, D.-S. (2008). Acta Cryst. E64, o1759.]); Ma et al. (2008[Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.]); Diao, Huang et al. (2008[Diao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008). Acta Cryst. E64, o470.]); Diao, Zhen et al. (2008[Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13ClN2O2

  • Mr = 324.75

  • Monoclinic, P 21 /n

  • a = 7.2797 (14) Å

  • b = 29.148 (6) Å

  • c = 7.6889 (16) Å

  • β = 112.130 (3)°

  • V = 1511.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 (2) K

  • 0.32 × 0.27 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.934

  • 8693 measured reflections

  • 3255 independent reflections

  • 2320 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.105

  • S = 1.03

  • 3255 reflections

  • 213 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.896 (9) 1.972 (11) 2.842 (2) 163.5 (18)
O1—H1⋯N1 0.82 1.86 2.581 (2) 146
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones and Schiff bases have attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel et al., 2006; Khattab, 2005; Karthikeyan et al., 2006; Okabe et al., 1993). Recently, a large number of hydrazone derivatives have been prepared and structurally characterized (Shan et al., 2008; Fun et al., 2008; Yang, 2008; Ma et al., 2008; Diao, Huang et al., 2008; Diao, Zhen et al., 2008; Ejsmont et al., 2008). As part of an ongoing study, we report herein the crystal structure of the title compound, (I).

The molecular structure of compound (I) is shown in Fig. 1. The bond dstances and angles are normal (Allen et al., 1987). The dihedral angle between the phenyl and naphthyl ring mean planes is 22.5 (2)°. The compound displays an E configuration about the CN bond, and an intramolecular hydrogen bond involving the hydoxyl substituent on the naphthyl ring and the N-atom of the hydrazide (Table 1). The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds (Table 1), forming one-dimensional chains running parallel to the a axis, Fig. 2.

Related literature top

For background on Schiff base compounds, hydrazone compounds and their biological properties, see: Kucukguzel et al. (2006); Khattab (2005); Karthikeyan et al. (2006); Okabe et al. (1993). For bond distances, see: Allen et al. (1987). For related structures, see: Shan et al. (2008); Fun et al. (2008); Yang (2008); Ma et al. (2008); Diao, Huang et al. (2008); Diao, Zhen et al. (2008); Ejsmont et al. (2008).

Experimental top

Compound (I) was prepared by dissolving 2-Hydroxy-1-naphthaldehyde (1.0 mmol, 172.3 mg) in methanol (50 ml), then 2-chlorobenzohydrazide (1.0 mmol, 170.2 mg) was added slowly and the mixture kept at reflux with continuous stirring for 3 h. When the solution was cooled to room temperature a colourless crystalline powder appeared. This was filtered off and washed with methanol three times. Recrystallization from absolute methanol yielded block-shaped single crystals suitable for X-ray analysis.

Refinement top

H-atom H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The other H-atoms were placed in calculated positions and treated as riding atoms: O–H = 0.82 Å, C–H = 0.93 Å, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of compound (I) viewed along the c axis (Hydrogen bonds are shown as dashed lines).
(E)-2-Chloro-N'-(2-hydroxy-1-naphthylmethylene)benzohydrazide top
Crystal data top
C18H13ClN2O2F(000) = 672
Mr = 324.75Dx = 1.427 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.2797 (14) ÅCell parameters from 2129 reflections
b = 29.148 (6) Åθ = 2.5–25.3°
c = 7.6889 (16) ŵ = 0.26 mm1
β = 112.130 (3)°T = 298 K
V = 1511.3 (5) Å3Block, colourless
Z = 40.32 × 0.27 × 0.26 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3255 independent reflections
Radiation source: fine-focus sealed tube2320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.920, Tmax = 0.935k = 3137
8693 measured reflectionsl = 96
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.2242P]
where P = (Fo2 + 2Fc2)/3
3255 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C18H13ClN2O2V = 1511.3 (5) Å3
Mr = 324.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2797 (14) ŵ = 0.26 mm1
b = 29.148 (6) ÅT = 298 K
c = 7.6889 (16) Å0.32 × 0.27 × 0.26 mm
β = 112.130 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3255 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2320 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.935Rint = 0.036
8693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
3255 reflectionsΔρmin = 0.20 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.90066 (8)0.109541 (17)0.58158 (8)0.05120 (18)
N10.9283 (2)0.28478 (5)0.6687 (2)0.0368 (4)
N20.8931 (2)0.25535 (5)0.5185 (2)0.0368 (4)
O10.9748 (2)0.30053 (5)1.0131 (2)0.0538 (4)
H10.97910.28550.92440.081*
O21.10008 (19)0.20185 (4)0.70363 (18)0.0444 (4)
C10.8785 (2)0.35871 (6)0.7742 (3)0.0344 (4)
C20.9227 (3)0.34426 (6)0.9575 (3)0.0393 (5)
C30.9128 (3)0.37438 (7)1.0959 (3)0.0474 (5)
H30.93820.36371.21670.057*
C40.8661 (3)0.41905 (8)1.0537 (3)0.0513 (6)
H40.85940.43861.14670.062*
C50.8273 (3)0.43664 (7)0.8724 (3)0.0451 (5)
C60.7811 (4)0.48343 (8)0.8286 (4)0.0652 (7)
H60.77390.50320.92100.078*
C70.7473 (4)0.49996 (8)0.6555 (5)0.0782 (9)
H70.71790.53090.62940.094*
C80.7564 (4)0.47067 (8)0.5156 (4)0.0739 (8)
H80.73340.48230.39660.089*
C90.7988 (3)0.42509 (7)0.5512 (3)0.0542 (6)
H90.80430.40610.45610.065*
C100.8341 (3)0.40654 (6)0.7300 (3)0.0388 (5)
C110.8664 (3)0.32609 (6)0.6287 (3)0.0355 (4)
H110.81270.33520.50370.043*
C120.9814 (3)0.21388 (6)0.5489 (3)0.0329 (4)
C130.9258 (2)0.18457 (6)0.3775 (3)0.0317 (4)
C140.8905 (3)0.13760 (6)0.3788 (3)0.0348 (4)
C150.8421 (3)0.11196 (7)0.2176 (3)0.0471 (5)
H150.81810.08070.22040.057*
C160.8291 (3)0.13237 (8)0.0521 (3)0.0529 (6)
H160.79640.11480.05650.064*
C170.8642 (3)0.17866 (7)0.0464 (3)0.0501 (5)
H170.85590.19240.06540.060*
C180.9117 (3)0.20441 (6)0.2079 (3)0.0396 (5)
H180.93490.23570.20370.048*
H20.799 (2)0.2634 (6)0.4086 (18)0.047 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0587 (3)0.0436 (3)0.0540 (4)0.0002 (2)0.0242 (3)0.0116 (2)
N10.0399 (9)0.0341 (8)0.0326 (9)0.0012 (7)0.0095 (7)0.0065 (7)
N20.0402 (9)0.0344 (8)0.0278 (9)0.0059 (7)0.0039 (7)0.0035 (7)
O10.0788 (11)0.0439 (8)0.0389 (9)0.0039 (8)0.0224 (8)0.0056 (7)
O20.0500 (8)0.0404 (7)0.0294 (8)0.0053 (6)0.0006 (6)0.0002 (6)
C10.0308 (9)0.0349 (10)0.0356 (11)0.0021 (8)0.0105 (8)0.0039 (8)
C20.0366 (10)0.0419 (11)0.0401 (12)0.0046 (9)0.0154 (9)0.0041 (9)
C30.0508 (12)0.0563 (13)0.0383 (12)0.0091 (10)0.0205 (10)0.0107 (10)
C40.0491 (12)0.0551 (13)0.0530 (15)0.0102 (10)0.0228 (11)0.0247 (11)
C50.0374 (11)0.0402 (11)0.0547 (14)0.0054 (9)0.0141 (10)0.0149 (10)
C60.0664 (16)0.0421 (13)0.079 (2)0.0021 (11)0.0187 (14)0.0185 (13)
C70.092 (2)0.0353 (13)0.094 (2)0.0088 (12)0.0198 (18)0.0016 (14)
C80.096 (2)0.0482 (14)0.0684 (19)0.0107 (13)0.0212 (15)0.0119 (13)
C90.0691 (15)0.0403 (12)0.0506 (14)0.0050 (10)0.0196 (12)0.0016 (10)
C100.0328 (10)0.0354 (10)0.0457 (12)0.0023 (8)0.0120 (9)0.0045 (9)
C110.0353 (10)0.0362 (10)0.0318 (10)0.0013 (8)0.0089 (8)0.0015 (8)
C120.0338 (10)0.0324 (9)0.0301 (10)0.0017 (8)0.0093 (8)0.0010 (8)
C130.0293 (9)0.0341 (9)0.0285 (10)0.0028 (8)0.0074 (8)0.0017 (8)
C140.0318 (9)0.0339 (10)0.0361 (11)0.0023 (8)0.0097 (8)0.0005 (8)
C150.0470 (12)0.0372 (11)0.0528 (14)0.0003 (9)0.0139 (10)0.0097 (10)
C160.0553 (13)0.0575 (14)0.0384 (13)0.0062 (11)0.0091 (10)0.0156 (11)
C170.0575 (13)0.0597 (14)0.0326 (12)0.0077 (11)0.0163 (10)0.0002 (10)
C180.0434 (11)0.0378 (10)0.0355 (11)0.0037 (9)0.0124 (9)0.0013 (9)
Geometric parameters (Å, º) top
Cl1—C141.737 (2)C6—H60.9300
N1—C111.282 (2)C7—C81.394 (4)
N1—N21.383 (2)C7—H70.9300
N2—C121.347 (2)C8—C91.368 (3)
N2—H20.896 (9)C8—H80.9300
O1—C21.353 (2)C9—C101.408 (3)
O1—H10.8200C9—H90.9300
O2—C121.229 (2)C11—H110.9300
C1—C21.388 (3)C12—C131.493 (2)
C1—C101.443 (3)C13—C141.394 (2)
C1—C111.445 (3)C13—C181.395 (3)
C2—C31.402 (3)C14—C151.375 (3)
C3—C41.354 (3)C15—C161.375 (3)
C3—H30.9300C15—H150.9300
C4—C51.411 (3)C16—C171.377 (3)
C4—H40.9300C16—H160.9300
C5—C61.415 (3)C17—C181.379 (3)
C5—C101.418 (3)C17—H170.9300
C6—C71.348 (4)C18—H180.9300
C11—N1—N2116.37 (16)C8—C9—H9119.6
C12—N2—N1119.02 (15)C10—C9—H9119.6
C12—N2—H2123.0 (13)C9—C10—C5118.02 (18)
N1—N2—H2117.4 (13)C9—C10—C1122.90 (18)
C2—O1—H1109.5C5—C10—C1119.08 (19)
C2—C1—C10118.55 (17)N1—C11—C1121.25 (18)
C2—C1—C11120.65 (17)N1—C11—H11119.4
C10—C1—C11120.71 (17)C1—C11—H11119.4
O1—C2—C1122.49 (17)O2—C12—N2122.65 (17)
O1—C2—C3116.01 (18)O2—C12—C13123.31 (16)
C1—C2—C3121.50 (19)N2—C12—C13114.02 (15)
C4—C3—C2120.0 (2)C14—C13—C18117.70 (17)
C4—C3—H3120.0C14—C13—C12123.07 (17)
C2—C3—H3120.0C18—C13—C12119.22 (16)
C3—C4—C5121.66 (19)C15—C14—C13120.87 (19)
C3—C4—H4119.2C15—C14—Cl1117.58 (15)
C5—C4—H4119.2C13—C14—Cl1121.53 (14)
C4—C5—C6121.8 (2)C16—C15—C14120.25 (19)
C4—C5—C10119.08 (19)C16—C15—H15119.9
C6—C5—C10119.1 (2)C14—C15—H15119.9
C7—C6—C5121.2 (2)C15—C16—C17120.3 (2)
C7—C6—H6119.4C15—C16—H16119.8
C5—C6—H6119.4C17—C16—H16119.8
C6—C7—C8119.9 (2)C16—C17—C18119.4 (2)
C6—C7—H7120.0C16—C17—H17120.3
C8—C7—H7120.0C18—C17—H17120.3
C9—C8—C7120.9 (3)C17—C18—C13121.45 (18)
C9—C8—H8119.6C17—C18—H18119.3
C7—C8—H8119.6C13—C18—H18119.3
C8—C9—C10120.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)1.97 (1)2.842 (2)164 (2)
O1—H1···N10.821.862.581 (2)146
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H13ClN2O2
Mr324.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.2797 (14), 29.148 (6), 7.6889 (16)
β (°) 112.130 (3)
V3)1511.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.32 × 0.27 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.920, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
8693, 3255, 2320
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.105, 1.04
No. of reflections3255
No. of parameters213
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.896 (9)1.972 (11)2.842 (2)163.5 (18)
O1—H1···N10.821.862.581 (2)146.2
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008). Acta Cryst. E64, o470.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhattab, S. N. (2005). Molecules 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationMa, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2008). Acta Cryst. E64, o1759.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds