

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Bis[*u*-2-(3-pyridylmethyl)-2*H*-benzotriazole]bis[nitratosilver(I)]

#### Min Hu, Song-Tao Ma, Liang-Qi Guo, Guang-Hui Sun and Shao-Ming Fang\*

Zhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Henan, Zhengzhou 450002, People's Republic of China Correspondence e-mail: chunsenliu@zzuli.edu.cn

Received 13 October 2008; accepted 24 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.036; wR factor = 0.072; data-to-parameter ratio = 12.3.

In the title centrosymmetric binuclear Ag<sup>I</sup> complex,  $[Ag_2(NO_3)_2(C_{12}H_{10}N_4)_2]$ , each Ag<sup>I</sup> center is coordinated by one pyridine and one benzotriazole N-donor atom of two inversion-related 2-(3-pyridylmethyl)-2H-benzotriazole (L) ligands, and an O atom of a coordinated NO<sub>3</sub><sup>-</sup> anion in a distorted T-shaped geometry. This forms a unique box-like cyclic dimer with an intramolecular non-bonding Ag...Ag separation of 6.327 (2) Å. Weak intermolecular Ag... O(nitrate) interactions [2.728 (4) and 2.646 (3) Å] link the binuclear units, forming a two-dimensional network parallel to (100). Intermolecular C-H···O hydrogen-bonding interactions, involving the L ligands and the coordinated  $NO_3^$ anions, link the sheets, forming a three-dimensional framework.

#### **Related literature**

For similar structures, see: Liu et al. (2006, 2007); Richardson & Steel (2003); For the synthesis of ligand L, see: Liu et al. (2008).



#### **Experimental**

Crystal data  $[Ag_2(NO_3)_2(C_{12}H_{10}N_4)_2]$  $M_r = 760.24$ 

```
Monoclinic, P2_1/c
a = 10.472 (2) Å
```

| b = 8.6921 (17) Å             |
|-------------------------------|
| c = 14.656 (3) Å              |
| $\beta = 95.33 \ (3)^{\circ}$ |
| $V = 1328.3 (5) \text{ Å}^3$  |
| Z = 2                         |

#### Data collection

| Bruker SMART CCD area-detector         | 12799 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 2336 independent reflections           |
| Absorption correction: multi-scan      | 2256 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 2008)              | $R_{\rm int} = 0.027$                  |
| $T_{\min} = 0.749, \ T_{\max} = 0.849$ |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.036$ | 190 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.072$               | H-atom parameters constrained                              |
| S = 1.11                        | $\Delta \rho_{\rm max} = 0.96 \text{ e } \text{\AA}^{-3}$  |
| 2335 reflections                | $\Delta \rho_{\rm min} = -0.70 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### Table 1

Selected geometric parameters (Å, °).

| Ag1-N4                 | 2.253 (3)   | Ag1-O1 <sup>ii</sup>    | 2.728 (4)  |
|------------------------|-------------|-------------------------|------------|
| Ag1-N1 <sup>i</sup>    | 2.311 (3)   | Ag1-O2 <sup>ii</sup>    | 2.646 (3)  |
| Ag1-O3                 | 2.468 (3)   |                         |            |
| N4-Ag1-N1 <sup>i</sup> | 131.66 (10) | N1 <sup>i</sup> -Ag1-O3 | 84.66 (11) |
| N4-Ag1-O3              | 127.43 (11) |                         |            |
|                        |             |                         |            |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1,  $y - \frac{1}{2}$ ,  $-z + \frac{3}{2}$ .

| Table 2       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdots A$       | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|------------------------|------|-------------------------|--------------|---------------------------|
| $C5-H5\cdots O2^{iii}$ | 0.93 | 2.59                    | 3.365 (3)    | 141                       |
| $C6-H61\cdots O2^{iv}$ | 0.97 | 2.48                    | 3.416 (5)    | 161                       |
|                        |      |                         |              |                           |

Symmetry codes: (iii)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ ; (iv)  $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$ .

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

This work was supported by the start-up fund for PhDs in Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 2006BSJJ001 to SMF). We also thank Dr Chun-Sen Liu for helpful discussions and valuable suggestions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2070).

#### References

- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Liu, C.-S., Chen, P.-Q., Yang, E.-C., Tian, J.-L., Bu, X.-H., Li, Z.-M., Sun, H.-W. & Lin, Z. (2006). Inorg. Chem. 45, 5812-5821.

Mo  $K\alpha$  radiation  $\mu = 1.54 \text{ mm}^{-1}$ 

 $0.20 \times 0.15 \times 0.11 \text{ mm}$ 

T = 293 (2) K

Liu, C.-S., Li, J.-R., Zou, R.-Q., Zhou, J.-N., Shi, X.-S., Wang, J.-J. & Bu, X.-H. (2007). J. Mol. Struct. 843, 66–77.

Liu, C.-S., Sun, G.-H., Li, M., Guo, L.-Q., Zhou, L.-M. & Fang, S.-M. (2008). Open Crystallogr. J. 1, 24–30. Richardson, C. & Steel, P. J. (2003). *Dalton Trans.* pp. 992–1000. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122. Spek, A. L. (2003). *J. Appl. Cryst.* 36, 7–13.

# supporting information

Acta Cryst. (2008). E64, m1473-m1474 [doi:10.1107/S160053680803479X]

# Bis[µ-2-(3-pyridylmethyl)-2H-benzotriazole]bis[nitratosilver(I)]

## Min Hu, Song-Tao Ma, Liang-Qi Guo, Guang-Hui Sun and Shao-Ming Fang

### S1. Comment

The structures of five N-containing bis-heterocyclic ligands bearing 1-substituted benzotriazole subunits, such as 1-(2pyridylmethyl)-1*H*-benzotriazole and its binuclear Cu<sup>II</sup>, Pd<sup>II</sup>, and Ag<sup>I</sup> complexes, have been published previously (Richardson & Steel, 2003). As part of a study on the coordination possibilities of benzotriazole-based ligands with different N-substituted positions in the self-assembly process of coordination complexes, we synthesized a nonplanar flexible ligand based on a 2-substituted benzotriazole subunit and a pendant pyridyl group, namely 2-(3-pyridylmethyl)-2*H*-benzotriazole (*L*). Ligand *L* was then used to construct the title compound, (I), by the reaction of *L* with AgNO<sub>3</sub>.

The structure of compound (I) consists of a centrosymmetric binuclear unit composed of two *L* ligands, two Ag<sup>I</sup> centers, and two coordinated NO<sub>3</sub><sup>-</sup> anions (Fig. 1). The intramolecular non-bonding Ag···Ag separation is 6.327 (2) Å. Each Ag<sup>I</sup> center adopts a distorted T-shaped geometry (Table 1) formed by one O atom of a NO<sub>3</sub><sup>-</sup> anion and two N-donor atoms; one from the benzotriazole ring system of one *L* ligand, and the other one from the pendant pyridine ring of another *L* ligand.

In this case the 16-membered dimetallocyclic ring is far from planar as a result of the presence of the tetrahedral methylene group of the *L* ligand. All the Ag—O and Ag—N bond distances are in the normal range found for similar complexes (Liu, Chen *et al.*, 2006; Liu, Li *et al.*, 2007).

In the crystal structure adjacent discrete binuclear  $[Ag(L)(NO_3)]_2$  units are further assembled into one-dimensional chains by intermolecular Ag···O interactions  $[Ag1\cdotsO1^{ii} = 2.728 (4) \text{ Å and } Ag1\cdotsO2^{ii} = 2.646 (3) \text{ Å}$ ; symmetry code ii: -*x* + 1, *y* - 1/2, -*z* + 1.5, see Table 1]. The net result is a two-dimensional network running parallel to the (100) plane (Fig. 2). In addition, the crystal structure of (I) also contains intermolecular C—H···O hydrogen-bonding interactions (Table 2) between the *L* ligands and the coordinated NO<sub>3</sub><sup>-</sup> anions that interlink the two-dimensional sheets to form a three-dimensional framework.

We are currently exploring the extension of this study to other 2-substituted benzotriazole-based bis-heterocyclic ligands with bulky aromatic pendant groups, such as acridine and quinoline, and their metal-organic coordination complexes with may have potentially useful properties.

## S2. Experimental

The ligand 2-(3-Pyridylmethyl)-2*H*-benzotriazole (*L*) was synthesized according to the modified method reported in the literature (Liu, Sun *et al.*, 2008). Benzotriazole (0.26 g, 2.2 mmol), 3-(chloromethyl)pyridine hydrochloride (3-picolyl chloride hydrochloride) (0.33 g, 2 mmol), and potassium carbonate (1.52 g, 11 mmol) were added to 50 ml of CH<sub>3</sub>CN. The mixture was stirred at rt for *ca* 1 h before being heated at reflux for 24 h, with vigorous stirring. A beige precipitate was obtained, filtered off and rinsed with CH<sub>3</sub>CN. The solvent was removed from the filtrate, and the beige product obtained was taken up in CHCl<sub>3</sub> and washed three times with H<sub>2</sub>O, before being dried over anhydrous MgSO<sub>4</sub>. Ligand (*L*)

was obtained as a yellow powder and purified by recrystallization from CHCl<sub>3</sub>/hexane [Yield: *ca* 40% (based on 3-(chloromethyl)pyridine hydrochloride)]. Elemental analysis calculated for ( $C_{12}H_{10}N_4$ ): C 68.56, H 4.79, N 26.65%; found: C 68.61, H 4.8, N 26.55%. Complex (I) was prepared by adding a solution of AgNO<sub>3</sub> (0.1 mmol) to a mixture of ligand *L* (0.1 mmol) in CH<sub>3</sub>OH (15 ml) and CH<sub>3</sub>CN (5 ml). A yellow solid formed which was filtered off and the resulting solution was kept at rt. Yellow crystals of complex (I), suitable for X-ray analysis, were obtained by slow evaporation of the solvent after several days. Yield: ~30%. Elemental analysis calculated for ( $C_{12}H_{10}AgN_5O_3$ ): C 37.92, H 2.65, N 18.42%; found: C 37.81, H 2.70, N 18.34%.

## **S3. Refinement**

H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (methylene), and  $U_{iso}(H) = 1.2$  or 1.5  $U_{eq}(C)$ . One reflection (100) was omitted from the refinement.



## Figure 1

The molecular structure of complex (I). Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are generated by the symmetry operation (-x + 1, -y + 1, -z + 1).



## Figure 2

A view of the two-dimensional network of compound (I), parallel to the (100) plane, formed by the intermolecular Ag…O (fine dashed lines) interactions (H atoms have been omitted for clarity).

## Bis[µ-2-(3-pyridylmethyl)-2H-benzotriazole]bis[nitratosilver(I)]

| Crystal data                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[Ag_{2}(NO_{3})_{2}(C_{12}H_{10}N_{4})_{2}]$<br>$M_{r} = 760.24$<br>Monoclinic, $P2_{1}/c$<br>Hall symbol: -P 2ybc<br>a = 10.472 (2) Å<br>b = 8.6921 (17) Å<br>c = 14.656 (3) Å<br>$\beta = 95.33$ (3)°<br>V = 1328.3 (5) Å <sup>3</sup><br>Z = 2                                           | F(000) = 752<br>$D_x = 1.901 \text{ Mg m}^{-3}$<br>Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 4027 reflections<br>$\theta = 2.3-28.0^{\circ}$<br>$\mu = 1.54 \text{ mm}^{-1}$<br>T = 293  K<br>Block, yellow<br>$0.20 \times 0.15 \times 0.11 \text{ mm}$ |
| Data collection<br>Bruker SMART CCD area-detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 2008)<br>$T_{\min} = 0.749, T_{\max} = 0.849$ | 12799 measured reflections<br>2336 independent reflections<br>2256 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.027$<br>$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$<br>$h = -12 \rightarrow 12$<br>$k = -10 \rightarrow 10$<br>$l = -17 \rightarrow 17$          |
|                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                       |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
|-------------------------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.036$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.072$                               | neighbouring sites                                        |
| S = 1.11                                        | H-atom parameters constrained                             |
| 2335 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0212P)^2 + 2.3034P]$         |
| 190 parameters                                  | where $P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3$                |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                       |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.96 \text{ e } \text{\AA}^{-3}$ |
| direct methods                                  | $\Delta  ho_{ m min} = -0.70 \ { m e} \ { m \AA}^{-3}$    |
|                                                 |                                                           |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|-------------|-------------|--------------|-----------------------------|
| Agl | 0.44311 (3) | 0.21531 (4) | 0.62448 (2)  | 0.05524 (13)                |
| C1  | 0.6409 (3)  | 0.4663 (4)  | 0.5666 (2)   | 0.0383 (8)                  |
| H1  | 0.6092      | 0.5197      | 0.6146       | 0.046*                      |
| C2  | 0.7353 (3)  | 0.5350 (4)  | 0.5209 (2)   | 0.0377 (7)                  |
| C3  | 0.7781 (4)  | 0.4566 (5)  | 0.4484 (3)   | 0.0568 (10)                 |
| Н3  | 0.8412      | 0.4990      | 0.4155       | 0.068*                      |
| C4  | 0.7268 (5)  | 0.3148 (5)  | 0.4249 (3)   | 0.0656 (12)                 |
| H4  | 0.7537      | 0.2613      | 0.3752       | 0.079*                      |
| C5  | 0.6361 (4)  | 0.2536 (4)  | 0.4753 (3)   | 0.0527 (10)                 |
| Н5  | 0.6034      | 0.1566      | 0.4599       | 0.063*                      |
| C6  | 0.7883 (4)  | 0.6881 (4)  | 0.5539 (2)   | 0.0485 (9)                  |
| H61 | 0.7202      | 0.7483      | 0.5769       | 0.058*                      |
| H62 | 0.8538      | 0.6715      | 0.6043       | 0.058*                      |
| C7  | 0.9795 (3)  | 0.8736 (4)  | 0.4051 (2)   | 0.0407 (8)                  |
| C8  | 1.0899 (4)  | 0.9289 (5)  | 0.3673 (3)   | 0.0568 (10)                 |
| H8  | 1.1719      | 0.9070      | 0.3940       | 0.068*                      |
| C9  | 1.0709 (4)  | 1.0148 (5)  | 0.2908 (3)   | 0.0590 (11)                 |
| H9  | 1.1417      | 1.0539      | 0.2646       | 0.071*                      |
| C10 | 0.9472 (4)  | 1.0472 (5)  | 0.2493 (3)   | 0.0590 (11)                 |
| H10 | 0.9391      | 1.1065      | 0.1962       | 0.071*                      |
| C11 | 0.8387 (4)  | 0.9950 (5)  | 0.2840 (2)   | 0.0505 (9)                  |
| H11 | 0.7573      | 1.0167      | 0.2560       | 0.061*                      |
| C12 | 0.8568 (3)  | 0.9069 (4)  | 0.3639 (2)   | 0.0374 (7)                  |
| N1  | 0.7703 (3)  | 0.8416 (3)  | 0.41543 (19) | 0.0398 (7)                  |
| N2  | 0.8434 (3)  | 0.7743 (3)  | 0.48214 (19) | 0.0405 (7)                  |

| N3 | 0.9691 (3) | 0.7872 (4) | 0.4807 (2) | 0.0468 (7)  |
|----|------------|------------|------------|-------------|
| N4 | 0.5926 (3) | 0.3275 (3) | 0.5456 (2) | 0.0416 (7)  |
| N5 | 0.4289 (3) | 0.4142 (4) | 0.8019 (2) | 0.0487 (8)  |
| 01 | 0.5156 (4) | 0.4675 (5) | 0.7624 (2) | 0.0997 (13) |
| O2 | 0.4036 (3) | 0.4733 (4) | 0.8748 (2) | 0.0705 (8)  |
| O3 | 0.3683 (3) | 0.3011 (4) | 0.7710 (2) | 0.0759 (10) |
| 05 | 0.3083 (3) | 0.3011 (4) | 0.7710(2)  | 0.0739 (10) |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$     | $U^{23}$     |
|-----|--------------|-------------|-------------|---------------|--------------|--------------|
| Ag1 | 0.04179 (18) | 0.0525 (2)  | 0.0734 (2)  | -0.00689 (13) | 0.01612 (14) | 0.00621 (15) |
| C1  | 0.0340 (17)  | 0.044 (2)   | 0.0370 (17) | 0.0018 (15)   | 0.0035 (14)  | 0.0029 (15)  |
| C2  | 0.0400 (18)  | 0.0372 (18) | 0.0360 (17) | -0.0006 (15)  | 0.0036 (14)  | 0.0048 (15)  |
| C3  | 0.065 (3)    | 0.051 (2)   | 0.058 (2)   | -0.007 (2)    | 0.029 (2)    | -0.0018 (19) |
| C4  | 0.085 (3)    | 0.054 (3)   | 0.063 (3)   | -0.008(2)     | 0.031 (2)    | -0.015 (2)   |
| C5  | 0.059 (2)    | 0.040 (2)   | 0.059 (2)   | -0.0071 (18)  | 0.0048 (19)  | -0.0036 (18) |
| C6  | 0.060 (2)    | 0.048 (2)   | 0.0391 (19) | -0.0129 (18)  | 0.0110 (17)  | 0.0021 (17)  |
| C7  | 0.0407 (19)  | 0.0393 (19) | 0.0431 (19) | -0.0094 (15)  | 0.0091 (15)  | -0.0064 (16) |
| C8  | 0.041 (2)    | 0.066 (3)   | 0.065 (3)   | -0.0151 (19)  | 0.0127 (18)  | -0.010 (2)   |
| C9  | 0.058 (3)    | 0.064 (3)   | 0.059 (3)   | -0.025 (2)    | 0.024 (2)    | -0.008(2)    |
| C10 | 0.081 (3)    | 0.052 (2)   | 0.045 (2)   | -0.021 (2)    | 0.017 (2)    | 0.0025 (19)  |
| C11 | 0.054 (2)    | 0.053 (2)   | 0.045 (2)   | -0.0077 (18)  | 0.0065 (17)  | 0.0038 (18)  |
| C12 | 0.0389 (18)  | 0.0356 (18) | 0.0387 (18) | -0.0084 (14)  | 0.0088 (14)  | -0.0068 (15) |
| N1  | 0.0361 (15)  | 0.0445 (16) | 0.0394 (15) | -0.0103 (13)  | 0.0063 (12)  | 0.0011 (13)  |
| N2  | 0.0413 (16)  | 0.0413 (16) | 0.0397 (15) | -0.0092 (13)  | 0.0086 (13)  | 0.0008 (13)  |
| N3  | 0.0400 (17)  | 0.0509 (18) | 0.0495 (18) | -0.0052 (14)  | 0.0038 (13)  | 0.0006 (15)  |
| N4  | 0.0363 (15)  | 0.0405 (16) | 0.0475 (17) | -0.0034 (13)  | 0.0008 (13)  | 0.0040 (14)  |
| N5  | 0.0404 (17)  | 0.0463 (18) | 0.060 (2)   | -0.0007 (15)  | 0.0081 (15)  | -0.0028 (16) |
| 01  | 0.091 (3)    | 0.124 (3)   | 0.089 (2)   | -0.053 (2)    | 0.038 (2)    | -0.001 (2)   |
| O2  | 0.0648 (19)  | 0.067 (2)   | 0.081 (2)   | -0.0013 (15)  | 0.0153 (16)  | -0.0275 (17) |
| O3  | 0.080 (2)    | 0.071 (2)   | 0.081 (2)   | -0.0322 (18)  | 0.0301 (17)  | -0.0311 (17) |
|     |              |             |             |               |              |              |

# Geometric parameters (Å, °)

| Ag1—N4               | 2.253 (3) | C7—N3               | 1.351 (5) |
|----------------------|-----------|---------------------|-----------|
| Ag1—N1 <sup>i</sup>  | 2.311 (3) | C7—C12              | 1.399 (5) |
| Ag1—O3               | 2.468 (3) | C7—C8               | 1.412 (5) |
| Ag1—O1 <sup>ii</sup> | 2.728 (4) | C8—C9               | 1.345 (6) |
| Ag1—O2 <sup>ii</sup> | 2.646 (3) | C8—H8               | 0.9300    |
| C1—N4                | 1.333 (4) | C9—C10              | 1.408 (6) |
| C1—C2                | 1.381 (5) | С9—Н9               | 0.9300    |
| C1—H1                | 0.9300    | C10—C11             | 1.365 (5) |
| C2—C3                | 1.372 (5) | C10—H10             | 0.9300    |
| C2—C6                | 1.504 (5) | C11—C12             | 1.397 (5) |
| C3—C4                | 1.376 (6) | C11—H11             | 0.9300    |
| С3—Н3                | 0.9300    | C12—N1              | 1.356 (4) |
| C4—C5                | 1.364 (6) | N1—N2               | 1.321 (4) |
| C4—H4                | 0.9300    | N1—Ag1 <sup>i</sup> | 2.311 (3) |
|                      |           |                     |           |

| C5—N4                   | 1.329 (5)   | N2—N3                      | 1.324 (4)  |
|-------------------------|-------------|----------------------------|------------|
| С5—Н5                   | 0.9300      | N5—O1                      | 1.214 (4)  |
| C6—N2                   | 1.454 (4)   | N5—O3                      | 1.234 (4)  |
| C6—H61                  | 0.9700      | N5—O2                      | 1.236 (4)  |
| С6—Н62                  | 0.9700      |                            | . ,        |
|                         |             |                            |            |
| N4—Ag1—N1 <sup>i</sup>  | 131.66 (10) | С9—С8—Н8                   | 121.5      |
| N4—Ag1—O3               | 127.43 (11) | С7—С8—Н8                   | 121.5      |
| N1 <sup>i</sup> —Ag1—O3 | 84.66 (11)  | C8—C9—C10                  | 122.0 (4)  |
| N4—C1—C2                | 123.6 (3)   | С8—С9—Н9                   | 119.0      |
| N4—C1—H1                | 118.2       | С10—С9—Н9                  | 119.0      |
| C2—C1—H1                | 118.2       | C11—C10—C9                 | 122.4 (4)  |
| C3—C2—C1                | 117.4 (3)   | C11—C10—H10                | 118.8      |
| C3—C2—C6                | 123.4 (3)   | С9—С10—Н10                 | 118.8      |
| C1—C2—C6                | 119.1 (3)   | C10—C11—C12                | 116.2 (4)  |
| C2—C3—C4                | 119.4 (4)   | C10-C11-H11                | 121.9      |
| С2—С3—Н3                | 120.3       | C12—C11—H11                | 121.9      |
| С4—С3—Н3                | 120.3       | N1—C12—C11                 | 130.6 (3)  |
| C5—C4—C3                | 119.3 (4)   | N1—C12—C7                  | 107.9 (3)  |
| C5—C4—H4                | 120.4       | C11—C12—C7                 | 121.5 (3)  |
| C3—C4—H4                | 120.4       | N2—N1—C12                  | 103.1 (3)  |
| N4—C5—C4                | 122.5 (4)   | N2—N1—Ag1 <sup>i</sup>     | 125.0 (2)  |
| N4—C5—H5                | 118.8       | C12—N1—Ag1 <sup>i</sup>    | 129.0 (2)  |
| С4—С5—Н5                | 118.8       | N1—N2—N3                   | 117.4 (3)  |
| N2—C6—C2                | 112.5 (3)   | N1—N2—C6                   | 121.5 (3)  |
| N2—C6—H61               | 109.1       | N3—N2—C6                   | 121.1 (3)  |
| С2—С6—Н61               | 109.1       | N2—N3—C7                   | 102.5 (3)  |
| N2—C6—H62               | 109.1       | C5—N4—C1                   | 117.8 (3)  |
| С2—С6—Н62               | 109.1       | C5—N4—Ag1                  | 119.5 (2)  |
| H61—C6—H62              | 107.8       | C1—N4—Ag1                  | 122.6 (2)  |
| N3—C7—C12               | 109.2 (3)   | O1—N5—O3                   | 120.7 (4)  |
| N3—C7—C8                | 130.0 (4)   | O1—N5—O2                   | 119.0 (4)  |
| C12—C7—C8               | 120.9 (3)   | O3—N5—O2                   | 120.3 (3)  |
| C9—C8—C7                | 116.9 (4)   | N5—O3—Ag1                  | 111.5 (2)  |
|                         |             |                            |            |
| N4—C1—C2—C3             | 2.0 (5)     | C12—N1—N2—N3               | -0.2 (4)   |
| N4—C1—C2—C6             | -176.4 (3)  | Ag1 <sup>i</sup> —N1—N2—N3 | 161.7 (2)  |
| C1—C2—C3—C4             | -0.4 (6)    | C12—N1—N2—C6               | -179.6 (3) |
| C6—C2—C3—C4             | 177.9 (4)   | Ag1 <sup>i</sup> —N1—N2—C6 | -17.7 (4)  |
| C2—C3—C4—C5             | -1.2 (7)    | C2—C6—N2—N1                | 74.0 (4)   |
| C3—C4—C5—N4             | 1.6 (7)     | C2—C6—N2—N3                | -105.4 (4) |
| C3—C2—C6—N2             | 25.6 (5)    | N1—N2—N3—C7                | 0.5 (4)    |
| C1—C2—C6—N2             | -156.1 (3)  | C6—N2—N3—C7                | 179.9 (3)  |
| N3—C7—C8—C9             | -179.3 (4)  | C12—C7—N3—N2               | -0.7 (4)   |
| C12—C7—C8—C9            | 0.3 (6)     | C8—C7—N3—N2                | 179.0 (4)  |
| C7—C8—C9—C10            | -0.7 (6)    | C4—C5—N4—C1                | -0.1 (6)   |
| C8—C9—C10—C11           | 0.5 (7)     | C4—C5—N4—Ag1               | -179.8 (3) |
| C9—C10—C11—C12          | 0.2 (6)     | C2-C1-N4-C5                | -1.7 (5)   |

| C10-C11-C12-N1              | 178.7 (4)  | C2-C1-N4-Ag1               | 177.9 (2)  |
|-----------------------------|------------|----------------------------|------------|
| C10-C11-C12-C7              | -0.6 (5)   | N1 <sup>i</sup> —Ag1—N4—C5 | -68.9 (3)  |
| N3—C7—C12—N1                | 0.6 (4)    | O3—Ag1—N4—C5               | 169.5 (3)  |
| C8—C7—C12—N1                | -179.0 (3) | N1 <sup>i</sup> —Ag1—N4—C1 | 111.5 (3)  |
| N3—C7—C12—C11               | -179.9 (3) | O3—Ag1—N4—C1               | -10.1 (3)  |
| C8—C7—C12—C11               | 0.4 (5)    | O1—N5—O3—Ag1               | -1.8 (5)   |
| C11—C12—N1—N2               | -179.6 (4) | O2—N5—O3—Ag1               | 179.5 (3)  |
| C7—C12—N1—N2                | -0.3 (4)   | N4—Ag1—O3—N5               | -3.8 (3)   |
| C11—C12—N1—Ag1 <sup>i</sup> | 19.5 (5)   | N1 <sup>i</sup> —Ag1—O3—N5 | -144.1 (3) |
| C7—C12—N1—Ag1 <sup>i</sup>  | -161.1 (2) |                            |            |
|                             |            |                            |            |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y-1/2, -z+3/2.

# Hydrogen-bond geometry (Å, °)

| D—H···A                 | <i>D</i> —Н | H···A | D···A     | <i>D</i> —H··· <i>A</i> |
|-------------------------|-------------|-------|-----------|-------------------------|
| С5—Н5…О2 <sup>ііі</sup> | 0.93        | 2.59  | 3.365 (3) | 141                     |
| C6—H61…O2 <sup>iv</sup> | 0.97        | 2.48  | 3.416 (5) | 161                     |

Symmetry codes: (iii) x, -y+1/2, z-1/2; (iv) -x+1, y+1/2, -z+3/2.