

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

13c-(2-Chloroethoxy)-1,13c-dihydro-2,3epoxydibenzo[a,kl]xanthan-1-one

Jin-Xiang Chen, Yu-Qin Wang, Shu-Guang Wu, Zhi-Hong Jiang and Zhi-Peng Chen*

School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China Correspondence e-mail: czpwyg@yahoo.com.cn

Received 6 September 2008; accepted 25 September 2008

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.136; data-to-parameter ratio = 14.0.

The title compound, $C_{22}H_{15}ClO_4$, containing three chiral C atoms, is an intermediate in the design of chiral alcohols. In the crystal structure, a chain structure is generated through C- $H \cdots O$ contacts and an intramolecular $C - H \cdots O$ interaction also occurs. The dihedral angle between the benzene ring and the naphthalene system is 16.5°.

Related literature

For related literature, see: Aronne et al. (2008); Sasidharan et al. (2002); Tan et al. (2001); Wang et al. (2003); Yamazaki (2008).

Experimental

Crystal data

C22H15ClO4 $M_r = 378.79$ Orthorhombic, $P2_12_12_1$ a = 7.7966 (13) Åb = 10.4468 (18) Å c = 21.349 (4) Å

V = 1738.9 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.25 \text{ mm}^{-1}$ T = 193 (2) K $0.30 \times 0.20 \times 0.10 \text{ mm}$ 10185 measured reflections

 $R_{\rm int} = 0.029$

3416 independent reflections

2809 reflections with $I > 2\sigma(I)$

Data collection

Rigaku Mercury diffractometer Absorption correction: multi-scan (Jacobson, 1998) $T_{\min} = 0.930, \ T_{\max} = 0.966$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.136$	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.06	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$
3416 reflections	Absolute structure: Flack (1983)
244 parameters	1440 Friedel pairs
19 restraints	Flack parameter: 0.00 (11)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C14-H14A\cdots O2^{i}\\ C19-H19A\cdots O4 \end{array}$	0.95	2.55	3.392 (4)	147
	0.95	2.54	3.084 (3)	117

Symmetry code: (i) x, y + 1, z.

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

This work was supported by the Medical Scientific Research Foundation of Guangdong Province, China (grant No. B2006091) and the NSF of Guangdong Province, China (grant No. 7300449).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2302).

References

- Aronne, A., Turco, M., Bagnasco, G., Ramis, G., Santacesaria, E., Di Serio, M., Marenna, E., Bevilacqua, M., Cammarano, C. & Fanelli, E. (2008). Appl. Catal. A. 347, 179-185.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sasidharan, M., Wu, P. & Tatsumi, T. (2002). J. Catal. 205, 332-338.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tan, D. M., Li, H. H. & Wang, B. (2001). Chin. J. Chem. 19, 91-93.
- Wang, B., Kang, Y. R., Yang, L. M. & Suo, J. S. (2003). J. Mol. Catal. A, 203, 29-36
- Yamazaki, S. (2008). Tetrahedron, 64, 9253-9257.

supporting information

Acta Cryst. (2008). E64, o2069 [doi:10.1107/S1600536808030973]

13c-(2-Chloroethoxy)-1,13c-dihydro-2,3-epoxydibenzo[a,kl]xanthan-1-one

Jin-Xiang Chen, Yu-Qin Wang, Shu-Guang Wu, Zhi-Hong Jiang and Zhi-Peng Chen

S1. Comment

Epoxides are well known as one of the most valuable building blocks used as intermediates and precursors for pharmaceuticals (Yamazaki, 2008; Aronne, *et al.*, 2008). The title compound, (I), is a key intermediate in the preparation of chiral alcohols, which we are designing for potential use as antiviral agents. The structure of (I), Fig. 1, provides information on the potential stereoselectivity of its ring-opening reactions (Sasidharan *et al.*, 2002; Wang *et al.*, 2003). The molecule of (I) contains six fused rings with the three aromatic rings almost coplanar. The six-membered carbocyclic ring adopts a slightly twisted boat conformation and the pyran ring is nearly planar. The epoxy group points in the same direction as the OCH_2CH_2CI group, having a *syn* relationship. In the crystal structure, molecules of (I) associate in a head-to-tail manner, parallel to the *b* axis, *via* O-H···O hydrogen bonds to form a 1D structure, Fig. 2 and Table 1.

S2. Experimental

Compound (I) was obtained by epoxidation of 13c-(2-chloroethyloxy)-1-oxo-1,13c-dihydrodibenzo[a,kl]xanthene in methanol with aqueous hydrogen peroxide (30%) under mild reaction conditions (Tan *et al.*, 2001). Compound (I) was the main product, isolated in a yield of 92%. Crystals suitable for X-ray analysis were obtained from the slow evaporation of an acetone solution (m.p. 527–529 K). IR (KBr disk): 3409, 2905, 2359, 1720 (s, C=O), 1454, 1267, 1097, 776, 755, 508 cm⁻¹. ¹H NMR (300 MHz in CDCl₃/TMS): 3.15–3.25 (m, 2H), 3.27–3.38 (m, 2H), 4.04 (d, J = 3.9 Hz, 1H), 4.34 (d, J = 3.9 Hz, 1H), 7.24–7.26 (m, 1H), 7.27 (d, J = 9.0 Hz, 1H), 7.34–7.49 (m, 4H), 7.78–7.79 (m, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.96–8.02 (m, 1H) p.p.m. FAB-MS (m/z): 299(M^+ –OCH₂CH₂Cl).

S3. Refinement

The hydrogen atoms were placed in geometrically idealized positions with C—H = 0.95 - 1.00 Å and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Molecular structure of (I) showing atom labelling and 30% probability ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radii.

Figure 2

One-dimensional chain aligned along the b axis in (I) consolidated by C-H…O contacts, shown as dashed lines.

13c-(2-Chloroethoxy)-1,13c-dihydro-2,3-epoxydibenzo[a,kl]xanthan-1-one

Crystal data	
$C_{22}H_{15}ClO_4$	F(000) = 784
$M_r = 378.79$	$D_{\rm x} = 1.447 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 3462 reflections
a = 7.7966 (13) Å	$\theta = 3.0-26.0^{\circ}$
b = 10.4468 (18) Å	$\mu = 0.25 \mathrm{~mm^{-1}}$
c = 21.349 (4) Å	T = 193 K
V = 1738.9 (5) Å ³	Block, white
Z = 4	$0.30 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Rigaku Mercury diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan Jacobson (1998) $T_{\min} = 0.930, T_{\max} = 0.966$	10185 measured reflections 3416 independent reflections 2809 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -9 \rightarrow 9$ $k = -12 \rightarrow 12$ $l = -19 \rightarrow 26$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.136$ S = 1.06 3416 reflections 244 parameters 19 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.074P)^2 + 0.4256P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.59$ e Å ⁻³ $\Delta\rho_{min} = -0.35$ e Å ⁻³ Absolute structure: (Flack, 1983) Absolute structure parameter: 0.00 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.46182 (15)	0.38912 (11)	0.01032 (4)	0.0875 (3)	
01	-0.1176 (2)	0.3230 (2)	-0.16123 (9)	0.0532 (5)	
O2	0.2117 (3)	0.0809 (2)	-0.15674 (11)	0.0644 (6)	
03	0.3149 (3)	0.5535 (3)	-0.24976 (11)	0.0751 (7)	
O4	0.2976 (2)	0.31516 (16)	-0.11496 (8)	0.0407 (4)	
C1	0.0243 (3)	0.2781 (2)	-0.16079 (11)	0.0405 (5)	
C2	0.0484 (4)	0.1375 (3)	-0.16874 (14)	0.0539 (7)	
H2A	-0.0548	0.0821	-0.1626	0.065*	
C3	0.1656 (4)	0.1034 (3)	-0.22079 (15)	0.0639 (9)	
H3A	0.1337	0.0264	-0.2460	0.077*	
C4	0.2524 (4)	0.2067 (4)	-0.25451 (14)	0.0615 (8)	
C5	0.3171 (5)	0.1828 (5)	-0.31363 (17)	0.0876 (14)	
H5A	0.3128	0.0983	-0.3300	0.105*	
C6	0.3871 (5)	0.2784 (7)	-0.34885 (19)	0.1044 (19)	
H6A	0.4346	0.2595	-0.3888	0.125*	

C7	0.3890 (5)	0.4024 (6)	-0.32672 (18)	0.0925 (15)
H7A	0.4359	0.4696	-0.3513	0.111*
C8	0.3208 (4)	0.4275 (4)	-0.26739 (15)	0.0637 (8)
C9	0.2571 (3)	0.3325 (3)	-0.22965 (13)	0.0503 (7)
C10	0.1881 (3)	0.3613 (2)	-0.16413 (11)	0.0398 (5)
C11	0.1543 (3)	0.5025 (3)	-0.15546 (13)	0.0467 (6)
C12	0.2211 (4)	0.5882 (3)	-0.19788 (16)	0.0621 (9)
C13	0.1977 (6)	0.7205 (4)	-0.1912 (2)	0.0874 (14)
H13A	0.2446	0.7775	-0.2213	0.105*
C14	0.1084 (6)	0.7670 (4)	-0.1419 (3)	0.0954 (17)
H14A	0.0913	0.8567	-0.1382	0.114*
C15	0.0399 (5)	0.6845 (3)	-0.09575 (19)	0.0747 (11)
C16	-0.0529 (6)	0.7314 (5)	-0.0437 (3)	0.0975 (16)
H16A	-0.0749	0.8206	-0.0407	0.117*
C17	-0.1110 (5)	0.6531 (6)	0.0017 (3)	0.1038 (18)
H17A	-0.1753	0.6875	0.0355	0.125*
C18	-0.0773 (4)	0.5204 (4)	-0.00048 (18)	0.0763 (11)
H18A	-0.1155	0.4656	0.0322	0.092*
C19	0.0119 (4)	0.4717 (3)	-0.05086 (14)	0.0554 (7)
H19A	0.0361	0.3827	-0.0523	0.067*
C20	0.0683 (4)	0.5505 (3)	-0.10016 (15)	0.0512 (7)
C21	0.4673 (3)	0.3628 (3)	-0.11653 (14)	0.0581 (8)
H21A	0.4656	0.4573	-0.1196	0.070*
H21B	0.5282	0.3285	-0.1536	0.070*
C22	0.5569 (4)	0.3234 (4)	-0.05865 (15)	0.0674 (9)
H22A	0.6781	0.3511	-0.0610	0.081*
H22B	0.5555	0.2288	-0.0557	0.081*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cl1	0.0914 (7)	0.1130 (8)	0.0581 (5)	-0.0041 (6)	-0.0129 (5)	-0.0133 (5)
01	0.0330 (9)	0.0667 (12)	0.0600 (12)	-0.0019 (9)	-0.0022 (8)	-0.0140 (10)
O2	0.0653 (14)	0.0560 (11)	0.0719 (14)	0.0091 (10)	-0.0164 (11)	-0.0079 (10)
O3	0.0592 (12)	0.1059 (17)	0.0602 (13)	-0.0229 (13)	-0.0064 (11)	0.0374 (12)
O4	0.0337 (8)	0.0517 (9)	0.0366 (9)	-0.0029 (7)	-0.0054 (7)	0.0054 (8)
C1	0.0370 (13)	0.0516 (13)	0.0329 (12)	-0.0024 (11)	-0.0016 (10)	-0.0019 (10)
C2	0.0519 (15)	0.0492 (15)	0.0606 (17)	-0.0034 (13)	-0.0072 (14)	-0.0061 (13)
C3	0.0591 (19)	0.0673 (19)	0.065 (2)	0.0146 (16)	-0.0136 (15)	-0.0207 (17)
C4	0.0418 (14)	0.098 (2)	0.0451 (15)	0.0212 (16)	-0.0067 (12)	-0.0141 (16)
C5	0.057 (2)	0.154 (4)	0.052 (2)	0.038 (2)	-0.0018 (17)	-0.028 (2)
C6	0.056 (2)	0.207 (6)	0.050(2)	0.024 (3)	0.0092 (17)	-0.007 (3)
C7	0.0469 (19)	0.177 (5)	0.053 (2)	-0.004 (2)	0.0046 (15)	0.037 (3)
C8	0.0410 (14)	0.101 (2)	0.0493 (15)	-0.0078 (16)	-0.0034 (13)	0.0233 (16)
C9	0.0310 (12)	0.0801 (19)	0.0399 (13)	0.0032 (13)	-0.0049 (10)	0.0050 (14)
C10	0.0349 (12)	0.0495 (13)	0.0349 (12)	-0.0024 (10)	-0.0053 (10)	0.0018 (10)
C11	0.0391 (13)	0.0501 (14)	0.0509 (15)	-0.0063 (11)	-0.0139 (11)	0.0050 (12)
C12	0.0526 (18)	0.0618 (18)	0.072 (2)	-0.0124 (15)	-0.0249 (16)	0.0204 (16)

supporting information

C13	0.088 (3)	0.057 (2)	0.117 (3)	-0.023 (2)	-0.052 (3)	0.032 (2)
C14	0.099 (3)	0.0414 (17)	0.146 (4)	-0.004 (2)	-0.069 (3)	0.004 (2)
C15	0.067 (2)	0.0560 (18)	0.101 (3)	0.0121 (17)	-0.045 (2)	-0.0239 (19)
C16	0.082 (3)	0.080 (3)	0.131 (4)	0.031 (2)	-0.044 (3)	-0.053 (3)
C17	0.063 (2)	0.142 (4)	0.107 (4)	0.032 (3)	-0.021 (2)	-0.079 (3)
C18	0.0557 (18)	0.109 (3)	0.064 (2)	0.0057 (19)	-0.0051 (15)	-0.034 (2)
C19	0.0439 (14)	0.0697 (18)	0.0527 (17)	-0.0014 (13)	-0.0030 (12)	-0.0148 (14)
C20	0.0399 (14)	0.0498 (14)	0.0638 (18)	0.0016 (12)	-0.0183 (13)	-0.0121 (13)
C21	0.0337 (13)	0.092 (2)	0.0481 (15)	-0.0082 (14)	-0.0058 (12)	0.0153 (15)
C22	0.0472 (16)	0.094 (2)	0.0613 (19)	0.0008 (17)	-0.0121 (15)	0.0086 (17)

Geometric parameters (Å, °)

Cl1—C22	1.786 (4)	C10—C11	1.509 (4)	
01—C1	1.201 (3)	C11—C12	1.376 (4)	
O2—C2	1.427 (4)	C11—C20	1.448 (4)	
O2—C3	1.433 (4)	C12—C13	1.401 (5)	
O3—C8	1.370 (5)	C13—C14	1.353 (7)	
O3—C12	1.376 (4)	C13—H13A	0.9500	
O4—C21	1.414 (3)	C14—C15	1.413 (6)	
O4—C10	1.437 (3)	C14—H14A	0.9500	
C1—C2	1.490 (4)	C15—C16	1.413 (7)	
C1—C10	1.546 (3)	C15—C20	1.421 (4)	
С2—С3	1.482 (4)	C16—C17	1.347 (7)	
C2—H2A	1.0000	C16—H16A	0.9500	
C3—C4	1.463 (5)	C17—C18	1.411 (7)	
С3—НЗА	1.0000	C17—H17A	0.9500	
C4—C5	1.382 (5)	C18—C19	1.378 (5)	
C4—C9	1.418 (5)	C18—H18A	0.9500	
С5—С6	1.364 (7)	C19—C20	1.406 (5)	
С5—Н5А	0.9500	C19—H19A	0.9500	
С6—С7	1.379 (8)	C21—C22	1.478 (4)	
С6—Н6А	0.9500	C21—H21A	0.9900	
С7—С8	1.399 (5)	C21—H21B	0.9900	
С7—Н7А	0.9500	C22—H22A	0.9900	
С8—С9	1.371 (4)	C22—H22B	0.9900	
C9—C10	1.529 (4)			
C2—O2—C3	62.4 (2)	C12—C11—C20	119.1 (3)	
C8—O3—C12	119.5 (2)	C12—C11—C10	119.3 (3)	
C21—O4—C10	114.88 (19)	C20-C11-C10	121.3 (2)	
O1—C1—C2	120.0 (3)	C11—C12—O3	124.0 (3)	
O1-C1-C10	122.7 (2)	C11—C12—C13	121.7 (4)	
C2-C1-C10	116.4 (2)	O3—C12—C13	114.3 (3)	
O2—C2—C3	59.0 (2)	C14—C13—C12	120.1 (4)	
O2—C2—C1	120.0 (2)	C14—C13—H13A	120.0	
C3—C2—C1	113.6 (3)	C12—C13—H13A	120.0	
O2—C2—H2A	117.0	C13—C14—C15	121.1 (3)	

C3—C2—H2A	117.0	C13—C14—H14A	119.4
C1—C2—H2A	117.0	C15—C14—H14A	119.4
02-C3-C4	118.3 (3)	C14—C15—C16	122.0 (4)
$0^{2}-C^{3}-C^{2}$	58 6 (2)	C_{14} C_{15} C_{20}	1198(4)
C_{4} C_{3} C_{2}	1185(3)	C_{16} C_{15} C_{20}	119.0(1) 118.2(4)
$O_2 C_3 H_3 \Lambda$	116.5 (5)	$C_{10} = C_{10} = C_{20}$	110.2(4)
$C_4 = C_3 = H_2 \Lambda$	110.4	C17 - C16 - U16	121.8 (4)
$C_{1} = C_{2} = H_{2}$	110.4	$C_{17} = C_{10} = H_{10}$	119.1
$C_2 = C_3 = H_3 A$	110.4	C16 - C17 - C18	119.1
$C_{5} = C_{4} = C_{9}$	120.0 (4)	C16 - C17 - C18	120.7 (4)
$C_{3} - C_{4} - C_{3}$	119.0 (4)	C10 - C17 - H17A	119.7
C9—C4—C3	120.7 (3)		119.7
C6—C5—C4	121.1 (5)	C19—C18—C17	118.8 (4)
C6—C5—H5A	119.4	C19—C18—H18A	120.6
C4—C5—H5A	119.4	C17—C18—H18A	120.6
C5—C6—C7	120.2 (4)	C18—C19—C20	121.8 (3)
С5—С6—Н6А	119.9	C18—C19—H19A	119.1
С7—С6—Н6А	119.9	С20—С19—Н19А	119.1
C6—C7—C8	118.8 (4)	C19—C20—C15	118.6 (3)
С6—С7—Н7А	120.6	C19—C20—C11	123.6 (2)
С8—С7—Н7А	120.6	C15—C20—C11	117.9 (3)
O3—C8—C9	121.5 (3)	O4—C21—C22	108.9 (2)
O3—C8—C7	116.2 (4)	O4—C21—H21A	109.9
C9—C8—C7	122.3 (4)	C22—C21—H21A	109.9
C8—C9—C4	117.4 (3)	O4—C21—H21B	109.9
C8—C9—C10	121.5 (3)	C22—C21—H21B	109.9
C4—C9—C10	121.1 (3)	H21A—C21—H21B	108.3
04	11000(19)	$C_{21} - C_{22} - C_{11}$	112.7(2)
04-C10-C9	113.2(2)	$C_{21} = C_{22} = H_{22}$	109.0
$C_{11} - C_{10} - C_{9}$	113.2(2) 111.5(2)	C11 - C22 - H22 A	109.0
04 $C10$ $C1$	111.5(2) 105 56 (18)	C_{21} C_{22} H_{22R}	109.0
$C_{11} = C_{10} = C_{1}$	105.50(10) 112.6(2)	$C_{21} = C_{22} = H_{22}B$	109.0
$C_1 = C_1 = C_1$	113.0(2) 102.82(10)	CII - C22 - II22B	109.0
C9—C10—C1	102.85 (19)	П22А—С22—П22В	107.8
C3—O2—C2—C1	-101.1 (3)	C2-C1-C10-O4	-59.2 (3)
O1—C1—C2—O2	-168.3 (3)	O1-C1-C10-C11	11.1 (3)
C10—C1—C2—O2	22.2 (4)	C2-C1-C10-C11	-179.8 (2)
O1—C1—C2—C3	125.0 (3)	O1—C1—C10—C9	-109.5(3)
C10—C1—C2—C3	-44.4 (3)	C2—C1—C10—C9	59.6 (3)
C2—O2—C3—C4	107.8 (3)	O4—C10—C11—C12	112.0 (3)
C1-C2-C3-O2	112.0 (3)	C9-C10-C11-C12	-14.3(3)
02-C2-C3-C4	-107.5(3)	C1-C10-C11-C12	-129.9(3)
C1 - C2 - C3 - C4	4 5 (4)	04-C10-C11-C20	-61.6(3)
02 - 03 - 04 - 05	132.5 (3)	C9-C10-C11-C20	172.0(2)
$C_2 = C_3 = C_4 = C_5$	-1599(3)	C1 - C10 - C11 - C20	564(3)
02 - 03 - 04 - 09	-53 1 (4)	C_{20} C_{11} C_{12} C_{20}	175.4(3)
$C_2 C_3 C_4 C_9$	145(4)	$C_{10} = C_{11} = C_{12} = C_{13}$	18(4)
$C_2 - C_3 - C_4 - C_9$	17.3(7)	$C_{10} = C_{11} = C_{12} = C_{13}$	-4.5(4)
$C_{2} = C_{4} = C_{5} = C_{4}$	0.4(3)	C_{20} C_{11} C_{12} C_{13} C_{10} C_{11} C_{12} C_{12} C_{12}	-4.3(4)
しっ―し4―しっ―しり	1/4.8(3)	UIU-UII-UI2-UI3	-1/8.2 (3)

C4—C5—C6—C7	-2.2 (6)	C8—O3—C12—C11	11.4 (4)
C5—C6—C7—C8	1.0 (6)	C8—O3—C12—C13	-168.5 (3)
C12—O3—C8—C9	-9.9 (4)	C11—C12—C13—C14	0.3 (5)
C12—O3—C8—C7	167.8 (3)	O3—C12—C13—C14	-179.7 (3)
C6—C7—C8—O3	-175.5 (3)	C12—C13—C14—C15	1.2 (6)
C6—C7—C8—C9	2.2 (5)	C13—C14—C15—C16	179.6 (3)
O3—C8—C9—C4	173.6 (3)	C13—C14—C15—C20	1.5 (5)
C7—C8—C9—C4	-3.9 (4)	C14—C15—C16—C17	-176.8 (4)
O3—C8—C9—C10	-4.4 (4)	C20-C15-C16-C17	1.4 (6)
C7—C8—C9—C10	178.1 (3)	C15—C16—C17—C18	1.5 (6)
C5—C4—C9—C8	2.7 (4)	C16—C17—C18—C19	-1.8 (6)
C3—C4—C9—C8	-171.7 (3)	C17—C18—C19—C20	-0.7 (5)
C5-C4-C9-C10	-179.4 (3)	C18—C19—C20—C15	3.5 (4)
C3—C4—C9—C10	6.3 (4)	C18—C19—C20—C11	-176.6 (3)
C21—O4—C10—C11	-67.8 (3)	C14—C15—C20—C19	174.5 (3)
C21—O4—C10—C9	57.6 (3)	C16—C15—C20—C19	-3.8 (4)
C21—O4—C10—C1	169.3 (2)	C14—C15—C20—C11	-5.4 (4)
C8—C9—C10—O4	-108.7 (3)	C16—C15—C20—C11	176.3 (3)
C4—C9—C10—O4	73.4 (3)	C12-C11-C20-C19	-173.0 (3)
C8—C9—C10—C11	15.9 (3)	C10-C11-C20-C19	0.7 (4)
C4—C9—C10—C11	-162.0 (2)	C12-C11-C20-C15	6.9 (4)
C8—C9—C10—C1	137.9 (2)	C10-C11-C20-C15	-179.4 (2)
C4—C9—C10—C1	-40.0 (3)	C10—O4—C21—C22	171.6 (2)
O1-C1-C10-O4	131.7 (2)	O4—C21—C22—C11	-62.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
C14—H14 <i>A</i> ···O2 ⁱ	0.95	2.55	3.392 (4)	147
C19—H19A…O4	0.95	2.54	3.084 (3)	117

Symmetry code: (i) x, y+1, z.