organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­hydroxy­benzaldehyde 4-methyl­thio­semicarbazone

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bFaculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia
*Correspondence e-mail: mjamil@um.edu.my

(Received 11 October 2008; accepted 14 October 2008; online 31 October 2008)

The approximately planar mol­ecule of the title compound, C9H11N3O2S, is linked to adjacent mol­ecules by O—H⋯S hydrogen bonds to form a zigzag chain. Adjacent chains are consolidated by N—H⋯O hydrogen bonds into a two-dimensional array. An intramolecular O—H⋯N link is also present.

Related literature

For the structure of isomeric 2,5-dihydroxy­benzaldehyde 4-methyl­thio­semicarbazone, see: Tan et al. (2008[Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008). Acta Cryst. E64, o1344.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O2S

  • Mr = 225.27

  • Monoclinic, C c

  • a = 18.0046 (6) Å

  • b = 4.6436 (1) Å

  • c = 12.2842 (4) Å

  • β = 106.695 (2)°

  • V = 983.74 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 (2) K

  • 0.09 × 0.06 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.991

  • 4390 measured reflections

  • 2128 independent reflections

  • 1925 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.11

  • 2128 reflections

  • 153 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 814 Friedel pairs

  • Flack parameter: 0.00 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.84 (1) 1.93 (3) 2.694 (3) 151 (6)
O2—H2O⋯S1i 0.84 (1) 2.54 (1) 3.365 (2) 170 (4)
N2—H2N⋯O1ii 0.87 (1) 2.11 (1) 2.950 (4) 162 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

In continuation of on-going studies into the structural chemistry of thiosemicarbazones (Tan et al., 2008), the title compound (I) was investigated. Molecule (I), Fig. 1, is essentially planar and is consolidated into a 2-D array by a combination of N-H···O and O-H···S hydrogen bonding contacts, Table 1.

Related literature top

For the structure of isomeric 2,5-dihydroxybenzaldehyde 4-methylthiosemicarbazone, see: Tan et al. (2008).

Experimental top

4-Methylthiosemicarbazide (0.11 g, 1 mmol) and 2,4-dihydroxybenzaldehyde (0.14 g, 1 mmol) were heated in ethanol (10 ml) for 1 h. Slow evaporation of the solvent yielded yellow crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso>(H) set to 1.2-1.5 Ueq(C). The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined with distance retraints of O–H = 0.84±0.01 and N–H = 0.88±0.01 Å; their temperature factors were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid (Barbour, 2001) plot of (I) drawn at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
2,4-Dihydroxybenzaldehyde 4-methylthiosemicarbazone top
Crystal data top
C9H11N3O2SF(000) = 472
Mr = 225.27Dx = 1.521 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1090 reflections
a = 18.0046 (6) Åθ = 2.4–24.9°
b = 4.6436 (1) ŵ = 0.31 mm1
c = 12.2842 (4) ÅT = 100 K
β = 106.695 (2)°Prims, yellow
V = 983.74 (5) Å30.09 × 0.06 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2128 independent reflections
Radiation source: fine-focus sealed tube1925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2322
Tmin = 0.973, Tmax = 0.991k = 66
4390 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0598P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2128 reflectionsΔρmax = 0.31 e Å3
153 parametersΔρmin = 0.22 e Å3
6 restraintsAbsolute structure: Flack (1983), 814 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (1)
Crystal data top
C9H11N3O2SV = 983.74 (5) Å3
Mr = 225.27Z = 4
Monoclinic, CcMo Kα radiation
a = 18.0046 (6) ŵ = 0.31 mm1
b = 4.6436 (1) ÅT = 100 K
c = 12.2842 (4) Å0.09 × 0.06 × 0.03 mm
β = 106.695 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2128 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1925 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.991Rint = 0.034
4390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109Δρmax = 0.31 e Å3
S = 1.11Δρmin = 0.22 e Å3
2128 reflectionsAbsolute structure: Flack (1983), 814 Friedel pairs
153 parametersAbsolute structure parameter: 0.00 (1)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50003 (5)0.63599 (16)0.50001 (6)0.01776 (19)
O10.65168 (12)0.1181 (5)0.93136 (19)0.0174 (5)
O20.84529 (13)0.8242 (5)1.05294 (19)0.0198 (5)
N10.63927 (15)0.1424 (5)0.7309 (2)0.0144 (5)
N20.60440 (15)0.2962 (6)0.6322 (2)0.0147 (5)
N30.53164 (15)0.5567 (6)0.7241 (2)0.0166 (6)
C10.73692 (17)0.2114 (7)0.8141 (2)0.0128 (6)
C20.71210 (17)0.2660 (7)0.9113 (2)0.0122 (6)
C30.74812 (18)0.4725 (7)0.9891 (3)0.0141 (6)
H30.73000.51171.05300.017*
C40.81112 (16)0.6232 (6)0.9739 (2)0.0142 (6)
C50.83798 (18)0.5674 (7)0.8800 (3)0.0174 (7)
H50.88150.66880.87040.021*
C60.80096 (17)0.3645 (7)0.8017 (3)0.0159 (7)
H60.81920.32740.73780.019*
C70.69685 (17)0.0131 (7)0.7250 (2)0.0142 (6)
H70.71420.00200.65900.017*
C80.54711 (17)0.4887 (7)0.6279 (3)0.0149 (6)
C90.47552 (19)0.7743 (8)0.7317 (3)0.0206 (7)
H9A0.48790.84600.80990.031*
H9B0.42340.68990.71000.031*
H9C0.47730.93400.68040.031*
H1O0.633 (3)0.017 (11)0.874 (3)0.08 (2)*
H2O0.8796 (19)0.909 (8)1.032 (4)0.038 (13)*
H2N0.6097 (19)0.218 (7)0.5703 (17)0.011 (8)*
H3N0.5552 (19)0.476 (7)0.7898 (17)0.018 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0196 (4)0.0180 (4)0.0138 (3)0.0027 (4)0.0018 (3)0.0021 (4)
O10.0193 (13)0.0174 (12)0.0159 (11)0.0038 (9)0.0059 (9)0.0029 (10)
O20.0216 (12)0.0196 (13)0.0171 (12)0.0069 (10)0.0037 (9)0.0040 (9)
N10.0159 (13)0.0126 (13)0.0125 (12)0.0018 (11)0.0008 (10)0.0013 (10)
N20.0176 (13)0.0163 (13)0.0097 (13)0.0024 (11)0.0030 (10)0.0001 (11)
N30.0195 (14)0.0144 (13)0.0152 (13)0.0023 (11)0.0037 (10)0.0014 (10)
C10.0153 (14)0.0135 (15)0.0103 (14)0.0029 (12)0.0048 (11)0.0005 (12)
C20.0105 (14)0.0147 (15)0.0129 (15)0.0017 (12)0.0056 (11)0.0034 (12)
C30.0162 (15)0.0159 (16)0.0120 (15)0.0032 (12)0.0069 (12)0.0012 (11)
C40.0148 (16)0.0139 (14)0.0113 (14)0.0007 (12)0.0006 (12)0.0000 (12)
C50.0155 (16)0.0163 (16)0.0180 (17)0.0012 (12)0.0010 (12)0.0031 (12)
C60.0121 (15)0.0214 (18)0.0134 (15)0.0031 (14)0.0023 (12)0.0033 (13)
C70.0157 (16)0.0164 (16)0.0117 (15)0.0035 (13)0.0058 (12)0.0016 (12)
C80.0154 (15)0.0127 (15)0.0175 (16)0.0031 (12)0.0064 (12)0.0002 (12)
C90.0169 (16)0.0266 (19)0.0201 (17)0.0003 (13)0.0079 (13)0.0038 (13)
Geometric parameters (Å, º) top
S1—C81.699 (3)C1—C21.413 (4)
O1—C21.367 (4)C1—C71.454 (4)
O1—H1O0.838 (10)C2—C31.378 (4)
O2—C41.360 (4)C3—C41.391 (4)
O2—H2O0.836 (10)C3—H30.9500
N1—C71.283 (4)C4—C51.397 (4)
N1—N21.392 (3)C5—C61.374 (4)
N2—C81.354 (4)C5—H50.9500
N2—H2N0.871 (10)C6—H60.9500
N3—C81.328 (4)C7—H70.9500
N3—C91.451 (4)C9—H9A0.9800
N3—H3N0.880 (10)C9—H9B0.9800
C1—C61.400 (4)C9—H9C0.9800
C2—O1—H1O106 (4)C3—C4—C5120.5 (3)
C4—O2—H2O109 (3)C6—C5—C4119.5 (3)
C7—N1—N2114.1 (3)C6—C5—H5120.3
C8—N2—N1121.4 (3)C4—C5—H5120.3
C8—N2—H2N121 (2)C5—C6—C1121.4 (3)
N1—N2—H2N114 (2)C5—C6—H6119.3
C8—N3—C9123.4 (3)C1—C6—H6119.3
C8—N3—H3N123 (3)N1—C7—C1123.2 (3)
C9—N3—H3N114 (3)N1—C7—H7118.4
C6—C1—C2118.1 (3)C1—C7—H7118.4
C6—C1—C7119.1 (3)N3—C8—N2118.3 (3)
C2—C1—C7122.8 (3)N3—C8—S1123.4 (2)
O1—C2—C3117.7 (3)N2—C8—S1118.3 (2)
O1—C2—C1121.6 (3)N3—C9—H9A109.5
C3—C2—C1120.8 (3)N3—C9—H9B109.5
C2—C3—C4119.8 (3)H9A—C9—H9B109.5
C2—C3—H3120.1N3—C9—H9C109.5
C4—C3—H3120.1H9A—C9—H9C109.5
O2—C4—C3117.9 (3)H9B—C9—H9C109.5
O2—C4—C5121.6 (3)
C7—N1—N2—C8174.4 (3)C4—C5—C6—C10.2 (5)
C6—C1—C2—O1177.7 (3)C2—C1—C6—C51.4 (4)
C7—C1—C2—O14.9 (4)C7—C1—C6—C5176.0 (3)
C6—C1—C2—C32.5 (4)N2—N1—C7—C1174.0 (3)
C7—C1—C2—C3174.8 (3)C6—C1—C7—N1177.7 (3)
O1—C2—C3—C4178.3 (3)C2—C1—C7—N15.0 (5)
C1—C2—C3—C41.9 (5)C9—N3—C8—N2175.6 (3)
C2—C3—C4—O2179.7 (3)C9—N3—C8—S13.1 (4)
C2—C3—C4—C50.2 (5)N1—N2—C8—N38.8 (4)
O2—C4—C5—C6179.3 (3)N1—N2—C8—S1172.5 (2)
C3—C4—C5—C60.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.84 (1)1.93 (3)2.694 (3)151 (6)
O2—H2O···S1i0.84 (1)2.54 (1)3.365 (2)170 (4)
N2—H2N···O1ii0.87 (1)2.11 (1)2.950 (4)162 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC9H11N3O2S
Mr225.27
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)18.0046 (6), 4.6436 (1), 12.2842 (4)
β (°) 106.695 (2)
V3)983.74 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.09 × 0.06 × 0.03
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4390, 2128, 1925
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.11
No. of reflections2128
No. of parameters153
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.22
Absolute structureFlack (1983), 814 Friedel pairs
Absolute structure parameter0.00 (1)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.84 (1)1.93 (3)2.694 (3)151 (6)
O2—H2O···S1i0.84 (1)2.54 (1)3.365 (2)170 (4)
N2—H2N···O1ii0.87 (1)2.11 (1)2.950 (4)162 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z1/2.
 

Acknowledgements

We thank the University of Malaya (PJP FS316/2008 C) for supporting this study. KWT thanks the Ministry of Higher Education for an SLAI scholarship.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008). Acta Cryst. E64, o1344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds