metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1473-m1474

Bis[μ-2-(3-pyridylmeth­yl)-2H-benzo­triazole]bis­­[nitratosilver(I)]

aZhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Henan, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: chunsenliu@zzuli.edu.cn

(Received 13 October 2008; accepted 24 October 2008; online 31 October 2008)

In the title centrosymmetric binuclear AgI complex, [Ag2(NO3)2(C12H10N4)2], each AgI center is coordinated by one pyridine and one benzotriazole N-donor atom of two inversion-related 2-(3-pyridylmeth­yl)-2H-benzotriazole (L) ligands, and an O atom of a coordinated NO3 anion in a distorted T-shaped geometry. This forms a unique box-like cyclic dimer with an intra­molecular non-bonding Ag⋯Ag separation of 6.327 (2) Å. Weak inter­molecular Ag⋯O(nitrate) inter­actions [2.728 (4) and 2.646 (3) Å] link the binuclear units, forming a two-dimensional network parallel to (100). Inter­molecular C—H⋯O hydrogen-bonding inter­actions, involving the L ligands and the coordinated NO3 anions, link the sheets, forming a three-dimensional framework.

Related literature

For similar structures, see: Liu et al. (2006[Liu, C.-S., Chen, P.-Q., Yang, E.-C., Tian, J.-L., Bu, X.-H., Li, Z.-M., Sun, H.-W. & Lin, Z. (2006). Inorg. Chem. 45, 5812-5821.], 2007[Liu, C.-S., Li, J.-R., Zou, R.-Q., Zhou, J.-N., Shi, X.-S., Wang, J.-J. & Bu, X.-H. (2007). J. Mol. Struct. 843, 66-77.]); Richardson & Steel (2003[Richardson, C. & Steel, P. J. (2003). Dalton Trans. pp. 992-1000.]); For the synthesis of ligand L, see: Liu et al. (2008[Liu, C.-S., Sun, G.-H., Li, M., Guo, L.-Q., Zhou, L.-M. & Fang, S.-M. (2008). Open Crystallogr. J. 1, 24-30.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(NO3)2(C12H10N4)2]

  • Mr = 760.24

  • Monoclinic, P 21 /c

  • a = 10.472 (2) Å

  • b = 8.6921 (17) Å

  • c = 14.656 (3) Å

  • β = 95.33 (3)°

  • V = 1328.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.749, Tmax = 0.849

  • 12799 measured reflections

  • 2336 independent reflections

  • 2256 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.072

  • S = 1.11

  • 2335 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N4 2.253 (3)
Ag1—N1i 2.311 (3)
Ag1—O3 2.468 (3)
Ag1—O1ii 2.728 (4)
Ag1—O2ii 2.646 (3)
N4—Ag1—N1i 131.66 (10)
N4—Ag1—O3 127.43 (11)
N1i—Ag1—O3 84.66 (11)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2iii 0.93 2.59 3.365 (3) 141
C6—H61⋯O2iv 0.97 2.48 3.416 (5) 161
Symmetry codes: (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The structures of five N-containing bis-heterocyclic ligands bearing 1-substituted benzotriazole subunits, such as 1-(2-pyridylmethyl)-1H-benzotriazole and its binuclear CuII, PdII, and AgI complexes, have been published previously (Richardson & Steel, 2003). As part of a study on the coordination possibilities of benzotriazole-based ligands with different N-substituted positions in the self-assembly process of coordination complexes, we synthesized a nonplanar flexible ligand based on a 2-substituted benzotriazole subunit and a pendant pyridyl group, namely 2-(3-pyridylmethyl)-2H-benzotriazole (L). Ligand L was then used to construct the title compound, (I), by the reaction of L with AgNO3.

The structure of compound (I) consists of a centrosymmetric binuclear unit compossed of two L ligands, two AgI centers, and two coordinated NO3- anions (Fig. 1). The intramolecular non-bonding Ag···Ag separation is 6.327 (2) Å. Each AgI center adopts a distorted T-shaped geometry (Table 1) formed by one O atom of a NO3- anion and two N-donor atoms; one from the benzotriazole ring system of one L ligand, and the other one from the pendant pyridine ring of another L ligand.

In this case the 16-membered dimetallocyclic ring is far from planar as a result of the presence of the tetrahedral methylene group of the L ligand. All the Ag—O and Ag—N bond distances are in the normal range found for similar complexes (Liu, Chen et al., 2006; Liu, Li et al., 2007).

In the crystal structure adjacent discrete binuclear [Ag(L)(NO3)]2 units are further assembled into one-dimensional chains by intermolecular Ag···O interactions [Ag1···O1ii = 2.728 (4) Å and Ag1···O2ii = 2.646 (3) Å; symmetry code ii: -x + 1, y - 1/2, -z + 1.5, see Table 1]. The net result is a two-dimensional network running parallel to the (100) plane (Fig. 2). In addition, the crystal structure of (I) also contains intermolecular C—H···O hydrogen-bonding interactions (Table 2) between the L ligands and the coordinated NO3- anions that interlink the two-dimensional sheets to form a three-dimensional framework.

We are currently exploring the extension of this study to other 2-substituted benzotriazole-based bis-heterocyclic ligands with bulky aromatic pendant groups, such as acridine and quinoline, and their metal-organic coordination complexes with may have potentially useful properties.

Related literature top

For similar structures, see: Liu, Chen et al. (2006); Liu, Li et al. (2007); Richardson & Steel (2003); For the synthesis of ligand L, see: Liu, Sun et al. (2008).

Experimental top

The ligand 2-(3-Pyridylmethyl)-2H-benzotriazole (L) was synthesized according to the modified method reported in the literature (Liu, Sun et al., 2008). Benzotriazole (0.26 g, 2.2 mmol), 3-(chloromethyl)pyridine hydrochloride (3-picolyl chloride hydrochloride) (0.33 g, 2 mmol), and potassium carbonate (1.52 g, 11 mmol) were added to 50 ml of CH3CN. The mixture was stirred at rt for ca 1 h before being heated at reflux for 24 h, with vigorous stirring. A beige precipitate was obtained, filtered off and rinsed with CH3CN. The solvent was removed from the filtrate, and the beige product obtained was taken up in CHCl3 and washed three times with H2O, before being dried over anhydrous MgSO4. Ligand (L) was obtained as a yellow powder and purified by recrystallization from CHCl3/hexane [Yield: ca 40% (based on 3-(chloromethyl)pyridine hydrochloride)]. Elemental analysis calculated for (C12H10N4): C 68.56, H 4.79, N 26.65%; found: C 68.61, H 4.8, N 26.55%. Complex (I) was prepared by adding a solution of AgNO3 (0.1 mmol) to a mixture of ligand L (0.1 mmol) in CH3OH (15 ml) and CH3CN (5 ml). A yellow solid formed which was filtered off and the resulting solution was kept at rt. Yellow crystals of complex (I), suitable for X-ray analysis, were obtained by slow evaporation of the solvent after several days. Yield: ~30%. Elemental analysis calculated for (C12H10AgN5O3): C 37.92, H 2.65, N 18.42%; found: C 37.81, H 2.70, N 18.34%.

