Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Redetermination of the distorted perovskite $\mathrm{Nd}_{0.53} \mathrm{Sr}_{0.47} \mathrm{MnO}_{3}$

Ryoko Makita, ${ }^{\text {a* }}$ Kiyoaki Tanaka, ${ }^{\text {a }}$ Masato Kubota ${ }^{\text {b }}$ and Youichi Murakami ${ }^{\text {c }}$
${ }^{\text {a }}$ Graduate School of Materials Science \& Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Japan, ${ }^{\text {br }}$ Photon Factory, IMSS, High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan, and ${ }^{\mathrm{c}}$ Materials Structure Physics Group, Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
Correspondence e-mail: 14515020@stn.nitech.ac.jp

Received 18 September 2008; accepted 20 October 2008
Key indicators: single-crystal X-ray study; $T=241 \mathrm{~K}$; mean $\sigma(\mathrm{Mn}-\mathrm{O})=0.001 \AA$; disorder in main residue; R factor $=0.028 ; w R$ factor $=0.066$; data-to-parameter ratio $=14.3$.

Neodymium strontium manganese oxide with ideal composition $\mathrm{Nd}_{0.5} \mathrm{Sr}_{0.5} \mathrm{MnO}_{3}$ was reported to have two different structure models. In one model, the x coordinate of an O atom is at $x>1 / 2$, while in the other model the x-coordinate of this atom is at $x<1 / 2$. Difference-density maps around this O atom obtained from the current redetermination clearly show that the structure with the O atom at $x<1 / 2$ result in a more satisfactory model than that with $x>1 / 2$. The title compound with a refined composition of $\mathrm{Nd}_{0.53(5)} \mathrm{Sr}_{0.47(5)} \mathrm{MnO}_{3}$ is a distorted perovskite-type structure with site symmetries 2 mm for the statistically occupied (Nd, Sr) site and for the abovementioned O atom, $.2 / m$. for the Mn atom and .. 2 for a second O -atom site. In contrast to previous studies, the displacement factors for all atoms were refined anisotropically.

Related literature

For details of the synthesis, see: Nakamura et al. (1999). For previous refinements of compounds with composition $\mathrm{Nd}_{0.5} \mathrm{Sr}_{0.5} \mathrm{MnO}_{3}$ from powder and single-crystal data, see: Woodward et al. (1998), Caignaert et al. (1998) and Kajimoto et al. (1999), Angappane et al. (2004), respectively. For general background, see: Becker \& Coppens (1975); Dawson et al. (1967); Libermann et al. (1971); Mann (1968), Tanaka \& Marumo (1983).

Experimental

Crystal data

```
Nd
Mr}=218.8
Orthorhombic, Ibmm
a=5.4785 (3) \AA
\[
\begin{aligned}
& b=5.4310(3) \AA \\
& c=7.6006(5) \AA \\
& V=226.14(2) \AA^{3} \\
& Z=4
\end{aligned}
\]
```

Mo $K \alpha$ radiation
$\mu=28.37 \mathrm{~mm}^{-1}$

Data collection

MAC Science M06XHF22 fourcircle diffractometer
Absorption correction: numerical (CCDABS; Zhurov \& Tanaka, 2003)
$T_{\text {min }}=0.358, T_{\text {max }}=0.521$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028 \quad 65$ parameters
$w R\left(F^{2}\right)=0.066 \quad 14$ restraints
$S=1.19$
927 reflections
$T=241$ (1) K
$0.07 \times 0.05 \times 0.04 \mathrm{~mm}$

1255 measured reflections 966 independent reflections 679 reflections with $F>3 \sigma(F)$ $R_{\text {int }}=0.022$
$\Delta \rho_{\text {max }}=2.17 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-3.38$ e \AA^{-3}

Table 1
Selected bond lengths (\AA).

$\mathrm{Mn}-\mathrm{O} 1$	$1.9199(6)$	$\mathrm{Nd}^{\mathrm{ii}}-\mathrm{O} 2$	$2.545(2)$
$\mathrm{Mn}-\mathrm{O} 2$	$1.9400(4)$	$\mathrm{Nd}^{\mathrm{i}}-\mathrm{O} 1$	$2.7332(5)$
$\mathrm{Nd}^{\mathrm{i}}-\mathrm{O} 1^{\mathrm{i}}$	$2.501(4)$	$\mathrm{Nd}^{\mathrm{ii}}-\mathrm{O} 1$	$2.978(4)$

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z$; (ii) $x+1, y, z$.
Data collection: MXCSYS (MAC Science, 1995) and IUANGLE (Tanaka et al., 1994).; cell refinement: RSLC-3 UNICS system (Sakurai \& Kobayashi, 1979); data reduction: RDEDIT (Tanaka, 2008); program(s) used to solve structure: QNTAO (Tanaka \& Ōnuki, 2002; Tanaka et al., 2008); program(s) used to refine structure: QNTAO; molecular graphics: ATOMS for Windows (Dowty, 2000); software used to prepare material for publication: RDEDIT.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2198).

References

Angappane, S., Pattabiraman, M., Rangarajan, G., Sethupathi, K. \& Sastry, V. S. (2004). Phys. Rev. B69, 094437-0-094437-8.

Becker, P. J. \& Coppens, P. (1975). Acta Cryst. A31, 417-425.
Caignaert, V., Millange, F., Hervieu, M., Suard, E. \& Raveau, B. (1998). Solid State Commun. 99, 173-177.
Dawson, B., Hurley, A. C. \& Maslen, V. W. (1967). Proc. R. Soc. London Ser. A, 298, 289-306.
Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
Kajimoto, R., Yoshizawa, H., Kawano, H., Kuwahara, H., Tokura, Y., Ohoyama, K. \& Ohashi, M. (1999). Phys. Rev. B, 60, 9506-9517.
Libermann, D. A., Cromer, D. T. \& Waber, J. T. (1971). C. Phys. Commun. 2, 107-113.
MAC Science (1995). MXCSYS. Bruker AXS Inc., Tsukuba, Ibaraki, Japan.
Mann, J. B. (1968). Los Alamos Scientific Report LA3691, Los Alamos, USA.
Nakamura, K., Arima, T., Nakazawa, A., Wakabayashi, Y. \& Murakami, Y. (1999). Phys. Rev. B60, 2425-2428.

Sakurai, T. \& Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-77.
Tanaka, K. (2008). RDEDIT. Unpublished.
Tanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. \& Shirotani, I. (1994). Acta Cryst. A50, 246-252.
Tanaka, K., Makita, R., Funahashi, S., Komori, T. \& Zaw Win (2008). Acta Cryst. A64, 437-449.
Tanaka, K. \& Marumo, F. (1983). Acta Cryst. A39, 631-641.
Tanaka, K. \& Ōnuki, Y. (2002). Acta Cryst. B58, 423-436.
Woodward, P. M., Vogt, T., Cox, D. E., Arulraj, A., Rao, C. N. R., Karen, P. \& Cheetham, A. K. (1998). Chem. Mater. 10, 3652-3665.
Zhurov, V. V. \& Tanaka, K. (2003). Proceedings of the 28th ISTC Japan Workshop on Frontiers of X-ray Diffraction Technologies in Russia/CIS, pp. 169-178.

supporting information

Acta Cryst. (2008). E64, i77 [doi:10.1107/S1600536808034168]

Redetermination of the distorted perovskite $\mathrm{Nd}_{0.53} \mathrm{Sr}_{0.47} \mathrm{MnO}_{3}$

Ryoko Makita, Kiyoaki Tanaka, Masato Kubota and Youichi Murakami

S1. Comment

Woodward et al. (1998) and Caignaert et al. (1998) determined the structure of $\mathrm{Nd}_{0.5} \mathrm{Sr}_{0.5} \mathrm{MnO}_{3}$ on the basis of powder Xray diffraction data, whereas Kajimoto (1999) and Angappane et al. (2004) used single-crystal X-ray diffraction data for structure refinements. Except the model reported by Woodward et al. (1998), for all other structure models of $\mathrm{Nd}_{0.5} \mathrm{Sr}_{0.5} \mathrm{MnO}_{3}$ the x-coordinate of oxygen atom O 1 was reported to be $>1 / 2$. Since a new examination of the x coordinate of O 1 seemed desirable and anisotropic displacement factors were not reported in the previous studies, we decided to redetermine the structure of $\mathrm{Nd}_{0.45} \mathrm{Sr}_{0.55} \mathrm{MnO}_{3}$. The result of the structure analysis is presented in this communication.
The structure of the title compound derives from the perovskite-type (Fig. 1) and exhibits an orthorhombic distortion. The site symmetries are 2 mm for the statistically occupied $\left[(\mathrm{Nd}, \mathrm{Sr}) \mathrm{O}_{12}\right.$] polyhedron and for $\mathrm{O} 1, .2 / m$. for the distorted $\left[\mathrm{MnO}_{6}\right]$ octahedron and .. 2 for O 2 .

S2. Experimental

A large single crystal was grown using a floating zone method (Nakamura et al., 1999). The bulk sample was put on a piece of filter paper and was etched by diluted nitric acid under a microscope. Finally, the sample was shaped into a 0.040 $\mathrm{mm} \times 0.053 \mathrm{~mm} \times 0.065 \mathrm{~mm}$ block. $\mathrm{Nd}_{0.45} \mathrm{Sr}_{0.55} \mathrm{MnO}_{3}$ exhibits a first order phase transition at $\mathrm{T}_{\mathrm{N}}=225 \mathrm{~K}$. The present diffraction study was carried out at 241 (1) K close to the phase transition temperature.

S3. Refinement

The structure of $\mathrm{Nd}_{1-x} \mathrm{Sr}_{x} \mathrm{MnO}_{3}$ changes with the hole-concentration x. In the region $x>0.55$ the structure has tetragonal symmetry. However, at $x=0.60$ a phase with monoclinic symmetry was reported at low temperature (Kajimoto et al. , 1999). Below $x=0.55$ it changes to orthorhombic symmetry. Since crystals with monoclinic, orthorhombic and tetragonal symmetries were found in preliminary experiments for crystal with approximate compositions of $\mathrm{Nd}_{0.45} \mathrm{Sr}_{0.55} \mathrm{MnO}_{3}$ (which is expected from the composition of the starting materials), the hole-concentration x (i.e. site occupation factors) were also refined besides the atomic coordinates and the temperature factors. The previous studies (Woodward et al. (1998); Caignaert et al. (1998); Angappane et al. (2004)) have used the standard setting of space group No. 74 in Imma. We decided to refine the structure with the setting in Ibmm, because in the orthorhombic phase the crystal axis is taken along the same direction as that of the tetragonal phase which is also adopted by many other physicists to make clear the relationships between the two phases. Furthermore, $\mathrm{Nd}_{0.45} \mathrm{Sr}_{0.55} \mathrm{MnO}_{3}$ is well known as having $\mathrm{dx}^{2}-\mathrm{y}^{2}$ - type orbital-ordering of Mn and the physical and chemical properties are discussed based on the Ibmm setting.
When the coordinates by Caignaert et al. (1998) were used as starting parameters for refinement, the x-coordinate of O1 converged to 0.518 (1) with a R-factor of 0.0381 . Fig. $2(a)$ shows the difference density map onto (010) after this refinement in the range $0<z<1 / 2$ and $0<x<1$ with the vertical and horizontal lengths of $3.80 \AA \times 5.48 \AA$. The cores of
$\mathrm{Nd} / \mathrm{Sr}, \mathrm{Mn}$ and O 1 are at $(0,1 / 4),(1 / 2,1 / 2)$ and $(0.52,1 / 4)$. Since there are two high peaks at $x=0.45$ and 0.55 in Fig 2 (a), O1 was split into $\mathrm{O} 1(1)$ at $x=0.45$ and $\mathrm{O} 1(2)$ at $x=0.55$. The site occupation factors of $\mathrm{O} 1(1)$ and $\mathrm{O} 1(2)$ became 0.96 (6) and 0.04 (6) after the refinement. Hence O1 was concluded to be located only at $x=0.45$. After the subsequent refinement the R-factor converged at 0.0289 and the difference density map became likewise more satisfactory (Fig. 2(b)).
Although the temperature factor U^{33} of O 1 is 0.001 (1) \AA^{2} and almost insignificant, it becomes 0.0015 (2) \AA^{2} after the refinement of anharmonic vibration parameters (Dawson et al., 1967; Tanaka \& Marumo, 1983) as well as the harmonic ones. Finally, refinement of the site occupation factors revealed a hole-concentration x of 0.47 (5) thus leading to a composition of $\mathrm{Nd}_{0.53} \mathrm{Sr}_{0.47} \mathrm{MnO}_{3}$.

Figure 1

The structure of the distorted perovskite $\mathrm{Nd}_{0.53} \mathrm{Sr}_{0.47} \mathrm{MnO}_{3}$ with displacement ellipsoids drawn at the 90% probability level.

Figure 2
The difference density map projected onto (010) plane with a range $0<x<1$ and $0<z<1 / 2$. (a): The x-coordinate of O1 is $>1 / 2$. (b) : The x-coordinate of O 1 is $<1 / 2$. Contours are given at intervals of $0.5 \mathrm{e} \AA^{-3}$. Zero contours are drawn as thick lines, positive contours are drawn as thin lines, and negative contours are drawn as broken line.

Neodymium strontium manganese oxide

Crystal data

$\mathrm{Nd}_{0.53} \mathrm{Sr}_{0.47} \mathrm{MnO}_{3}$
$M_{r}=218.81$
Orthorhombic, Ibmm
Hall symbol: -I 2c 2c
$a=5.4785$ (3) \AA
$b=5.4310$ (3) \AA
$c=7.6006$ (5) \AA
$V=226.14(2) \AA^{3}$
$Z=4$

Data collection

MAC Science M06XHF22 four-circle diffractometer
Radiation source: fine-focus rotating anode
Graphite monochromator
Detector resolution: $1.25 \times 1.25^{\circ}$ pixels mm^{-1}
integrated intensities data fom $\omega / 2 \theta$ scans
Absorption correction: numerical
(CCDABS; Zhurov \& Tanaka, 2003)
$T_{\text {min }}=0.358, T_{\text {max }}=0.521$

Refinement

Refinement on F
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.066$
$S=1.19$
927 reflections
65 parameters
14 restraints
$F(000)=394.64$
$D_{\mathrm{x}}=6.479 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 30 reflections
$\theta=35.6-37.8^{\circ}$
$\mu=28.37 \mathrm{~mm}^{-1}$
$T=241 \mathrm{~K}$
Block, black
$0.07 \times 0.05 \times 0.04 \mathrm{~mm}$

1255 measured reflections
966 independent reflections
679 reflections with $F>3 \sigma(F)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=74.7^{\circ}, \theta_{\text {min }}=5.3^{\circ}$
$h=-12 \rightarrow 14$
$k=-12 \rightarrow 14$
$l=-18 \rightarrow 18$

Weighting scheme based on measured s.u.'s
$(\Delta / \sigma)_{\text {max }}=0.00024$
$\Delta \rho_{\max }=2.17 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-3.38$ e \AA^{-3}
Extinction correction: B-C type 1 Gaussian anisotropic (Becker \& Coppens, 1975)
Extinction coefficient: 0.029E04 (1)

Special details

Experimental. Multiple diffraction was avoided by ψ-scan. Intensities was measured at equi-temperature region of combinaion of angles ω and χ of four-circle diffractometer
Refinement. B—C anisotropic type1 extinction parameters ($\times 10^{4}$ s) are as follows 4087 (526) 6631 (1159) 3088 (391) -790 (416) -1835 (361) 3716 (625)
Dawson et al. (1967) proposed the treatment of temperature factors including anharmonic thermal vibration (AHV) effect for high-symmetry crystals by means of series expansion of an one-particle-potential. Tanaka and Marumo (1983) generalized the treatment and anharmonic third and fourth order parameters were refined in the least-square program. AHV parameters were restricted by the site symmetry of $\mathrm{Nd} / \mathrm{Sr}(2 \mathrm{~mm}), \mathrm{Mn}(.2 / \mathrm{m}),. \mathrm{O} 1(2 \mathrm{~mm})$ and $\mathrm{O} 2(.2)$. The anharmonic potentials (V) are represented by the following equation:
$V_{\mathrm{Nd}, \mathrm{Sr}, \mathrm{Ol}}=\mathrm{c}_{111} \mathrm{u}_{1}{ }^{3}+\mathrm{c}_{123} \mathrm{u}_{1} \mathrm{u}_{2}{ }^{2}+\mathrm{c}_{133} \mathrm{u}_{1} \mathrm{u}_{3}{ }^{2}+\mathrm{q}_{1111} \mathrm{u}_{1}{ }^{4}+\mathrm{q}_{1122} \mathrm{u}_{1}{ }^{2} \mathrm{u}_{2}{ }^{2}+\mathrm{q}_{1133} \mathrm{u}_{1}{ }^{2} \mathbf{u}_{3}{ }^{2}+\mathrm{q}_{2222} \mathrm{u}_{2}{ }^{4}+\mathrm{q}_{2233} \mathrm{u}_{2}{ }^{2} \mathrm{u}_{3}{ }^{2}+\mathrm{q}_{3333} u_{3}{ }^{4} \cdots$ (1)
$V_{M n}=q_{1111} u_{1}{ }^{4}+q_{1122} u_{1}{ }^{2} u_{2}{ }^{2}+q_{1133} u_{1}{ }^{2} u_{3}{ }^{2}+q_{2222} u_{2}{ }^{4}+q_{2233} u_{2}{ }^{2} u_{3}{ }^{2}+q_{3333} u_{3}{ }^{4}+q_{1131} u_{1}{ }^{3} u_{3}+q_{2231} u_{2}{ }^{2} u_{1} u_{3}+q_{3331} u_{3}{ }^{3} u_{1} \cdots$ (2) $\mathrm{V}_{\mathrm{O} 2}=\mathrm{c}_{211} \mathrm{u}_{1}{ }^{2} \mathrm{u}_{2}+\mathrm{c}_{222} \mathrm{u}_{2}{ }^{3}+\mathrm{c}_{233} \mathrm{u}_{3}{ }^{2} \mathrm{u}_{2}+\mathrm{c}_{123} \mathrm{u}_{1} \mathrm{u}_{2} \mathrm{u}_{3}+\mathrm{q}_{1111} \mathrm{u}_{1}{ }^{4}+\mathrm{q}_{1122} \mathrm{u}_{1}{ }^{2} \mathrm{u}_{2}{ }^{2}+\mathrm{q}_{1133} \mathrm{u}_{1}{ }^{2} \mathrm{u}_{3}{ }^{2}+\mathrm{q}_{2222} \mathrm{u}_{2}{ }^{4}+\mathrm{q}_{2233} \mathrm{u}_{2}{ }^{2} \mathrm{u}_{3}{ }^{2}+\mathrm{q}_{3333} \mathrm{u}_{3}{ }^{4}+\mathrm{q}_{1131} \mathrm{u}_{1}{ }^{3} \mathrm{u}_{3}$
$+\mathrm{q}_{2231} \mathrm{u}_{2}{ }^{2} \mathrm{u}_{1} \mathrm{u}_{3}+\mathrm{q}_{3331} \mathrm{u}_{3}{ }^{3} \mathrm{u}_{1} \cdots$ (3)
where $\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$ is a displacement vector from equilibrium position of each atom. The displacement vector of $\mathrm{Nd}, \mathrm{Sr}, \mathrm{O} 1$ was defined on the coordinate system with axes parallel to the crystal axes, a, b and c . That of Mn and O 2 was defined by equation (4) and (5) in terms of the lattice vectors a, b and c in the present study.
$\mathrm{u}_{1}=-0.18253 a, \mathrm{u}_{2}=0.18413 b, \mathrm{u}_{3}=-0.13157 c \cdots$ (4)
$\mathrm{u}_{1}=-0.11080 a-0.14633 b, \mathrm{u}_{2}=0.13157 c, \mathrm{u}_{3}=-0.14506 a+0.11177 b \cdots(5)$
Since there is strong correlation between harmonic temperature factors and AHV parameters, the AHV parameters and the harmonic temperature factors were refined alternately. The significant AHV parameters $\mathrm{c}_{\mathrm{ijk}}\left(\times 10^{-19} \mathrm{~J}^{-3}\right)$ and $\mathrm{q}_{\mathrm{ijik}}(\times$ $10^{-19} \mathrm{~J} \AA^{-3}$) are as follows:
Nd and $\mathrm{Sr} ; \mathrm{c}_{111}=-5.9$ (49), $\mathrm{c}_{122}=-3.8$ (14),
$\mathrm{Mn} ; \mathrm{q}_{2231}=-1832(1560)$,
O1: $\mathrm{q}_{2222}=-9.5(39), \mathrm{q}_{2233}=569.9$ (2279),
O2: $\mathrm{c}_{211}=3.7(33), \mathrm{c}_{233}=0.8(7), \mathrm{c}_{123}=-5.5(23), \mathrm{q}_{2233}=9.1$ (79),

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
Nd	$-0.00656(9)$	0	0.25	$0.00637(4)$	$0.53(5)$
Sr	$-0.00656(9)$	0	0.25	$0.00637(4)$	$0.47(5)$
Mn	0.5	0	0	$0.00305(7)$	
O 1	$0.4499(8)$	0	0.25	$0.0112(6)$	
O 2	0.75	0.25	$0.0276(4)$	$0.0139(5)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd	$0.00653(6)$	$0.00685(7)$	$0.00574(8)$	0	0	0
Sr	$0.00663(6)$	$0.00685(7)$	$0.00574(8)$	0	0	0
Mn	$0.0035(1)$	$0.0030(1)$	$0.0027(1)$	0	0	0
O 1	$0.015(1)$	$0.017(1)$	$0.0015(2)$	0	0	0
O 2	$0.0148(7)$	$0.0116(7)$	$0.015(1)$	$-0.0058(6)$	0	0

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Mn}-\mathrm{O} 1$	$1.9199(6)$	$\mathrm{Nd}^{\mathrm{ii}}-\mathrm{O} 2$	$2.545(2)$
$\mathrm{Mn}-\mathrm{O} 2$	$1.9400(4)$	$\mathrm{O} 1-\mathrm{O} 2$	$2.721(3)$
$\mathrm{Nd}-\mathrm{Nd}^{\mathrm{ii}}$	$3.8064(5)$	$\mathrm{Nd}^{\mathrm{i}-\mathrm{Mn}}$	$3.3043(4)$
$\mathrm{Nd}^{\mathrm{ii}}-\mathrm{Ol}^{\mathrm{ii}}$	$2.501(4)$	$\mathrm{O} 1^{\mathrm{iii}}-\mathrm{O} 2^{\mathrm{ii}}$	$2.738(3)$

$\mathrm{Nd}^{\text {i }}$ - O 2	2.545 (2)	$\mathrm{O} 1-\mathrm{O} 1^{\text {ii }}$	3.489 (4)
$\mathrm{Nd}^{\text {iii }}$-O1	2.7332 (5)	$\mathrm{O} 2-\mathrm{O} 2^{\text {iii }}$	3.8799 (5)
$\mathrm{Nd}^{\mathbf{i}}-\mathrm{O} 1$	2.978 (4)		
$\mathrm{Nd}^{\mathrm{ii}}-\mathrm{Nd}^{\text {i }}-\mathrm{Mn}$	55.020 (8)	$\mathrm{Nd}^{\mathrm{i}}-\mathrm{O} 1-\mathrm{Mn}$	81.8 (1)
$\mathrm{Mn}-\mathrm{Nd}^{\mathrm{i}}-\mathrm{O} 1$	35.10 (8)	$\mathrm{Nd}^{\text {ii }}-\mathrm{O} 1-\mathrm{Mn}$	89.07 (3)
$\mathrm{Nd}^{\text {i }}-\mathrm{Nd}^{\text {iii}}-\mathrm{Mn}$	54.769 (6)	$\mathrm{Mn}-\mathrm{O} 1-\mathrm{O} 1^{\text {ii }}$	95.15 (9)
$\mathrm{Nd}^{\mathrm{i}}-\mathrm{Nd}^{\text {ii }}-\mathrm{O} 2$	41.61 (5)	$\mathrm{Nd}^{\text {ii }}-\mathrm{O} 1{ }^{\text {ii }}-\mathrm{O} 1$	51.11 (8)
$\mathrm{Mn}-\mathrm{Nd}^{\text {ii }}-\mathrm{O} 1^{\text {ii }}$	89.4 (1)	Ndi $-\mathrm{O} 2-\mathrm{Nd}^{\text {ii }}$	96.8 (1)
$\mathrm{O} 1-\mathrm{Nd}{ }^{\text {ii }}-\mathrm{O} 1^{\text {ii }}$	83.5 (1)	$\mathrm{Nd}^{\text {i }}-\mathrm{O} 2-\mathrm{O} 2{ }^{\text {iii }}$	144.59 (7)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Nd}^{\text {ii }}-\mathrm{O} 2$	121.6 (1)	$\mathrm{Nd}^{\text {ii }}-\mathrm{O} 2-\mathrm{O} 2{ }^{\text {iii }}$	47.83 (1)
$\mathrm{Nd}^{\mathrm{i}}-\mathrm{Mn}-\mathrm{Nd}^{\text {ii }}$	70.212 (7)	$\mathrm{Nd}^{\text {ii }}-\mathrm{Nd}{ }^{\text {i }}-\mathrm{O} 2$	41.61 (5)
$\mathrm{Nd}^{\text {ii }}-\mathrm{Mn}-\mathrm{O} 1$	55.54 (2)	$\mathrm{O} 1-\mathrm{Nd}^{\mathrm{i}}-\mathrm{O} 2$	58.4 (1)
$\mathrm{Nd}^{\mathrm{i}}-\mathrm{O} 1-\mathrm{Nd}^{\text {ii }}$	83.48 (9)	$\mathrm{Nd}^{\mathrm{i}}-\mathrm{Nd}^{\text {iii }}-\mathrm{Ol}^{\text {ii }}$	134.5 (1)
$\mathrm{Nd}^{\mathrm{i}}-\mathrm{O} 1-\mathrm{O} 2$	52.83 (8)	$\mathrm{Mn}-\mathrm{Nd}^{\mathrm{ii}}-\mathrm{O} 1$	35.39 (1)
$\mathrm{Nd}^{\text {ii }}-\mathrm{O} 1-\mathrm{O} 2$	55.64 (6)	$\mathrm{Mn}-\mathrm{Nd}^{\text {ii }}-\mathrm{O} 2{ }^{\text {iii }}$	87.76 (5)
$\mathrm{O} 1 \mathrm{i}-\mathrm{O} 1-\mathrm{O} 2$	89.48 (6)	$\mathrm{O} 1-\mathrm{Nd}^{\text {ii }}-\mathrm{O} 2{ }^{\text {iii }}$	114.44 (5)
$\mathrm{O} 1-\mathrm{O} 1^{\text {ii- }}-\mathrm{O} 2^{\text {iii }}$	97.8 (1)	$\mathrm{O} 2-\mathrm{Nd}^{\text {iii }}-\mathrm{O} 2{ }^{\text {iii }}$	91.19 (7)
$\mathrm{Nd}^{\mathrm{i}}-\mathrm{O} 2-\mathrm{O} 1$	68.77 (9)	$\mathrm{Nd}^{\mathbf{i}}-\mathrm{Mn}-\mathrm{O} 2$	50.22 (1)
Ndii - $\mathrm{O} 2-\mathrm{O} 1$	62.42 (8)	$\mathrm{Nd}-\mathrm{O} 1-\mathrm{O} 1^{\text {ii }}$	128.89 (6)
$\mathrm{Nd}^{\text {ii }}-\mathrm{Nd}^{\text {i}}-\mathrm{O} 1$	45.51 (8)	$\mathrm{Nd}^{\text {ii }}-\mathrm{O} 1-\mathrm{O} 1^{\text {ii }}$	45.41 (5)
$\mathrm{Mn}-\mathrm{Nd}^{\mathrm{i}}-\mathrm{O} 2$	35.85 (5)	$\mathrm{Mn}-\mathrm{O} 1-\mathrm{O} 2$	45.48 (6)
$\mathrm{Nd}^{\mathrm{i}}-\mathrm{Nd}^{\text {iii }}-\mathrm{O} 1$	51.01 (1)	$\mathrm{Nd}^{\text {ii- }}-\mathrm{O} 1^{\text {ii- }}-\mathrm{O} 2{ }^{\text {iii }}$	66.4 (1)
$\mathrm{Nd}^{\mathrm{i}}-\mathrm{Nd}^{\text {ii }}-\mathrm{O} 2{ }^{\text {iii }}$	132.79 (5)	$\mathrm{Nd}^{\mathrm{i}}-\mathrm{O} 2-\mathrm{Mn}$	93.92 (6)
$\mathrm{Mn}-\mathrm{Nd}^{\text {ii }}-\mathrm{O} 2$	35.71 (5)	$\mathrm{Nd}^{\text {ii }}-\mathrm{O} 2-\mathrm{Mn}$	94.32 (6)
$\mathrm{O} 1-\mathrm{Nd}^{\text {ii- }}$ - 2	61.94 (5)	$\mathrm{Mn}-\mathrm{O} 2-\mathrm{O} 2{ }^{\text {iii }}$	88.84 (2)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Nd}^{\text {iii }}-\mathrm{O}^{\text {iii }}$	60.7 (1)	$\mathrm{O} 1-\mathrm{O} 2-\mathrm{O} 2^{\text {iii }}$	89.42 (6)
$\mathrm{Nd}{ }^{\text {i }}-\mathrm{Mn}-\mathrm{O} 1$	63.12 (2)	$\mathrm{O} 1^{\text {ii- }}-\mathrm{O} 2{ }^{\text {iii }}-\mathrm{O} 2$	81.49 (5)
$\mathrm{Nd}^{\text {ii }}-\mathrm{Mn}-\mathrm{O} 2$	49.98 (1)	$\mathrm{Nd}{ }^{\text {ii }}-\mathrm{O} 2{ }^{\text {iii }}-\mathrm{O} 1^{\text {ii }}$	52.84 (6)

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1 / 2, y+1 / 2, z$; (iii) $x-1 / 2, y+1 / 2,-z$.

