

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzyl *N'*-(1*H*-indol-3-ylmethylidene)hydrazinecarbodithioate

Hamid Khaledi, Hapipah Mohd Ali and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 22 September 2008; accepted 5 October 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.118; data-to-parameter ratio = 17.0.

The $C_{10}H_8N_3S_2$ portion of the title molecule, $C_{17}H_{15}N_3S_3$, is nearly planar (r.m.s. deviation 0.05 Å); this unit and the phenyl ring subtend an angle of 114.5 (2)° at the methylene C atom.

Related literature

For other Schiff bases derived by condensing *S*-benzyl hydrazinecarbodithioate with either aromatic aldehydes or ketones, see: Ali *et al.* (2004); Chan *et al.* (2003); Fun *et al.* (1995); How *et al.* (2007*a,b,c*); Khoo *et al.* (2005); Qiu & Luo (2007); Roy *et al.* (2007); Tarafder *et al.* (2002); Xu *et al.* (1991); Zhang *et al.* (2004).

Experimental

Crystal data

 $\begin{array}{l} C_{17}H_{15}N_{3}S_{2}\\ M_{r}=325.44\\ \text{Monoclinic, }P2_{1}/c\\ a=15.4936 \ (7) \ \text{\AA}\\ b=9.8114 \ (4) \ \text{\AA}\\ c=10.2531 \ (4) \ \text{\AA} \end{array}$

$p = 98.432(3)^{\circ}$
$V = 1541.8 (1) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.34 \text{ mm}^{-1}$
T = 100 (2) K

8531 measured reflections

 $R_{\rm int} = 0.058$

3383 independent reflections

2323 reflections with $I > 2\sigma(I)$

 $0.25 \times 0.10 \times 0.03 \ \text{mm}$

Data collection

```
Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{\rm min} = 0.919, T_{\rm max} = 0.990
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 199 parameters $wR(F^2) = 0.118$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.48 \text{ e } \text{\AA}^{-3}$ 3383 reflections $\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

The authors thank the University of Malaya for funding this study (Science Fund Grants 12-02-03-2031 and 12-02-03-2051).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2309).

References

- Ali, M. A., Mirza, A. H., Hamid, M. H. S. A., Bujang, F. H. & Bernhardt, P. V. (2004). *Polyhedron*, **23**, 2405–2412.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chan, M.-H. E., Crouse, K. A., Tarafder, M. T. H. & Yamin, B. M. (2003). Acta Cryst. E**59**, o628–o629.
- Fun, H.-K., Sivakumar, K., Yip, B.-C., Tian, Y.-P., Duan, C.-Y., Lu, Z.-L. & You, X.-Z. (1995). Acta Cryst. C51, 2080–2083.
- How, F. N.-F., Watkin, D. J., Crouse, K. A. & Tahir, M. I. M. (2007*a*). Acta Cryst. E63, 03023–03024.
- How, F. N.-F., Watkin, D. J., Crouse, K. A. & Tahir, M. I. M. (2007b). Acta Cryst. E63, o3133–o3134.
- How, F. N.-F., Watkin, D. J., Crouse, K. A. & Tahir, M. I. M. (2007c). Acta Cryst. E63, 03135–03136.
- Khoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). *Acta Cryst.* E61, o2441–o2443.
- Qiu, X.-Y. & Luo, Z.-G. (2007). Acta Cryst. E63, 04339.
- Roy, S., Mandal, T. N., Barik, A. K., Pal, S., Gupta, S., Hazra, A., Butcher, R. J., Hunter, A. D., Zeller, M. & Kar, S. K. (2007). *Polyhedron*, 26, 2603–2611.
 Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.
- Sheldrick, G. M. (1990). SADADS: Oniversity of Gotting Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun,
- Haradeer, M. 1. H., Knoo, 1.-J., Crouse, K. A., Ali, A. M., Tahnin, B. M. & Fun, H.-K. (2002). *Polyhedron*, **21**, 2691–2698.
- Westrip, S. P. (2008). publCIF. In preparation.
- Xu, Z., Alyea, E., Ferguson, G. & Jennings, M. C. (1991). Polyhedron, 10, 1625–1629.
- Zhang, M.-L., Tian, Y.-P., Zhang, X.-J., Wu, J.-Y., Zhang, S.-Y., Wang, D., Jiang, M. H., Chantrapromma, S. & Fun, H.-K. (2004). *Transition Met. Chem.* 29, 596–602.

supporting information

Acta Cryst. (2008). E64, o2107 [doi:10.1107/S160053680803198X]

Benzyl N'-(1H-indol-3-ylmethylidene)hydrazinecarbodithioate

Hamid Khaledi, Hapipah Mohd Ali and Seik Weng Ng

S1. Comment

The structure of (I), Fig. 1, shows bond distances for N1—N2 and N2—C9 of 1.382 (3) and 1.287 (3) Å, respectively, confirming the assignment shown in the Scheme. The molecule is bent about the methylene-C7 atom so that the residues on either side are approximately orthogonal. The amino groups do not form any hydrogen bonds.

S2. Experimental

Indole-3-carbaldehyde (0.37 g, 2.5 mmol) and *S*-benzyl dithiocarbazate (0.50 g, 2.5 mmol) were heated in methanol (40 ml) for 3 h. The solution was set aside for the formation of yellow crystals.

S3. Refinement

Hydrogen atoms were placed at calculated positions (C—H 0.95–0.99, N—H 0.88 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2 times $U_{eq}(C,N)$.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{17}H_{15}N_2S_3$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Benzyl N'-(1H-indol-3-ylmethylidene)hydrazinecarbodithioate

Crystal data

 $C_{17}H_{15}N_{3}S_{2}$ $M_{r} = 325.44$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 15.4936 (7) Å b = 9.8114 (4) Å c = 10.2531 (4) Å $\beta = 98.432$ (3)° V = 1541.8 (1) Å³ Z = 4