Refinement top

H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (methylene), and Uiso(H) = 1.2 or 1.5 Ueq(C). One reflection (100) was omitted from the refinement.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of complex (I). Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are generated by the symmetry operation (–x + 1, –y + 1, –z + 1).
[Figure 2] Fig. 2. A view of the two-dimensional network of compound (I), parallel to the (100) plane, formed by the intermolecular Ag···O (fine dashed lines) interactions (H atoms have been omitted for clarity).
Bis[µ-2-(3-pyridylmethyl)-2H-benzotriazole]bis[nitratosilver(I)] top
Crystal data top
[Ag2(NO3)2(C12H10N4)2]F(000) = 752
Mr = 760.24Dx = 1.901 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4027 reflections
a = 10.472 (2) Åθ = 2.3–28.0°
b = 8.6921 (17) ŵ = 1.54 mm1
c = 14.656 (3) ÅT = 293 K
β = 95.33 (3)°Block, yellow
V = 1328.3 (5) Å30.20 × 0.15 × 0.11 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2336 independent reflections
Radiation source: fine-focus sealed tube2256 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1212
Tmin = 0.749, Tmax = 0.849k = 1010
12799 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0212P)2 + 2.3034P]
where P = (Fo2 + 2Fc2)/3
2335 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Ag2(NO3)2(C12H10N4)2]V = 1328.3 (5) Å3
Mr = 760.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.472 (2) ŵ = 1.54 mm1
b = 8.6921 (17) ÅT = 293 K
c = 14.656 (3) Å0.20 × 0.15 × 0.11 mm
β = 95.33 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2336 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2256 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.849Rint = 0.027
12799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.11Δρmax = 0.96 e Å3
2335 reflectionsΔρmin = 0.70 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.44311 (3)0.21531 (4)0.62448 (2)0.05524 (13)
C10.6409 (3)0.4663 (4)0.5666 (2)0.0383 (8)
H10.60920.51970.61460.046*
C20.7353 (3)0.5350 (4)0.5209 (2)0.0377 (7)
C30.7781 (4)0.4566 (5)0.4484 (3)0.0568 (10)
H30.84120.49900.41550.068*
C40.7268 (5)0.3148 (5)0.4249 (3)0.0656 (12)
H40.75370.26130.37520.079*
C50.6361 (4)0.2536 (4)0.4753 (3)0.0527 (10)
H50.60340.15660.45990.063*
C60.7883 (4)0.6881 (4)0.5539 (2)0.0485 (9)
H610.72020.74830.57690.058*
H620.85380.67150.60430.058*
C70.9795 (3)0.8736 (4)0.4051 (2)0.0407 (8)
C81.0899 (4)0.9289 (5)0.3673 (3)0.0568 (10)
H81.17190.90700.39400.068*
C91.0709 (4)1.0148 (5)0.2908 (3)0.0590 (11)
H91.14171.05390.26460.071*
C100.9472 (4)1.0472 (5)0.2493 (3)0.0590 (11)
H100.93911.10650.19620.071*
C110.8387 (4)0.9950 (5)0.2840 (2)0.0505 (9)
H110.75731.01670.25600.061*
C120.8568 (3)0.9069 (4)0.3639 (2)0.0374 (7)
N10.7703 (3)0.8416 (3)0.41543 (19)0.0398 (7)
N20.8434 (3)0.7743 (3)0.48214 (19)0.0405 (7)
N30.9691 (3)0.7872 (4)0.4807 (2)0.0468 (7)
N40.5926 (3)0.3275 (3)0.5456 (2)0.0416 (7)
N50.4289 (3)0.4142 (4)0.8019 (2)0.0487 (8)
O10.5156 (4)0.4675 (5)0.7624 (2)0.0997 (13)
O20.4036 (3)0.4733 (4)0.8748 (2)0.0705 (8)
O30.3683 (3)0.3011 (4)0.7710 (2)0.0759 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04179 (18)0.0525 (2)0.0734 (2)0.00689 (13)0.01612 (14)0.00621 (15)
C10.0340 (17)0.044 (2)0.0370 (17)0.0018 (15)0.0035 (14)0.0029 (15)
C20.0400 (18)0.0372 (18)0.0360 (17)0.0006 (15)0.0036 (14)0.0048 (15)
C30.065 (3)0.051 (2)0.058 (2)0.007 (2)0.029 (2)0.0018 (19)
C40.085 (3)0.054 (3)0.063 (3)0.008 (2)0.031 (2)0.015 (2)
C50.059 (2)0.040 (2)0.059 (2)0.0071 (18)0.0048 (19)0.0036 (18)
C60.060 (2)0.048 (2)0.0391 (19)0.0129 (18)0.0110 (17)0.0021 (17)
C70.0407 (19)0.0393 (19)0.0431 (19)0.0094 (15)0.0091 (15)0.0064 (16)
C80.041 (2)0.066 (3)0.065 (3)0.0151 (19)0.0127 (18)0.010 (2)
C90.058 (3)0.064 (3)0.059 (3)0.025 (2)0.024 (2)0.008 (2)
C100.081 (3)0.052 (2)0.045 (2)0.021 (2)0.017 (2)0.0025 (19)
C110.054 (2)0.053 (2)0.045 (2)0.0077 (18)0.0065 (17)0.0038 (18)
C120.0389 (18)0.0356 (18)0.0387 (18)0.0084 (14)0.0088 (14)0.0068 (15)
N10.0361 (15)0.0445 (16)0.0394 (15)0.0103 (13)0.0063 (12)0.0011 (13)
N20.0413 (16)0.0413 (16)0.0397 (15)0.0092 (13)0.0086 (13)0.0008 (13)
N30.0400 (17)0.0509 (18)0.0495 (18)0.0052 (14)0.0038 (13)0.0006 (15)
N40.0363 (15)0.0405 (16)0.0475 (17)0.0034 (13)0.0008 (13)0.0040 (14)
N50.0404 (17)0.0463 (18)0.060 (2)0.0007 (15)0.0081 (15)0.0028 (16)
O10.091 (3)0.124 (3)0.089 (2)0.053 (2)0.038 (2)0.001 (2)
O20.0648 (19)0.067 (2)0.081 (2)0.0013 (15)0.0153 (16)0.0275 (17)
O30.080 (2)0.071 (2)0.081 (2)0.0322 (18)0.0301 (17)0.0311 (17)
Geometric parameters (Å, º) top
Ag1—N42.253 (3)C7—N31.351 (5)
Ag1—N1i2.311 (3)C7—C121.399 (5)
Ag1—O32.468 (3)C7—C81.412 (5)
Ag1—O1ii2.728 (4)C8—C91.345 (6)
Ag1—O2ii2.646 (3)C8—H80.9300
C1—N41.333 (4)C9—C101.408 (6)
C1—C21.381 (5)C9—H90.9300
C1—H10.9300C10—C111.365 (5)
C2—C31.372 (5)C10—H100.9300
C2—C61.504 (5)C11—C121.397 (5)
C3—C41.376 (6)C11—H110.9300
C3—H30.9300C12—N11.356 (4)
C4—C51.364 (6)N1—N21.321 (4)
C4—H40.9300N1—Ag1i2.311 (3)
C5—N41.329 (5)N2—N31.324 (4)
C5—H50.9300N5—O11.214 (4)
C6—N21.454 (4)N5—O31.234 (4)
C6—H610.9700N5—O21.236 (4)
C6—H620.9700
N4—Ag1—N1i131.66 (10)C9—C8—H8121.5
N4—Ag1—O3127.43 (11)C7—C8—H8121.5
N1i—Ag1—O384.66 (11)C8—C9—C10122.0 (4)
N4—C1—C2123.6 (3)C8—C9—H9119.0
N4—C1—H1118.2C10—C9—H9119.0
C2—C1—H1118.2C11—C10—C9122.4 (4)
C3—C2—C1117.4 (3)C11—C10—H10118.8
C3—C2—C6123.4 (3)C9—C10—H10118.8
C1—C2—C6119.1 (3)C10—C11—C12116.2 (4)
C2—C3—C4119.4 (4)C10—C11—H11121.9
C2—C3—H3120.3C12—C11—H11121.9
C4—C3—H3120.3N1—C12—C11130.6 (3)
C5—C4—C3119.3 (4)N1—C12—C7107.9 (3)
C5—C4—H4120.4C11—C12—C7121.5 (3)
C3—C4—H4120.4N2—N1—C12103.1 (3)
N4—C5—C4122.5 (4)N2—N1—Ag1i125.0 (2)
N4—C5—H5118.8C12—N1—Ag1i129.0 (2)
C4—C5—H5118.8N1—N2—N3117.4 (3)
N2—C6—C2112.5 (3)N1—N2—C6121.5 (3)
N2—C6—H61109.1N3—N2—C6121.1 (3)
C2—C6—H61109.1N2—N3—C7102.5 (3)
N2—C6—H62109.1C5—N4—C1117.8 (3)
C2—C6—H62109.1C5—N4—Ag1119.5 (2)
H61—C6—H62107.8C1—N4—Ag1122.6 (2)
N3—C7—C12109.2 (3)O1—N5—O3120.7 (4)
N3—C7—C8130.0 (4)O1—N5—O2119.0 (4)
C12—C7—C8120.9 (3)O3—N5—O2120.3 (3)
C9—C8—C7116.9 (4)N5—O3—Ag1111.5 (2)
N4—C1—C2—C32.0 (5)C12—N1—N2—N30.2 (4)
N4—C1—C2—C6176.4 (3)Ag1i—N1—N2—N3161.7 (2)
C1—C2—C3—C40.4 (6)C12—N1—N2—C6179.6 (3)
C6—C2—C3—C4177.9 (4)Ag1i—N1—N2—C617.7 (4)
C2—C3—C4—C51.2 (7)C2—C6—N2—N174.0 (4)
C3—C4—C5—N41.6 (7)C2—C6—N2—N3105.4 (4)
C3—C2—C6—N225.6 (5)N1—N2—N3—C70.5 (4)
C1—C2—C6—N2156.1 (3)C6—N2—N3—C7179.9 (3)
N3—C7—C8—C9179.3 (4)C12—C7—N3—N20.7 (4)
C12—C7—C8—C90.3 (6)C8—C7—N3—N2179.0 (4)
C7—C8—C9—C100.7 (6)C4—C5—N4—C10.1 (6)
C8—C9—C10—C110.5 (7)C4—C5—N4—Ag1179.8 (3)
C9—C10—C11—C120.2 (6)C2—C1—N4—C51.7 (5)
C10—C11—C12—N1178.7 (4)C2—C1—N4—Ag1177.9 (2)
C10—C11—C12—C70.6 (5)N1i—Ag1—N4—C568.9 (3)
N3—C7—C12—N10.6 (4)O3—Ag1—N4—C5169.5 (3)
C8—C7—C12—N1179.0 (3)N1i—Ag1—N4—C1111.5 (3)
N3—C7—C12—C11179.9 (3)O3—Ag1—N4—C110.1 (3)
C8—C7—C12—C110.4 (5)O1—N5—O3—Ag11.8 (5)
C11—C12—N1—N2179.6 (4)O2—N5—O3—Ag1179.5 (3)
C7—C12—N1—N20.3 (4)N4—Ag1—O3—N53.8 (3)
C11—C12—N1—Ag1i19.5 (5)N1i—Ag1—O3—N5144.1 (3)
C7—C12—N1—Ag1i161.1 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2iii0.932.593.365 (3)141
C6—H61···O2iv0.972.483.416 (5)161
Symmetry codes: (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ag2(NO3)2(C12H10N4)2]
Mr760.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.472 (2), 8.6921 (17), 14.656 (3)
β (°) 95.33 (3)
V3)1328.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.20 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.749, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
12799, 2336, 2256
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.072, 1.11
No. of reflections2335
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.70

