organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-(5-Bromo-1*H*-indol-3-ylmethylidene)-3,4,5-trihydroxybenzohydrazide

Hamid Khaledi, Hapipah Mohd Ali and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 22 September 2008; accepted 5 October 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.078; data-to-parameter ratio = 15.5.

The two aromatic parts of the title molecule, $C_{16}H_{12}BrN_3O_4$, are connected through a conjugated -CH—N-NH-C(O)-fragment to furnish an almost planar molecule. Adjacent molecules are linked by $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds into a three-dimensional network. An intramolecular $O-H\cdots O$ link also occurs.

Related literature

For other Schiff bases derived by condensing 5-bromo-1Hindole-3-carbaldehyde with aroylhydrazines, see: Ali *et al.* (2005*a*,*b*,*c*).

Experimental

Crystal data

C16H12BrN3O4
$M_r = 390.20$
Monoclinic, $P2_1/n$
a = 9.6454 (2) Å
b = 14.9694 (4) Å
c = 10.3845 (2) Å
$\beta=97.390~(1)^\circ$

 $V = 1486.92 (6) Å^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 2.79 \mm^{-1}\) T = 100 (2) K 0.40 \times 0.25 \times 0.10 \mm

Data collection

Bruker SMART APEX

diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.401, T_{max} = 0.768$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	220 parameters
$wR(F^2) = 0.078$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm \AA}^{-3}$
3403 reflections	$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

10182 measured reflections

 $R_{\rm int} = 0.024$

3403 independent reflections

2786 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond	geometry	(A,	°)
---------------	----------	-----	----

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2−H2O···O3	0.84	2.21	2.681 (2)	116
O3−H3O···O1 ⁱ	0.84	1.76	2.595 (2)	173
$O4-H4O\cdots N2^{i}$	0.84	2.02	2.778 (2)	150
$N1 - H1N \cdot \cdot \cdot O2^{ii}$	0.88	2.26	3.111 (2)	163
$N3 - H3N \cdots O4^{iii}$	0.88	2.11	2.932 (2)	154
Symmetry codes:	(i) $x - \frac{1}{2}, -$	$-y + \frac{3}{2}, z + \frac{1}{2};$	(ii) $x - \frac{1}{2}, -y +$	$-\frac{3}{2}, z - \frac{1}{2};$ (iii)

 $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}.$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

The authors thank the University of Malaya for funding this study (Science Fund Grants 12-02-03-2031, 12-02-03-2051).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2310).

References

- Ali, H. M., Abdul Halim, S. N., Lajis, N. H., Basirun, W. J., Zain, S. M. & Ng, S. W. (2005a). Acta Cryst. E61, 0914–0915.
- Ali, H. M., Abdul Halim, S. N. & Ng, S. W. (2005b). Acta Cryst. E61, o2308– o2309.
- Ali, H. M., Abdul Halim, S. N. & Ng, S. W. (2005c). Acta Cryst. E61, o2417o2418.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, o2108 [doi:10.1107/S1600536808031991]

N'-(5-Bromo-1H-indol-3-ylmethylidene)-3,4,5-trihydroxybenzohydrazide

Hamid Khaledi, Hapipah Mohd Ali and Seik Weng Ng

S1. Comment

The molecule of (I), Fig. 1, is almost planar with the aromatic groups connected via a conjugated -CH=N-NH-C(O)- fragment. Molecules are connected into a 3-D network via $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds, Table 1.

S2. Experimental

5-Bromoindole-3-carbaldehyde (0.34 g, 1.5 mmol) and 3,4,5-trihydroxybenzoylhydrazine (0.27 g, 1.5 mmol) were heated in ethanol (20 ml) for 3 h. About 1 ml of acetic acid also added. The solution was set aside for the growth of crystals.

S3. Refinement

Hydrogen atoms were placed at calculated positions (C—H 0.95, N—H 0.88 and O—H 0.84 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times $U_{eq}(C,N,O)$. For the hydroxy groups, an sp^2 type of hybridization was assumed.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of (I) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

N'-(5-Bromo-1H-indol-3-ylmethylidene)-3,4,5- trihydroxybenzohydrazide

Crystal data	
$C_{16}H_{12}BrN_3O_4$	Hall symbol: -P 2yn
$M_r = 390.20$	a = 9.6454 (2) Å
Monoclinic, $P2_1/n$	b = 14.9694 (4) Å

Cell parameters from 3960 reflections

 $\theta = 2.4 - 28.2^{\circ}$

 $\mu = 2.79 \text{ mm}^{-1}$

Block, orange

 $0.40 \times 0.25 \times 0.10$ mm

T = 100 K

c = 10.3845 (2) Å $\beta = 97.390$ (1)° V = 1486.92 (6) Å³ Z = 4 F(000) = 784 $D_x = 1.743$ Mg m⁻³ Mo K α radiation, $\lambda = 0.71073$ Å

Data collection

Bruker SMART APEX	10182 measured reflections
diffractometer	3403 independent reflections
Radiation source: fine-focus sealed tube	2786 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
ωscans	$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$k = -19 \rightarrow 19$
$T_{\min} = 0.401, \ T_{\max} = 0.768$	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from
$wR(F^2) = 0.078$	neighbouring sites
S = 1.02	H-atom parameters constrained
3403 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0419P)^2 + 0.9663P]$
220 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.003$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.62 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	1.00401 (2)	1.090710 (16)	0.25205 (2)	0.02243 (8)	
01	0.69032 (15)	0.83598 (10)	0.56939 (13)	0.0157 (3)	
O2	0.64359 (15)	0.62930 (10)	0.94165 (13)	0.0163 (3)	
H2O	0.5987	0.5999	0.9914	0.024*	
O3	0.37031 (15)	0.59355 (9)	0.93388 (13)	0.0133 (3)	
H3O	0.3085	0.6178	0.9721	0.020*	
O4	0.17544 (15)	0.67374 (10)	0.73325 (13)	0.0141 (3)	
H4O	0.1569	0.6421	0.7956	0.021*	
N1	0.46882 (18)	0.86863 (11)	0.48158 (15)	0.0134 (3)	
H1N	0.3788	0.8619	0.4852	0.016*	
N2	0.51457 (18)	0.92346 (11)	0.38712 (16)	0.0129 (3)	
N3	0.40143 (19)	1.10565 (11)	0.03097 (16)	0.0151 (4)	
H3N	0.3557	1.1326	-0.0369	0.018*	

C1	0.5056 (2)	0.76400 (13)	0.66032 (18)	0.0123 (4)
C2	0.6012 (2)	0.72451 (13)	0.75620 (18)	0.0129 (4)
H2	0.6984	0.7361	0.7598	0.016*
C3	0.5519 (2)	0.66829 (13)	0.84567 (18)	0.0128 (4)
C4	0.4097 (2)	0.65084 (13)	0.84261 (18)	0.0116 (4)
C5	0.3160 (2)	0.68919 (13)	0.74520 (18)	0.0122 (4)
C6	0.3639 (2)	0.74523 (13)	0.65414 (18)	0.0124 (4)
H6	0.2996	0.7709	0.5873	0.015*
C7	0.5628 (2)	0.82603 (13)	0.56719 (18)	0.0128 (4)
C8	0.4168 (2)	0.96589 (13)	0.31563 (19)	0.0133 (4)
H8	0.3229	0.9587	0.3324	0.016*
C9	0.4446 (2)	1.02350 (13)	0.21187 (19)	0.0125 (4)
C10	0.3424 (2)	1.05580 (14)	0.11812 (19)	0.0150 (4)
H10	0.2451	1.0447	0.1152	0.018*
C11	0.5760 (2)	1.05663 (13)	0.17868 (18)	0.0121 (4)
C12	0.7151 (2)	1.05011 (13)	0.23622 (18)	0.0135 (4)
H12	0.7399	1.0177	0.3144	0.016*
C13	0.8147 (2)	1.09278 (13)	0.1744 (2)	0.0152 (4)
C14	0.7829 (2)	1.14153 (14)	0.0594 (2)	0.0172 (4)
H14	0.8558	1.1685	0.0195	0.021*
C15	0.6456 (2)	1.15045 (14)	0.00394 (19)	0.0158 (4)
H15	0.6215	1.1845	-0.0728	0.019*
C16	0.5443 (2)	1.10761 (13)	0.06493 (19)	0.0138 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
Br1	0.01187 (12)	0.03131 (14)	0.02403 (13)	-0.00169 (9)	0.00198 (8)	0.00285 (9)
01	0.0119 (7)	0.0181 (7)	0.0178 (7)	-0.0008 (6)	0.0047 (6)	0.0012 (6)
O2	0.0100 (7)	0.0235 (8)	0.0151 (7)	-0.0005 (6)	0.0010 (6)	0.0048 (6)
O3	0.0120 (7)	0.0162 (7)	0.0122 (6)	0.0003 (6)	0.0039 (5)	0.0011 (5)
O4	0.0101 (7)	0.0174 (7)	0.0145 (7)	-0.0035 (6)	0.0005 (5)	0.0038 (5)
N1	0.0114 (9)	0.0144 (8)	0.0152 (8)	-0.0019 (7)	0.0050 (7)	0.0021 (7)
N2	0.0149 (9)	0.0123 (8)	0.0125 (7)	-0.0020(7)	0.0051 (7)	-0.0006 (6)
N3	0.0158 (9)	0.0156 (9)	0.0133 (8)	0.0028 (7)	-0.0004 (7)	-0.0001 (6)
C1	0.0123 (10)	0.0122 (9)	0.0133 (9)	-0.0012 (8)	0.0044 (7)	-0.0035 (7)
C2	0.0093 (9)	0.0150 (9)	0.0150 (9)	0.0001 (8)	0.0031 (7)	-0.0024 (8)
C3	0.0116 (10)	0.0149 (10)	0.0116 (8)	0.0016 (8)	-0.0002 (7)	-0.0027 (7)
C4	0.0133 (10)	0.0111 (9)	0.0109 (8)	-0.0017 (7)	0.0035 (7)	-0.0017 (7)
C5	0.0101 (9)	0.0126 (9)	0.0143 (9)	-0.0010 (8)	0.0025 (7)	-0.0042 (7)
C6	0.0119 (10)	0.0124 (9)	0.0127 (9)	0.0006 (8)	0.0009 (7)	0.0003 (7)
C7	0.0148 (10)	0.0114 (9)	0.0131 (9)	-0.0005 (8)	0.0046 (8)	-0.0044 (7)
C8	0.0117 (10)	0.0133 (9)	0.0155 (9)	-0.0012 (8)	0.0042 (7)	-0.0031 (8)
C9	0.0131 (10)	0.0104 (9)	0.0141 (9)	0.0005 (8)	0.0018 (8)	-0.0029 (7)
C10	0.0144 (10)	0.0146 (9)	0.0162 (9)	0.0008 (8)	0.0027 (8)	-0.0021 (8)
C11	0.0148 (10)	0.0099 (9)	0.0119 (8)	0.0009 (8)	0.0032 (7)	-0.0025 (7)
C12	0.0165 (10)	0.0125 (9)	0.0116 (9)	0.0023 (8)	0.0028 (7)	-0.0013 (7)
C13	0.0132 (10)	0.0146 (10)	0.0176 (9)	0.0000 (8)	0.0017 (8)	-0.0028 (8)

supporting information

C14	0.0194 (11)	0.0149 (10)	0.0185 (10)	-0.0026 (9)	0.0072 (8)	-0.0002 (8)
C15	0.0233 (11)	0.0116 (9)	0.0128 (9)	0.0002 (8)	0.0035 (8)	0.0004 (7)
C16	0.0166 (10)	0.0117 (9)	0.0126 (9)	0.0021 (8)	0.0005 (8)	-0.0024 (7)

	Geometric	parameters	(Å,	9	
--	-----------	------------	-----	---	--

Br1—C13	1.899 (2)	С2—Н2	0.9500	
O1—C7	1.236 (3)	C3—C4	1.392 (3)	
O2—C3	1.375 (2)	C4—C5	1.391 (3)	
O2—H2O	0.8400	C5—C6	1.387 (3)	
O3—C4	1.368 (2)	С6—Н6	0.9500	
O3—H3O	0.8400	C8—C9	1.432 (3)	
O4—C5	1.365 (2)	C8—H8	0.9500	
O4—H4O	0.8400	C9—C10	1.381 (3)	
N1—C7	1.346 (3)	C9—C11	1.443 (3)	
N1—N2	1.394 (2)	C10—H10	0.9500	
N1—H1N	0.8800	C11—C12	1.401 (3)	
N2—C8	1.290 (3)	C11—C16	1.406 (3)	
N3—C10	1.354 (3)	C12—C13	1.379 (3)	
N3—C16	1.378 (3)	C12—H12	0.9500	
N3—H3N	0.8800	C13—C14	1.400 (3)	
C1—C6	1.388 (3)	C14—C15	1.381 (3)	
C1—C2	1.398 (3)	C14—H14	0.9500	
C1—C7	1.497 (3)	C15—C16	1.388 (3)	
C2—C3	1.382 (3)	C15—H15	0.9500	
C3—O2—H2O	109.5	O1—C7—C1	120.77 (18)	
С4—03—Н3О	109.5	N1—C7—C1	116.61 (18)	
С5—О4—Н4О	109.5	N2	122.40 (19)	
C7—N1—N2	119.79 (17)	N2—C8—H8	118.8	
C7—N1—H1N	120.1	С9—С8—Н8	118.8	
N2—N1—H1N	120.1	C10—C9—C8	123.76 (19)	
C8—N2—N1	114.89 (17)	C10—C9—C11	106.28 (17)	
C10—N3—C16	109.48 (17)	C8—C9—C11	129.92 (19)	
C10—N3—H3N	125.3	N3—C10—C9	109.93 (19)	
C16—N3—H3N	125.3	N3—C10—H10	125.0	
C6—C1—C2	120.15 (18)	C9—C10—H10	125.0	
C6—C1—C7	122.57 (18)	C12-C11-C16	119.25 (18)	
C2—C1—C7	117.28 (18)	C12—C11—C9	134.17 (18)	
C3—C2—C1	118.93 (18)	C16—C11—C9	106.54 (18)	
С3—С2—Н2	120.5	C13—C12—C11	117.12 (18)	
C1—C2—H2	120.5	C13—C12—H12	121.4	
O2—C3—C2	120.06 (18)	C11—C12—H12	121.4	
O2—C3—C4	118.49 (17)	C12—C13—C14	123.3 (2)	
C2—C3—C4	121.44 (18)	C12-C13-Br1	118.96 (15)	
O3—C4—C3	117.54 (18)	C14—C13—Br1	117.63 (16)	
O3—C4—C5	123.37 (18)	C15—C14—C13	119.95 (19)	
C3—C4—C5	119.04 (18)	C15—C14—H14	120.0	

O4—C5—C6	117.06 (17)	C13—C14—H14	120.0
O4—C5—C4	122.77 (17)	C14—C15—C16	117.31 (19)
C6—C5—C4	120.17 (19)	C14—C15—H15	121.3
C1—C6—C5	120.23 (18)	C16—C15—H15	121.3
С1—С6—Н6	119.9	N3—C16—C15	129.25 (19)
С5—С6—Н6	119.9	N3—C16—C11	107.77 (18)
01—C7—N1	122.61 (18)	C15—C16—C11	122.99 (19)
C7—N1—N2—C8	-175.49 (18)	N2—C8—C9—C10	166.76 (19)
C6—C1—C2—C3	-1.3 (3)	N2—C8—C9—C11	-10.6 (3)
C7—C1—C2—C3	178.65 (17)	C16—N3—C10—C9	0.0 (2)
C1—C2—C3—O2	-179.39 (17)	C8—C9—C10—N3	-177.81 (18)
C1—C2—C3—C4	-0.4 (3)	C11—C9—C10—N3	0.1 (2)
02—C3—C4—O3	-1.8 (3)	C10—C9—C11—C12	177.6 (2)
C2—C3—C4—O3	179.23 (17)	C8—C9—C11—C12	-4.7 (4)
O2—C3—C4—C5	-179.37 (17)	C10-C9-C11-C16	-0.1 (2)
C2—C3—C4—C5	1.7 (3)	C8—C9—C11—C16	177.60 (19)
O3—C4—C5—O4	0.9 (3)	C16—C11—C12—C13	-1.9 (3)
C3—C4—C5—O4	178.29 (17)	C9—C11—C12—C13	-179.3 (2)
O3—C4—C5—C6	-178.58 (18)	C11—C12—C13—C14	0.2 (3)
C3—C4—C5—C6	-1.2 (3)	C11—C12—C13—Br1	177.22 (14)
C2-C1-C6-C5	1.8 (3)	C12-C13-C14-C15	1.6 (3)
C7—C1—C6—C5	-178.16 (18)	Br1-C13-C14-C15	-175.44 (15)
O4—C5—C6—C1	179.97 (17)	C13—C14—C15—C16	-1.7 (3)
C4—C5—C6—C1	-0.6 (3)	C10—N3—C16—C15	-179.9 (2)
N2—N1—C7—O1	2.9 (3)	C10—N3—C16—C11	0.0 (2)
N2—N1—C7—C1	-176.32 (16)	C14—C15—C16—N3	179.8 (2)
C6—C1—C7—O1	-174.49 (18)	C14-C15-C16-C11	0.0 (3)
C2-C1-C7-01	5.5 (3)	C12-C11-C16-N3	-178.04 (17)
C6-C1-C7-N1	4.7 (3)	C9-C11-C16-N3	0.1 (2)
C2-C1-C7-N1	-175.23 (17)	C12—C11—C16—C15	1.8 (3)
N1—N2—C8—C9	-178.50 (17)	C9—C11—C16—C15	179.91 (18)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.84	2.21	2.681 (2)	116
0.84	1.76	2.595 (2)	173
0.84	2.02	2.778 (2)	150
0.88	2.26	3.111 (2)	163
0.88	2.11	2.932 (2)	154
	<i>D</i> —H 0.84 0.84 0.84 0.88 0.88 0.88	D—H H···A 0.84 2.21 0.84 1.76 0.84 2.02 0.88 2.26 0.88 2.11	D—H H···A D···A 0.84 2.21 2.681 (2) 0.84 1.76 2.595 (2) 0.84 2.02 2.778 (2) 0.88 2.26 3.111 (2) 0.88 2.11 2.932 (2)

Symmetry codes: (i) x-1/2, -y+3/2, z+1/2; (ii) x-1/2, -y+3/2, z-1/2; (iii) -x+1/2, y+1/2, -z+1/2.