Data collection

Bruker SMART APEX diffractometer	8531 measured reflections 3383 independent reflections
Radiation source: fine-focus sealed tube	2323 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.058$
ωscans	$\theta_{\max} = 27^\circ, \ \theta_{\min} = 1.3^\circ$
Absorption correction: multi-scan	$h = -20 \longrightarrow 20$
(SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 12$
$T_{\min} = 0.919, \ T_{\max} = 0.990$	$l = -13 \rightarrow 8$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least squares matrix: full	man

F(000) = 680

 $\theta = 2.5 - 23.2^{\circ}$

 $\mu = 0.34 \text{ mm}^{-1}$

Prism, light yellow

 $0.25 \times 0.10 \times 0.03 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.402 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1305 reflections

Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.118$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
3383 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0391P)^2 + 1.1115P]$
199 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.75015 (5)	0.74458 (7)	0.47255 (7)	0.02090 (18)	
S2	0.87340 (5)	0.53986 (7)	0.36891 (7)	0.02198 (19)	
N1	0.70350 (15)	0.5227 (2)	0.3457 (2)	0.0217 (5)	
H1	0.7086	0.4440	0.3063	0.026*	
N2	0.62145 (15)	0.5704 (2)	0.3596 (2)	0.0212 (5)	
N3	0.32371 (16)	0.5105 (2)	0.2983 (2)	0.0253 (6)	
Н3	0.2706	0.4795	0.2732	0.030*	
C1	0.87962 (17)	0.9360 (3)	0.4432 (3)	0.0188 (6)	
C2	0.89308 (18)	0.9185 (3)	0.3115 (3)	0.0216 (6)	
H2	0.8855	0.8312	0.2714	0.026*	
C3	0.91737 (18)	1.0283 (3)	0.2403 (3)	0.0242 (7)	
H3a	0.9272	1.0156	0.1518	0.029*	
C4	0.92738 (18)	1.1564 (3)	0.2970 (3)	0.0259 (7)	

H4	0.9436	1.2316	0.2475	0.031*
C5	0.91353 (19)	1.1742 (3)	0.4261 (3)	0.0245 (7)
H5	0.9202	1.2619	0.4654	0.029*
C6	0.89010 (18)	1.0647 (3)	0.4983 (3)	0.0212 (6)
H6	0.8811	1.0780	0.5871	0.025*
C7	0.85739 (18)	0.8174 (3)	0.5249 (3)	0.0210 (6)
H7A	0.8609	0.8475	0.6176	0.025*
H7B	0.9018	0.7453	0.5220	0.025*
C8	0.77530 (18)	0.5938 (3)	0.3909 (3)	0.0191 (6)
C9	0.55868 (18)	0.4859 (3)	0.3251 (3)	0.0209 (6)
H9	0.5717	0.3976	0.2953	0.025*
C10	0.46972 (19)	0.5221 (3)	0.3305 (3)	0.0204 (6)
C11	0.39833 (19)	0.4445 (3)	0.2826 (3)	0.0230 (6)
H11	0.4009	0.3569	0.2438	0.028*
C12	0.43633 (18)	0.6451 (3)	0.3827 (3)	0.0197 (6)
C13	0.47407 (19)	0.7591 (3)	0.4513 (3)	0.0217 (6)
H13	0.5357	0.7694	0.4680	0.026*
C14	0.42007 (19)	0.8557 (3)	0.4939 (3)	0.0255 (7)
H14	0.4452	0.9328	0.5412	0.031*
C15	0.3294 (2)	0.8434 (3)	0.4694 (3)	0.0285 (7)
H15	0.2941	0.9122	0.4997	0.034*
C16	0.2901 (2)	0.7323 (3)	0.4016 (3)	0.0284 (7)
H16	0.2284	0.7238	0.3842	0.034*
C17	0.34423 (19)	0.6341 (3)	0.3602 (3)	0.0222 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0225 (4)	0.0184 (3)	0.0229 (4)	-0.0009 (3)	0.0070 (3)	-0.0025 (3)
S2	0.0234 (4)	0.0212 (4)	0.0226 (4)	0.0034 (3)	0.0075 (3)	0.0014 (3)
N1	0.0231 (13)	0.0194 (12)	0.0234 (14)	-0.0005 (10)	0.0060 (11)	-0.0047 (10)
N2	0.0197 (12)	0.0236 (13)	0.0211 (14)	-0.0023 (10)	0.0062 (10)	0.0016 (11)
N3	0.0220 (13)	0.0285 (14)	0.0249 (14)	-0.0048 (11)	0.0022 (11)	0.0006 (11)
C1	0.0166 (14)	0.0203 (14)	0.0195 (16)	-0.0007 (11)	0.0027 (12)	0.0006 (12)
C2	0.0223 (15)	0.0239 (15)	0.0181 (16)	-0.0013 (12)	0.0012 (12)	-0.0037 (12)
C3	0.0235 (15)	0.0337 (17)	0.0158 (15)	0.0008 (13)	0.0038 (12)	0.0034 (13)
C4	0.0236 (15)	0.0250 (15)	0.0295 (19)	-0.0006 (13)	0.0045 (13)	0.0106 (14)
C5	0.0262 (16)	0.0198 (15)	0.0277 (18)	0.0005 (12)	0.0041 (13)	-0.0016 (13)
C6	0.0228 (15)	0.0218 (15)	0.0196 (16)	0.0036 (12)	0.0050 (12)	-0.0002 (12)
C7	0.0227 (15)	0.0209 (15)	0.0196 (16)	-0.0006 (12)	0.0032 (12)	-0.0010 (12)
C8	0.0265 (15)	0.0170 (14)	0.0149 (15)	0.0008 (11)	0.0064 (12)	0.0024 (11)
C9	0.0277 (16)	0.0217 (15)	0.0142 (15)	-0.0022 (12)	0.0058 (12)	-0.0003 (12)
C10	0.0268 (15)	0.0201 (14)	0.0140 (15)	-0.0048 (12)	0.0020 (12)	0.0024 (12)
C11	0.0297 (16)	0.0217 (15)	0.0180 (16)	-0.0046 (13)	0.0054 (13)	0.0009 (13)
C12	0.0233 (15)	0.0220 (15)	0.0143 (15)	-0.0039 (12)	0.0044 (12)	0.0040 (12)
C13	0.0227 (15)	0.0248 (15)	0.0177 (16)	-0.0043 (12)	0.0037 (12)	0.0041 (13)
C14	0.0315 (17)	0.0253 (16)	0.0205 (17)	-0.0039 (13)	0.0063 (13)	-0.0028 (13)
C15	0.0291 (17)	0.0296 (17)	0.0277 (18)	0.0022 (14)	0.0077 (14)	-0.0038 (14)

supporting information

C16	0.0231 (16)	0.0340 (18)	0.0281 (18)	-0.0034 (13)	0.0040 (13)	0.0005 (15)
C17	0.0272 (16)	0.0228 (15)	0.0163 (15)	-0.0057 (12)	0.0025 (12)	0.0034 (12)

Geometric parameters (Å, °)

S1—C8	1.771 (3)	C5—H5	0.9500	
S1—C7	1.816 (3)	С6—Н6	0.9500	
S2—C8	1.656 (3)	С7—Н7А	0.9900	
N1—C8	1.337 (4)	C7—H7B	0.9900	
N1—N2	1.382 (3)	C9—C10	1.432 (4)	
N1—H1	0.8800	С9—Н9	0.9500	
N2—C9	1.287 (3)	C10—C11	1.373 (4)	
N3—C11	1.355 (4)	C10-C12	1.446 (4)	
N3—C17	1.384 (4)	C11—H11	0.9500	
N3—H3	0.8800	C12—C13	1.402 (4)	
C1—C6	1.383 (4)	C12—C17	1.416 (4)	
C1—C2	1.407 (4)	C13—C14	1.377 (4)	
C1—C7	1.503 (4)	C13—H13	0.9500	
С2—С3	1.384 (4)	C14—C15	1.395 (4)	
С2—Н2	0.9500	C14—H14	0.9500	
C3—C4	1.384 (4)	C15—C16	1.385 (4)	
С3—Н3а	0.9500	C15—H15	0.9500	
C4—C5	1.384 (4)	C16—C17	1.384 (4)	
C4—H4	0.9500	C16—H16	0.9500	
С5—С6	1.383 (4)			
C8—S1—C7	102.30 (13)	H7A—C7—H7B	107.6	
C8—N1—N2	121.2 (2)	N1—C8—S2	121.3 (2)	
C8—N1—H1	119.4	N1—C8—S1	111.7 (2)	
N2—N1—H1	119.4	S2—C8—S1	126.97 (17)	
C9—N2—N1	115.0 (2)	N2—C9—C10	121.5 (3)	
C11—N3—C17	109.3 (2)	N2—C9—H9	119.3	
C11—N3—H3	125.4	С10—С9—Н9	119.3	
C17—N3—H3	125.4	C11—C10—C9	125.3 (3)	
C6—C1—C2	118.6 (3)	C11—C10—C12	106.4 (3)	
C6—C1—C7	120.1 (3)	C9—C10—C12	128.3 (3)	
C2—C1—C7	121.2 (3)	N3—C11—C10	110.4 (3)	
C3—C2—C1	120.1 (3)	N3—C11—H11	124.8	
С3—С2—Н2	119.9	C10-C11-H11	124.8	
C1—C2—H2	119.9	C13—C12—C17	118.6 (3)	
C4—C3—C2	120.5 (3)	C13—C12—C10	134.9 (3)	
С4—С3—Н3а	119.8	C17—C12—C10	106.4 (2)	
С2—С3—Н3а	119.8	C14—C13—C12	118.7 (3)	
C3—C4—C5	119.5 (3)	C14—C13—H13	120.7	
C3—C4—H4	120.2	C12—C13—H13	120.7	
C5—C4—H4	120.2	C13—C14—C15	121.7 (3)	
C4—C5—C6	120.3 (3)	C13—C14—H14	119.2	
C4—C5—H5	119.9	C15—C14—H14	119.2	

C6—C5—H5	119.9	C16—C15—C14	121.0 (3)
C5—C6—C1	121.0 (3)	C16—C15—H15	119.5
C5—C6—H6	119.5	C14—C15—H15	119.5
C1—C6—H6	119.5	C17—C16—C15	117.4 (3)
C1—C7—S1	114.5 (2)	C17—C16—H16	121.3
C1—C7—H7A	108.6	C15—C16—H16	121.3
S1—C7—H7A	108.6	C16—C17—N3	129.9 (3)
C1—C7—H7B	108.6	C16—C17—C12	122.6 (3)
S1—C7—H7B	108.6	N3—C17—C12	107.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -172.7 (3) \\ 0.8 (4) \\ -177.1 (3) \\ -1.0 (4) \\ 0.5 (4) \\ 0.2 (4) \\ -0.3 (4) \\ -0.2 (4) \\ 177.7 (3) \\ 113.9 (3) \\ -68.2 (3) \\ 103.7 (2) \\ -177.5 (2) \\ 2.6 (3) \\ 179.0 (2) \\ -0.9 (2) \\ -178.3 (2) \\ 172.6 (3) \\ -5.8 (5) \\ -1.1 (3) \end{array}$	$\begin{array}{c} C9-C10-C11-N3\\ C12-C10-C11-N3\\ C11-C10-C12-C13\\ C9-C10-C12-C13\\ C9-C10-C12-C17\\ C9-C10-C12-C17\\ C9-C10-C12-C17\\ C17-C12-C13-C14\\ C10-C12-C13-C14\\ C12-C13-C14-C15\\ C13-C14-C15-C16\\ C14-C15-C16-C17\\ C15-C16-C17-N3\\ C15-C16-C17-C12\\ C11-N3-C17-C12\\ C11-N3-C17-C16\\ C11-N3-C17-C16\\ C11-C12-C17-C16\\ C13-C12-C17-C16\\ C13-C12-C17-N3\\ C10-C12-C17-N3\\ C10-C12-C17-N3\\$	-177.4 (3) 1.3 (3) 175.2 (3) -6.2 (5) -1.0 (3) 177.7 (3) 0.0 (4) -175.8 (3) -0.6 (4) 0.4 (5) 175.7 (3) -1.1 (4) -176.7 (3) 0.4 (3) 0.9 (4) 177.8 (3) -176.6 (2) 0.3 (3)