

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*Z*,*Z*)-1,4-Diiodo-1,4-bis(trimethylsilyl)buta-1,3-diene

Jan W. Bats,^a* Birgit Urschel^b and Thomas Müller^c

^aInstitut für Organische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, ^bInstitut für Anorganische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and ^cInstitut für Reine und Angewandte Chemie, Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, D-26129 Oldenburg, Germany Correspondence e-mail: bats@chemie.uni-frankfurt.de

Received 23 October 2008; accepted 24 October 2008

Key indicators: single-crystal X-ray study; T = 155 K; mean σ (C–C) = 0.002 Å; R factor = 0.021; wR factor = 0.059; data-to-parameter ratio = 43.6.

The asymmetric unit of the title compound, $C_{10}H_{20}I_2Si_2$, contains two half-molecules. Both complete molecules are generated by crystallographic inversion centers located at the mid-points of the central C–C single bonds; the butadiene groups are planar, with a *trans* conformation about the central C–C bond. The molecules show short intramolecular H···I contacts of 2.89 and 2.92 Å. The crystal packing shows no short intermolecular contacts.

Related literature

For the synthesis of the title compound, see: Yamaguchi *et al.* (1998). For related structures, see: Saito *et al.* (2007); Yamamoto *et al.* (2002). For van der Waals radii, see: Bondi (1964).

Experimental

Crystal data C₁₀H₂₀I₂Si₂

 $M_r = 450.24$

Triclinic, $P\overline{1}$	
a = 6.3553 (17) Å	
b = 11.502 (2) Å	
c = 11.698 (2) Å	
$\alpha = 103.027 \ (13)^{\circ}$	
$\beta = 90.555 \ (17)^{\circ}$	
$\gamma = 90.99 \ (2)^{\circ}$	

Data collection

Siemens SMART 1K CCD	15331 measured reflections
diffractometer	5837 independent reflections
Absorption correction: multi-scan	5272 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2000)	$R_{\rm int} = 0.021$
$T_{\min} = 0.275, \ T_{\max} = 0.336$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$	134 parameters
$wR(F^2) = 0.059$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 1.12 \text{ e } \text{\AA}^{-3}$
5837 reflections	$\Delta \rho_{\rm min} = -0.94 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$\begin{array}{c} C1 - H1 \cdots I1^{i} \\ C6 - H6 \cdots I2^{ii} \end{array}$	0.95 0.95	2.92 2.89	3.394 (2) 3.378 (2)	112 113

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 1.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2074).

References

- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Saito, M., Nakamura, M., Tajima, T. & Yoshioka, M. (2007). Angew. Chem. Int. Ed. 46, 1504–1507.
- Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1995). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Yamaguchi, S., Jin, R.-Z., Tamao, K. & Sato, F. (1998). J. Org. Chem. 63, 10060–10062.
- Yamamoto, Y., Ohno, T. & Itoh, K. (2002). Chem. Eur. J. 8, 4734-4741.

organic compounds

V = 832.9 (3) Å³

Mo $K\alpha$ radiation

 $0.46 \times 0.36 \times 0.28$ mm

 $\mu = 3.89 \text{ mm}^-$ T = 155 (2) K

7 - 2

supporting information

Acta Cryst. (2008). E64, o2235 [doi:10.1107/S160053680803482X]

(Z,Z)-1,4-Diiodo-1,4-bis(trimethylsilyl)buta-1,3-diene

Jan W. Bats, Birgit Urschel and Thomas Müller

S1. Comment

The title compound crystallized with two independent centrosymmetric molecules in the unit cell (Fig.1). Each molecule has a crystallographic inversion center at the midpoint of the central C—C single bond. The geometrical parameters of both molecules are similar. The butadiene groups are planar with a *trans*-conformation about the central C—C bond. The trimethylsilyl groups adopt orientations with a methyl group *syn*-periplanar with the nearest C=C double bond: torsion angles C3—Si1—C2—C1 = -12.1 (2)° and C9—Si2—C7—C6 = -21.2 (2)°. The molecules show intramolecular H···I contacts of 2.89 Å and 2.92 Å (Table 1), which are shorter than the van der Waals contact distance of 3.18 Å (Bondi, 1964).

The crystal packing of the title compound (Fig. 2) shows no short intermolecular contacts. The shortest intermolecular I···I distances of 3.876 (1) Å [I1···I2ⁱ; symmetry operation i) = 1+x, y, z] and 3.973 (1) Å [I1···I2] are comparable to the van der Waals contact distance of 3.96 Å.

S2. Experimental

The title compound was prepared as described by Yamaguchi et al. (1998), and recrystallized from n-hexane at 153 K.

S3. Refinement

H atoms were geometrically positioned and treated as riding atoms: C_{planar} —H = 0.95 Å, C_{methyl} —H=0.98 Å, with U_{iso} (H)= $1.2U_{eq}(C_{butene})$ and = $1.5U_{eq}(C_{methyl})$.

Figure 1

A view of the two independent molecules of the title compound, with displacement ellipsoids drawn at the 50% probability level (Unlabeled atoms are related to labeled atoms by inversion centers at the midpoints of the molecules).

Figure 2

The crystal packing of the title compound, viewed down the a axis (the displacement ellipsoids are drawn at the 50% probability level).

(Z,Z)-1,4-Diiodo-1,4-bis(trimethylsilyl)buta-1,3-diene

Crystal data

 $C_{10}H_{20}I_2Si_2$ $M_r = 450.24$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 6.3553 (17) Åb = 11.502 (2) Å c = 11.698 (2) Å $\alpha = 103.027 (13)^{\circ}$ $\beta = 90.555 (17)^{\circ}$ $\gamma = 90.99 \ (2)^{\circ}$ V = 832.9 (3) Å³

Data collection

Siemens SMART 1K CCD	15331 measured reflections
diffractometer	5837 independent reflections
Radiation source: normal-focus sealed tube	5272 reflections with $I > 2\sigma$
Graphite monochromator	$R_{\rm int} = 0.021$
ω scans	$\theta_{\rm max} = 32.5^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Sheldrick, 2000)	$k = -17 \rightarrow 17$
$T_{\min} = 0.275, \ T_{\max} = 0.336$	$l = -17 \rightarrow 17$

Z = 2F(000) = 428 $D_{\rm x} = 1.795 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 124 reflections $\theta = 3-23^{\circ}$ $\mu = 3.89 \text{ mm}^{-1}$ T = 155 KBlock, colorless $0.46 \times 0.36 \times 0.28 \text{ mm}$

s (I)

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.021$	H-atom parameters constrained
$wR(F^2) = 0.059$	$w = 1/[\sigma^2(F_o^2) + (0.02P)^2]$
<i>S</i> = 1.03	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5837 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
134 parameters	$\Delta \rho_{\rm max} = 1.12 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.94 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0130 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	v	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
	0.631493 (18)	0.679368 (10)	0.508829 (10)	0.02900 (4)
I2	0.124665 (17)	0.825214 (9)	0.402449 (9)	0.02623 (4)
Si1	0.76330 (7)	0.63323 (4)	0.77198 (4)	0.02223 (9)
Si2	0.47343 (7)	0.86551 (4)	0.19545 (4)	0.02225 (9)
C1	0.9715 (3)	0.51656 (14)	0.56130 (13)	0.0211 (3)
H1	1.0502	0.4804	0.6129	0.025*
C2	0.8224 (2)	0.59143 (13)	0.61143 (13)	0.0198 (3)
C3	0.9030 (3)	0.53065 (18)	0.84764 (16)	0.0321 (4)
H3A	0.8575	0.5446	0.9293	0.048*
H3B	1.0552	0.5455	0.8458	0.048*
H3C	0.8702	0.4478	0.8077	0.048*
C4	0.8577 (4)	0.79022 (18)	0.8278 (2)	0.0405 (5)
H4A	0.8270	0.8157	0.9116	0.061*
H4B	0.7858	0.8422	0.7848	0.061*
H4C	1.0098	0.7953	0.8165	0.061*
C5	0.4740 (3)	0.62065 (18)	0.79288 (17)	0.0322 (4)
H5A	0.4456	0.6250	0.8759	0.048*
H5B	0.4206	0.5442	0.7457	0.048*
H5C	0.4037	0.6862	0.7680	0.048*
C6	0.5181 (3)	0.98312 (14)	0.43727 (13)	0.0221 (3)
H6	0.6391	1.0180	0.4103	0.027*
C7	0.4013 (3)	0.90828 (14)	0.35421 (13)	0.0210 (3)
C8	0.6036 (3)	0.71790 (16)	0.16638 (17)	0.0332 (4)

supporting information

H8A	0.7252	0.7220	0.2194	0.050*	
H8B	0.6506	0.6974	0.0849	0.050*	
H8C	0.5034	0.6567	0.1796	0.050*	
C9	0.6592 (3)	0.98330 (18)	0.16797 (18)	0.0361 (4)	
H9A	0.7846	0.9870	0.2182	0.054*	
H9B	0.5901	1.0607	0.1859	0.054*	
H9C	0.7005	0.9641	0.0854	0.054*	
C10	0.2345 (3)	0.85504 (18)	0.09994 (16)	0.0342 (4)	
H10A	0.2759	0.8370	0.0174	0.051*	
H10B	0.1613	0.9312	0.1182	0.051*	
H10C	0.1404	0.7914	0.1139	0.051*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02999 (7)	0.03118 (7)	0.02837 (7)	0.01194 (4)	0.00029 (5)	0.01117 (5)
I2	0.02378 (7)	0.02802 (7)	0.02598 (6)	-0.00570 (4)	-0.00083 (4)	0.00471 (4)
Si1	0.0211 (2)	0.0241 (2)	0.01973 (19)	0.00282 (16)	0.00184 (15)	0.00115 (16)
Si2	0.0263 (2)	0.0217 (2)	0.01793 (19)	0.00165 (16)	0.00037 (16)	0.00277 (15)
C1	0.0221 (7)	0.0224 (7)	0.0191 (6)	0.0036 (5)	0.0002 (5)	0.0049 (5)
C2	0.0193 (7)	0.0203 (7)	0.0200 (6)	0.0019 (5)	-0.0005 (5)	0.0046 (5)
C3	0.0302 (9)	0.0438 (10)	0.0248 (8)	0.0096 (7)	0.0031 (7)	0.0123 (7)
C4	0.0426 (12)	0.0312 (9)	0.0408 (11)	-0.0023 (8)	-0.0044 (9)	-0.0063 (8)
C5	0.0224 (9)	0.0423 (10)	0.0307 (9)	0.0045 (7)	0.0053 (7)	0.0050 (7)
C6	0.0213 (7)	0.0223 (7)	0.0217 (7)	-0.0019 (5)	0.0011 (5)	0.0030 (5)
C7	0.0219 (7)	0.0203 (7)	0.0207 (7)	0.0013 (5)	0.0008 (5)	0.0045 (5)
C8	0.0414 (11)	0.0279 (9)	0.0284 (8)	0.0081 (7)	-0.0002 (7)	0.0021 (7)
C9	0.0410 (11)	0.0339 (9)	0.0349 (9)	-0.0020 (8)	0.0109 (8)	0.0108 (8)
C10	0.0387 (11)	0.0388 (10)	0.0245 (8)	0.0034 (8)	-0.0048 (7)	0.0060 (7)

Geometric parameters (Å, °)

I1—C2	2.1207 (16)	C4—H4B	0.9800
I2—C7	2.1276 (17)	C4—H4C	0.9800
Sil—C3	1.8591 (19)	C5—H5A	0.9800
Sil—C4	1.863 (2)	С5—Н5В	0.9800
Sil—C5	1.8647 (19)	С5—Н5С	0.9800
Sil—C2	1.8742 (16)	C6—C7	1.350 (2)
Si2-C10	1.863 (2)	C6—C6 ⁱⁱ	1.453 (3)
Si2—C8	1.8644 (19)	С6—Н6	0.9500
Si2—C9	1.866 (2)	C8—H8A	0.9800
Si2—C7	1.8744 (16)	C8—H8B	0.9800
C1—C2	1.339 (2)	C8—H8C	0.9800
C1—C1 ⁱ	1.450 (3)	С9—Н9А	0.9800
C1—H1	0.9500	С9—Н9В	0.9800
С3—НЗА	0.9800	С9—Н9С	0.9800
С3—Н3В	0.9800	C10—H10A	0.9800
С3—Н3С	0.9800	C10—H10B	0.9800

supporting information

C4—H4A	0.9800	С10—Н10С	0.9800
C3—Si1—C4	110.85 (10)	Si1—C5—H5A	109.5
C3—Si1—C5	109.79 (9)	Si1—C5—H5B	109.5
C4—Si1—C5	110.45 (10)	H5A—C5—H5B	109.5
C3—Si1—C2	109.04 (8)	Si1—C5—H5C	109.5
C4—Si1—C2	107.21 (9)	H5A—C5—H5C	109.5
C5—Si1—C2	109.45 (8)	H5B—C5—H5C	109.5
C10—Si2—C8	109.30 (9)	C7—C6—C6 ⁱⁱ	128.06 (19)
C10—Si2—C9	110.53 (10)	С7—С6—Н6	116.0
C8—Si2—C9	110.39 (10)	С6 ^{іі} —С6—Н6	116.0
C10—Si2—C7	110.61 (9)	C6—C7—Si2	123.88 (12)
C8—Si2—C7	108.94 (8)	C6—C7—I2	119.83 (12)
C9—Si2—C7	107.04 (8)	Si2—C7—I2	116.23 (8)
$C2-C1-C1^{i}$	128.56 (19)	Si2—C8—H8A	109.5
C2—C1—H1	115.7	Si2—C8—H8B	109.5
C1 ⁱ —C1—H1	115.7	H8A—C8—H8B	109.5
C1—C2—Si1	126.01 (12)	Si2—C8—H8C	109.5
C1—C2—I1	120.61 (12)	H8A—C8—H8C	109.5
Si1—C2—I1	113.35 (8)	H8B—C8—H8C	109.5
Si1—C3—H3A	109.5	Si2—C9—H9A	109.5
Si1—C3—H3B	109.5	Si2—C9—H9B	109.5
НЗА—СЗ—НЗВ	109.5	H9A—C9—H9B	109.5
Si1—C3—H3C	109.5	Si2—C9—H9C	109.5
НЗА—СЗ—НЗС	109.5	Н9А—С9—Н9С	109.5
НЗВ—СЗ—НЗС	109.5	Н9В—С9—Н9С	109.5
Sil—C4—H4A	109.5	Si2—C10—H10A	109.5
Sil—C4—H4B	109.5	Si2—C10—H10B	109.5
H4A—C4—H4B	109.5	H10A—C10—H10B	109.5
Si1—C4—H4C	109.5	Si2—C10—H10C	109.5
H4A—C4—H4C	109.5	H10A—C10—H10C	109.5
H4B—C4—H4C	109.5	H10B—C10—H10C	109.5
C1 ⁱ —C1—C2—Si1	-178.07 (17)	C6 ⁱⁱ —C6—C7—Si2	-176.55 (18)
$C1^{i}$ — $C1$ — $C2$ — $I1$	0.2 (3)	C6 ⁱⁱ —C6—C7—I2	0.6 (3)
C3—Si1—C2—C1	-12.13 (17)	C10—Si2—C7—C6	-141.69 (15)
C4—Si1—C2—C1	107.93 (16)	C8—Si2—C7—C6	98.15 (16)
C5—Si1—C2—C1	-132.25 (15)	C9—Si2—C7—C6	-21.21 (17)
C3—Si1—C2—I1	169.49 (8)	C10—Si2—C7—I2	41.11 (11)
C4—Si1—C2—I1	-70.44 (11)	C8—Si2—C7—I2	-79.04 (11)
C5—Si1—C2—I1	49.37 (11)	C9—Si2—C7—I2	161.59 (9)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+2, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
$C1$ — $H1$ ··· $I1^i$	0.95	2.92	3.394 (2)	112

			supporting information	
С6—Н6…І2іі	0.95	2.89	3.378 (2)	113
Symmetry codes: (i) $-x+2$, $-y+1$, $-z+1$; (ii) - <i>x</i> +1, - <i>y</i> +2, - <i>z</i> +1.			