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Ag1—N42.253 (3)Ag1—O1ii2.728 (4)
Ag1—N1i2.311 (3)Ag1—O2ii2.646 (3)
Ag1—O32.468 (3)
N4—Ag1—N1i131.66 (10)N1i—Ag1—O384.66 (11)
N4—Ag1—O3127.43 (11)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2iii0.932.593.365 (3)141
C6—H61···O2iv0.972.483.416 (5)161
Symmetry codes: (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the start-up fund for PhDs in Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 2006BSJJ001 to SMF). We also thank Dr Chun-Sen Liu for helpful discussions and valuable suggestions.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationLiu, C.-S., Chen, P.-Q., Yang, E.-C., Tian, J.-L., Bu, X.-H., Li, Z.-M., Sun, H.-W. & Lin, Z. (2006). Inorg. Chem. 45, 5812–5821.  Web of Science CSD CrossRef PubMed CAS
First citationLiu, C.-S., Li, J.-R., Zou, R.-Q., Zhou, J.-N., Shi, X.-S., Wang, J.-J. & Bu, X.-H. (2007). J. Mol. Struct. 843, 66–77.  Web of Science CSD CrossRef CAS
First citationLiu, C.-S., Sun, G.-H., Li, M., Guo, L.-Q., Zhou, L.-M. & Fang, S.-M. (2008). Open Crystallogr. J. 1, 24–30.  CSD CrossRef CAS
First citationRichardson, C. & Steel, P. J. (2003). Dalton Trans. pp. 992–1000.  Web of Science CSD CrossRef
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1473-m1474
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds