organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4-Dihydroxybenzaldehyde 4-methylthiosemicarbazone

Kong Wai Tan,^a Chew Hee Ng,^b Mohd. Jamil Maah^a* and Seik Weng Ng^a

^aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^bFaculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia Correspondence e-mail: mjamil@um.edu.my

conceptination of a main infamilie announity

Received 11 October 2008; accepted 14 October 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.109; data-to-parameter ratio = 13.9.

The approximately planar molecule of the title compound, $C_9H_{11}N_3O_2S$, is linked to adjacent molecules by $O-H\cdots S$ hydrogen bonds to form a zigzag chain. Adjacent chains are consolidated by $N-H\cdots O$ hydrogen bonds into a two-dimensional array. An intramolecular $O-H\cdots N$ link is also present.

Related literature

For the structure of isomeric 2,5-dihydroxybenzaldehyde 4methylthiosemicarbazone, see: Tan *et al.* (2008).

Experimental

Crystal data

 $\begin{array}{l} C_9H_{11}N_3O_2S\\ M_r = 225.27\\ \text{Monoclinic, } Cc\\ a = 18.0046 \ (6) \ \text{\AA}\\ b = 4.6436 \ (1) \ \text{\AA}\\ c = 12.2842 \ (4) \ \text{\AA}\\ \beta = 106.695 \ (2)^\circ \end{array}$

 $V = 983.74 (5) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.31 \text{ mm}^{-1}$ T = 100 (2) K $0.09 \times 0.06 \times 0.03 \text{ mm}$

Data collection

```
Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.973, T_{max} = 0.991
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	
$wR(F^2) = 0.109$	
S = 1.11	
2128 reflections	
153 parameters	
6 restraints	

4390 measured reflections 2128 independent reflections 1925 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} D1 - H1O \cdots N1 \\ D2 - H2O \cdots S1^{i} \\ N2 - H2N \cdots O1^{ii} \end{array}$	0.84 (1)	1.93 (3)	2.694 (3)	151 (6)
	0.84 (1)	2.54 (1)	3.365 (2)	170 (4)
	0.87 (1)	2.11 (1)	2.950 (4)	162 (3)

Symmetry codes: (i) $x + \frac{1}{2}, -y - \frac{1}{2}, z + \frac{1}{2}$; (ii) $x, -y, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank the University of Malaya (PJP FS316/2008 C) for supporting this study. KWT thanks the Ministry of Higher Education for an SLAI scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2316).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008). *Acta Cryst.* E**64**, o1344. Westrip, S. P. (2008). *publCIF*. In preparation.

supporting information

Acta Cryst. (2008). E64, o2224 [doi:10.1107/S1600536808033308]

2,4-Dihydroxybenzaldehyde 4-methylthiosemicarbazone

Kong Wai Tan, Chew Hee Ng, Mohd. Jamil Maah and Seik Weng Ng

S1. Comment

In continuation of on-going studies into the structural chemistry of thiosemicarbazones (Tan *et al.*, 2008), the title compound (I) was investigated. Molecule (I), Fig. 1, is essentially planar and is consolidated into a 2-D array by a combination of N-H…O and O-H…S hydrogen bonding contacts, Table 1.

S2. Experimental

4-Methylthiosemicarbazide (0.11 g, 1 mmol) and 2,4-dihydroxybenzaldehyde (0.14 g, 1 mmol) were heated in ethanol (10 ml) for 1 h. Slow evaporation of the solvent yielded yellow crystals.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U_{iso} >(H) set to 1.2-1.5 U_{eq} (C). The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined with distance retraints of O–H = 0.84±0.01 and N–H = 0.88±0.01 Å; their temperature factors were freely refined.

Figure 1

Thermal ellipsoid (Barbour, 2001) plot of (I) drawn at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.

2,4-Dihydroxybenzaldehyde 4-methylthiosemicarbazone

Crystal data	
$C_9H_{11}N_3O_2S$	Monoclinic, Cc
$M_r = 225.27$	Hall symbol: C -2yc

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.4 - 24.9^{\circ}$

 $\mu = 0.31 \text{ mm}^{-1}$ T = 100 K

Prims, yellow

 $R_{\rm int} = 0.034$

 $h = -23 \rightarrow 22$ $k = -6 \rightarrow 6$ $l = -15 \rightarrow 15$

 $0.09 \times 0.06 \times 0.03 \text{ mm}$

4390 measured reflections 2128 independent reflections 1925 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$

Cell parameters from 1090 reflections

a = 18.0046 (6) Å b = 4.6436 (1) Å c = 12.2842 (4) Å $\beta = 106.695 (2)^{\circ}$ $V = 983.74 (5) \text{ Å}^{3}$ Z = 4 F(000) = 472 $D_{x} = 1.521 \text{ Mg m}^{-3}$

Data collection

Bruker SMART APEX
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.973, T_{\max} = 0.991$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.038$ H atoms treated by a mixture of independent $wR(F^2) = 0.109$ and constrained refinement S = 1.11 $w = 1/[\sigma^2(F_0^2) + (0.0598P)^2]$ 2128 reflections where $P = (F_0^2 + 2F_c^2)/3$ 153 parameters $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\text{max}} = 0.31 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.22 \text{ e } \text{\AA}^{-3}$ 6 restraints Primary atom site location: structure-invariant Absolute structure: Flack (1983), 814 Friedel direct methods Secondary atom site location: difference Fourier pairs map Absolute structure parameter: 0.00(1)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional	atomic	coordinates	and	isotropic	or e	quivalent	isotropic	displac	ement	parameters	$(Å^2$?)
				1		1	1			1	1 1	/

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.50003 (5)	0.63599 (16)	0.50001 (6)	0.01776 (19)	
0.65168 (12)	-0.1181 (5)	0.93136 (19)	0.0174 (5)	
0.84529 (13)	-0.8242 (5)	1.05294 (19)	0.0198 (5)	
0.63927 (15)	0.1424 (5)	0.7309 (2)	0.0144 (5)	
0.60440 (15)	0.2962 (6)	0.6322 (2)	0.0147 (5)	
0.53164 (15)	0.5567 (6)	0.7241 (2)	0.0166 (6)	
0.73692 (17)	-0.2114 (7)	0.8141 (2)	0.0128 (6)	
0.71210 (17)	-0.2660 (7)	0.9113 (2)	0.0122 (6)	
0.74812 (18)	-0.4725 (7)	0.9891 (3)	0.0141 (6)	
0.7300	-0.5117	1.0530	0.017*	
0.81112 (16)	-0.6232 (6)	0.9739 (2)	0.0142 (6)	
	x 0.50003 (5) 0.65168 (12) 0.84529 (13) 0.63927 (15) 0.60440 (15) 0.53164 (15) 0.73692 (17) 0.71210 (17) 0.74812 (18) 0.7300 0.81112 (16)	xy $0.50003 (5)$ $0.63599 (16)$ $0.65168 (12)$ $-0.1181 (5)$ $0.84529 (13)$ $-0.8242 (5)$ $0.63927 (15)$ $0.1424 (5)$ $0.60440 (15)$ $0.2962 (6)$ $0.53164 (15)$ $0.5567 (6)$ $0.73692 (17)$ $-0.2114 (7)$ $0.71210 (17)$ $-0.2660 (7)$ $0.74812 (18)$ $-0.4725 (7)$ 0.7300 -0.5117 $0.81112 (16)$ $-0.6232 (6)$	xyz $0.50003 (5)$ $0.63599 (16)$ $0.50001 (6)$ $0.65168 (12)$ $-0.1181 (5)$ $0.93136 (19)$ $0.84529 (13)$ $-0.8242 (5)$ $1.05294 (19)$ $0.63927 (15)$ $0.1424 (5)$ $0.7309 (2)$ $0.60440 (15)$ $0.2962 (6)$ $0.6322 (2)$ $0.53164 (15)$ $0.5567 (6)$ $0.7241 (2)$ $0.73692 (17)$ $-0.2114 (7)$ $0.8141 (2)$ $0.71210 (17)$ $-0.2660 (7)$ $0.9113 (2)$ $0.74812 (18)$ $-0.4725 (7)$ $0.9891 (3)$ 0.7300 -0.5117 1.0530 $0.81112 (16)$ $-0.6232 (6)$ $0.9739 (2)$	xyz $U_{iso}*/U_{eq}$ 0.50003 (5)0.63599 (16)0.50001 (6)0.01776 (19)0.65168 (12)-0.1181 (5)0.93136 (19)0.0174 (5)0.84529 (13)-0.8242 (5)1.05294 (19)0.0198 (5)0.63927 (15)0.1424 (5)0.7309 (2)0.0144 (5)0.60440 (15)0.2962 (6)0.6322 (2)0.0147 (5)0.53164 (15)0.5567 (6)0.7241 (2)0.0166 (6)0.73692 (17)-0.2114 (7)0.8141 (2)0.0128 (6)0.71210 (17)-0.2660 (7)0.9113 (2)0.0122 (6)0.74812 (18)-0.4725 (7)0.9891 (3)0.0141 (6)0.7300-0.51171.05300.017*0.81112 (16)-0.6232 (6)0.9739 (2)0.0142 (6)

C5	0.83798 (18)	-0.5674 (7)	0.8800 (3)	0.0174 (7)	
Н5	0.8815	-0.6688	0.8704	0.021*	
C6	0.80096 (17)	-0.3645 (7)	0.8017 (3)	0.0159 (7)	
H6	0.8192	-0.3274	0.7378	0.019*	
C7	0.69685 (17)	-0.0131 (7)	0.7250 (2)	0.0142 (6)	
H7	0.7142	0.0020	0.6590	0.017*	
C8	0.54711 (17)	0.4887 (7)	0.6279 (3)	0.0149 (6)	
C9	0.47552 (19)	0.7743 (8)	0.7317 (3)	0.0206 (7)	
H9A	0.4879	0.8460	0.8099	0.031*	
H9B	0.4234	0.6899	0.7100	0.031*	
H9C	0.4773	0.9340	0.6804	0.031*	
H1O	0.633 (3)	-0.017 (11)	0.874 (3)	0.08 (2)*	
H2O	0.8796 (19)	-0.909 (8)	1.032 (4)	0.038 (13)*	
H2N	0.6097 (19)	0.218 (7)	0.5703 (17)	0.011 (8)*	
H3N	0.5552 (19)	0.476 (7)	0.7898 (17)	0.018 (9)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0196 (4)	0.0180 (4)	0.0138 (3)	0.0027 (4)	0.0018 (3)	0.0021 (4)
01	0.0193 (13)	0.0174 (12)	0.0159 (11)	0.0038 (9)	0.0059 (9)	0.0029 (10)
O2	0.0216 (12)	0.0196 (13)	0.0171 (12)	0.0069 (10)	0.0037 (9)	0.0040 (9)
N1	0.0159 (13)	0.0126 (13)	0.0125 (12)	-0.0018 (11)	0.0008 (10)	0.0013 (10)
N2	0.0176 (13)	0.0163 (13)	0.0097 (13)	0.0024 (11)	0.0030 (10)	-0.0001 (11)
N3	0.0195 (14)	0.0144 (13)	0.0152 (13)	0.0023 (11)	0.0037 (10)	0.0014 (10)
C1	0.0153 (14)	0.0135 (15)	0.0103 (14)	-0.0029 (12)	0.0048 (11)	-0.0005 (12)
C2	0.0105 (14)	0.0147 (15)	0.0129 (15)	-0.0017 (12)	0.0056 (11)	-0.0034 (12)
C3	0.0162 (15)	0.0159 (16)	0.0120 (15)	-0.0032 (12)	0.0069 (12)	-0.0012 (11)
C4	0.0148 (16)	0.0139 (14)	0.0113 (14)	-0.0007 (12)	-0.0006 (12)	0.0000 (12)
C5	0.0155 (16)	0.0163 (16)	0.0180 (17)	0.0012 (12)	0.0010 (12)	-0.0031 (12)
C6	0.0121 (15)	0.0214 (18)	0.0134 (15)	-0.0031 (14)	0.0023 (12)	-0.0033 (13)
C7	0.0157 (16)	0.0164 (16)	0.0117 (15)	-0.0035 (13)	0.0058 (12)	-0.0016 (12)
C8	0.0154 (15)	0.0127 (15)	0.0175 (16)	-0.0031 (12)	0.0064 (12)	0.0002 (12)
C9	0.0169 (16)	0.0266 (19)	0.0201 (17)	0.0003 (13)	0.0079 (13)	-0.0038 (13)

Geometric parameters (Å, °)

<u>81—C8</u>	1.699 (3)	C1—C2	1.413 (4)	
O1—C2	1.367 (4)	C1—C7	1.454 (4)	
01—H10	0.838 (10)	C2—C3	1.378 (4)	
O2—C4	1.360 (4)	C3—C4	1.391 (4)	
O2—H2O	0.836 (10)	С3—Н3	0.9500	
N1—C7	1.283 (4)	C4—C5	1.397 (4)	
N1—N2	1.392 (3)	C5—C6	1.374 (4)	
N2—C8	1.354 (4)	С5—Н5	0.9500	
N2—H2N	0.871 (10)	С6—Н6	0.9500	
N3—C8	1.328 (4)	С7—Н7	0.9500	
N3—C9	1.451 (4)	С9—Н9А	0.9800	

N3—H3N C1—C6	0.880 (10) 1.400 (4)	С9—Н9В С9—Н9С	0.9800 0.9800
	1.100 (1)		0.9000
C2—O1—H1O	106 (4)	C3—C4—C5	120.5 (3)
C4—O2—H2O	109 (3)	C6—C5—C4	119.5 (3)
C7—N1—N2	114.1 (3)	С6—С5—Н5	120.3
C8—N2—N1	121.4 (3)	C4—C5—H5	120.3
C8—N2—H2N	121 (2)	C5—C6—C1	121.4 (3)
N1—N2—H2N	114 (2)	С5—С6—Н6	119.3
C8—N3—C9	123.4 (3)	С1—С6—Н6	119.3
C8—N3—H3N	123 (3)	N1—C7—C1	123.2 (3)
C9—N3—H3N	114 (3)	N1—C7—H7	118.4
C6—C1—C2	118.1 (3)	С1—С7—Н7	118.4
C6—C1—C7	119.1 (3)	N3—C8—N2	118.3 (3)
C2—C1—C7	122.8 (3)	N3—C8—S1	123.4 (2)
O1—C2—C3	117.7 (3)	N2—C8—S1	118.3 (2)
O1—C2—C1	121.6 (3)	N3—C9—H9A	109.5
C3—C2—C1	120.8 (3)	N3—C9—H9B	109.5
C2—C3—C4	119.8 (3)	H9A—C9—H9B	109.5
С2—С3—Н3	120.1	N3—C9—H9C	109.5
С4—С3—Н3	120.1	Н9А—С9—Н9С	109.5
O2—C4—C3	117.9 (3)	Н9В—С9—Н9С	109.5
O2—C4—C5	121.6 (3)		
C7—N1—N2—C8	-174.4 (3)	C4—C5—C6—C1	0.2 (5)
C6-C1-C2-O1	177.7 (3)	C2-C1-C6-C5	1.4 (4)
C7—C1—C2—O1	-4.9 (4)	C7—C1—C6—C5	-176.0 (3)
C6—C1—C2—C3	-2.5 (4)	N2—N1—C7—C1	-174.0 (3)
C7—C1—C2—C3	174.8 (3)	C6—C1—C7—N1	-177.7 (3)
O1—C2—C3—C4	-178.3 (3)	C2-C1-C7-N1	5.0 (5)
C1—C2—C3—C4	1.9 (5)	C9—N3—C8—N2	175.6 (3)
C2—C3—C4—O2	179.7 (3)	C9—N3—C8—S1	-3.1 (4)
C2—C3—C4—C5	-0.2 (5)	N1—N2—C8—N3	8.8 (4)
O2—C4—C5—C6	179.3 (3)	N1—N2—C8—S1	-172.5 (2)
C3—C4—C5—C6	-0.9 (5)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1 <i>O</i> …N1	0.84 (1)	1.93 (3)	2.694 (3)	151 (6)
O2— $H2O$ ···S1 ⁱ	0.84 (1)	2.54 (1)	3.365 (2)	170 (4)
N2—H2N····O1 ⁱⁱ	0.87 (1)	2.11 (1)	2.950 (4)	162 (3)

Symmetry codes: (i) *x*+1/2, *-y*-1/2, *z*+1/2; (ii) *x*, *-y*, *z*-1/2.