Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[3-(2,4-Dichloro-5-fluorophenyl)-5-(3-methyl-2-thienyl)-4,5-dihydro-1Hpyrazol-1-yl]ethanone

N. Anuradha,^a A. Thiruvalluvar,^a* M. Mahalinga^b and R. J. Butcher^c

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, ^bSeQuent Scientific Limited, 120 A&B Industrial Area, Baikampady, New Mangalore 575 011, India, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059 USA

Correspondence e-mail: athiru@vsnl.net

Received 12 October 2008; accepted 16 October 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.179; data-to-parameter ratio = 25.9.

In the title molecule, C₁₆H₁₃Cl₂FN₂OS, the dihedral angle between the thiophene and benzene rings is $80.34(12)^\circ$. The pyrazoline ring is in an envelope conformation, and the plane through the four coplanar atoms makes dihedral angles of 85.13(9) and $6.89(10)^{\circ}$ with the thiophene and benzene rings, respectively. The C and O atoms of the acetyl group are nearly coplanar with the attached pyrazoline ring. In the crystal structure, inversion dimers arise from pairs of intermolecular $C-H\cdots O$ hydrogen bonds. A short intermolecular $Cl\cdots S$ contact of 3.4250 (13) Å is also found.

Related literature

For a related crystal structure, see: Thiruvalluvar et al. (2007).

Crystal data

C ₁₆ H ₁₃ Cl ₂ FN ₂ OS	$\gamma = 101.003 \ (5)^{\circ}$
$M_r = 371.25$	$V = 833.99 (10) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
a = 7.2240 (5) Å	Mo $K\alpha$ radiation
b = 8.8642 (4) Å	$\mu = 0.53 \text{ mm}^{-1}$
c = 14.0518 (9) Å	T = 295 (2) K
$\alpha = 100.794 \ (5)^{\circ}$	$0.52 \times 0.43 \times 0.35 \text{ mm}$
$\beta = 103.307 \ (6)^{\circ}$	

 $T_{\rm min} = 0.786, T_{\rm max} = 1.000$ (expected range = 0.654–0.831)

12358 measured reflections 5445 independent reflections

 $R_{\rm int} = 0.020$

3028 reflections with $I > 2\sigma(I)$

Data collection

Oxford Diffraction R Gemini
diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2008)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	210 parameters
$wR(F^2) = 0.179$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
5445 reflections	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2A\cdots O1^{i}$	0.96	2.58	3.533 (4)	171
Symmetry code: (i) –	x - 1, -v + 1, -v	-7.		

(i)

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

AT thanks the UGC, India, for the award of a Minor Research Project [file No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007]. RJB acknowledges the NSF-MRI program for funding to purchase the X-ray CCD diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2286).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Thiruvalluvar, A., Subramanyam, M., Butcher, R. J. & Mahalinga, M. (2007). Acta Cryst. E63, 04770.

supporting information

Acta Cryst. (2008). E64, o2160 [doi:10.1107/S1600536808033837]

1-[3-(2,4-Dichloro-5-fluorophenyl)-5-(3-methyl-2-thienyl)-4,5-dihydro-1*H*-pyrazol-1-yl]ethanone

N. Anuradha, A. Thiruvalluvar, M. Mahalinga and R. J. Butcher

S1. Comment

A great deal of attention has been paid to the synthesis and structural aspects of pyrazolines, as witnessed by continued activity in this area (Thiruvalluvar *et al.*, 2007).

In the title molecule, $C_{16}H_{13}Cl_2FN_2OS$, Fig.1., the dihedral angle between the thiophene and benzene rings is 80.34 (12)°. The pyrazoline ring is in an envelope conformation and the plane through the four coplanar atoms makes dihedral angles of 85.13 (9)° and 6.89 (10)° with the thiophene and benzene rings, respectively. The acetyl group, except for the hydrogen atoms, is nearly coplanar with the attached pyrazoline ring. An intermolecular C2—H2A···O1(-1 - *x*, 1 - *y*, -*z*) hydrogen bond is found in the crystal structure (Table 1). Further, a short intermolecular Cl4···S21(1-x,1-y,1-z) contact of 3.4250 (13) Å is also found in the crystal structure.

S2. Experimental

A mixture of 1-(2,4-dichloro-5-fluorophenyl)-3-(3-methylthien-2-yl) prop-2-en-1-one (5 g, 0.016 mol) and a molar equivalent of hydrazine hydrate (80%) in glacial acetic acid (25 ml) was heated on a water bath at 363–365 K for 5–6 h. The reaction mass was then poured into ice-cold water. The solid obtained was filtered, washed with water, dried and crystallized from methanol to yield the title compound. Yield 5.5 g (93.5%).

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93, 0.96, 0.97 and 0.98 Å for Csp², methyl, methylene and methine C, respectively; $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for methyl and 1.2 for all other H atoms.

Figure 1

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Figure 2

The packing of the title compound, viewed down the *a* axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

1-[3-(2,4-Dichloro-5-fluorophenyl)-5-(3-methyl-2-thienyl)-4,5-dihydro-1H- pyrazol-1-yl]ethanone

Crystal data	
$C_{16}H_{13}Cl_2FN_2OS$	Z = 2
$M_r = 371.25$	F(000) = 380
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.478 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Melting point: 369.5 K
a = 7.2240 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 8.8642 (4) Å	Cell parameters from 4639 reflections
c = 14.0518 (9) Å	$\theta = 4.6 - 32.4^{\circ}$
$\alpha = 100.794(5)^{\circ}$	$\mu = 0.53 \text{ mm}^{-1}$
$\beta = 103.307 \ (6)^{\circ}$	T = 295 K
$\gamma = 101.003 (5)^{\circ}$	Chunk, pale-yellow
V = 833.99 (10) Å ³	$0.52 \times 0.43 \times 0.35$ mm

Data collection

Oxford Diffraction R Gemini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.5081 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2008) $T_{\min} = 0.786, T_{\max} = 1.000$	12358 measured reflections 5445 independent reflections 3028 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 32.5^{\circ}, \theta_{min} = 4.6^{\circ}$ $h = -10 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -21 \rightarrow 21$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.179$ S = 1.12 5445 reflections 210 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.083P)^2 + 0.1183P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.32$ e Å ⁻³ $\Delta\rho_{min} = -0.39$ e Å ⁻³

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl2	0.31301 (12)	0.93549 (8)	0.58594 (5)	0.0696 (3)	
Cl4	0.45313 (12)	0.40815 (13)	0.68787 (6)	0.0875 (4)	
S21	0.33962 (10)	0.82555 (8)	0.17261 (5)	0.0572 (2)	
F5	0.2322 (3)	0.25555 (19)	0.47920 (15)	0.0820 (7)	
01	-0.2572 (3)	0.7121 (2)	0.06719 (14)	0.0721 (7)	
N1	-0.0630(3)	0.6973 (2)	0.21112 (13)	0.0432 (5)	
N2	0.0012 (3)	0.6131 (2)	0.28019 (13)	0.0388 (5)	
C1	-0.1967 (4)	0.6281 (3)	0.12037 (17)	0.0499 (7)	
C2	-0.2599 (5)	0.4503 (3)	0.0905 (2)	0.0753 (10)	
C3	0.1042 (3)	0.7120 (2)	0.36402 (15)	0.0352 (6)	
C4	0.1162 (4)	0.8829 (3)	0.36061 (16)	0.0460 (7)	
C5	0.0216 (3)	0.8696 (2)	0.24839 (16)	0.0434 (7)	
C11	0.1899 (3)	0.6464 (3)	0.44812 (15)	0.0383 (6)	
C12	0.2871 (3)	0.7332 (3)	0.54694 (16)	0.0464 (7)	
C13	0.3677 (3)	0.6604 (4)	0.62105 (18)	0.0574 (9)	
C14	0.3507 (4)	0.5009 (4)	0.5990 (2)	0.0574 (9)	
C15	0.2522 (4)	0.4140 (3)	0.5020 (2)	0.0533 (8)	

C16	0.1750 (3)	0.4835 (3)	0.42821 (18)	0.0457 (7)
C22	0.1646 (3)	0.9275 (3)	0.19146 (16)	0.0429 (6)
C23	0.1824 (4)	1.0568 (3)	0.15275 (18)	0.0514 (8)
C24	0.3412 (4)	1.0737 (3)	0.10905 (19)	0.0629 (9)
C25	0.4390 (4)	0.9588 (4)	0.1136 (2)	0.0634 (10)
C26	0.0455 (5)	1.1637 (3)	0.1527 (3)	0.0800 (11)
H2A	-0.39392	0.41733	0.05015	0.1130*
H2B	-0.24825	0.41020	0.14997	0.1130*
H2C	-0.17792	0.40987	0.05240	0.1130*
H4A	0.25124	0.94454	0.38196	0.0552*
H4B	0.04343	0.93070	0.40277	0.0552*
H5	-0.08333	0.92575	0.24149	0.0520*
H13	0.43338	0.72114	0.68588	0.0688*
H16	0.11130	0.42108	0.36356	0.0549*
H24	0.37514	1.15693	0.07973	0.0755*
H25	0.54602	0.95296	0.08813	0.0761*
H26A	-0.01973	1.15300	0.20427	0.1200*
H26B	-0.05021	1.13543	0.08824	0.1200*
H26C	0.11838	1.27147	0.16557	0.1200*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cl2	0.0784 (5)	0.0659 (4)	0.0470 (4)	0.0100 (3)	0.0044 (3)	-0.0045 (3)
Cl4	0.0679 (5)	0.1559 (8)	0.0819 (5)	0.0599 (5)	0.0340 (4)	0.0827 (5)
S21	0.0645 (4)	0.0652 (4)	0.0544 (4)	0.0279 (3)	0.0223 (3)	0.0251 (3)
F5	0.0976 (14)	0.0656 (10)	0.1059 (14)	0.0393 (10)	0.0337 (11)	0.0495 (10)
O1	0.0727 (13)	0.0737 (12)	0.0585 (11)	0.0147 (10)	-0.0122 (9)	0.0292 (10)
N1	0.0460 (10)	0.0385 (9)	0.0402 (9)	0.0047 (8)	0.0017 (8)	0.0163 (7)
N2	0.0357 (9)	0.0400 (9)	0.0378 (9)	0.0061 (7)	0.0032 (7)	0.0146 (7)
C1	0.0470 (13)	0.0536 (13)	0.0429 (12)	0.0087 (10)	0.0013 (10)	0.0142 (10)
C2	0.082 (2)	0.0553 (15)	0.0583 (16)	0.0023 (14)	-0.0197 (14)	0.0040 (13)
C3	0.0335 (10)	0.0376 (10)	0.0371 (10)	0.0093 (8)	0.0117 (8)	0.0123 (8)
C4	0.0565 (14)	0.0401 (11)	0.0394 (11)	0.0083 (10)	0.0135 (10)	0.0083 (9)
C5	0.0493 (12)	0.0368 (10)	0.0445 (12)	0.0116 (9)	0.0088 (9)	0.0150 (9)
C11	0.0345 (10)	0.0487 (11)	0.0353 (10)	0.0117 (9)	0.0116 (8)	0.0147 (9)
C12	0.0371 (11)	0.0611 (14)	0.0386 (11)	0.0083 (10)	0.0095 (9)	0.0115 (10)
C13	0.0408 (12)	0.095 (2)	0.0397 (12)	0.0185 (13)	0.0095 (10)	0.0242 (13)
C14	0.0424 (12)	0.093 (2)	0.0593 (15)	0.0309 (13)	0.0232 (11)	0.0465 (14)
C15	0.0467 (13)	0.0635 (15)	0.0669 (16)	0.0231 (11)	0.0255 (11)	0.0354 (12)
C16	0.0435 (12)	0.0524 (12)	0.0468 (12)	0.0146 (10)	0.0147 (9)	0.0195 (10)
C22	0.0489 (12)	0.0388 (10)	0.0373 (10)	0.0064 (9)	0.0049 (9)	0.0133 (8)
C23	0.0632 (15)	0.0427 (12)	0.0436 (12)	0.0093 (10)	0.0059 (11)	0.0136 (10)
C24	0.0743 (18)	0.0605 (15)	0.0468 (14)	-0.0042 (13)	0.0134 (12)	0.0209 (12)
C25	0.0626 (17)	0.0799 (19)	0.0507 (14)	0.0115 (14)	0.0215 (12)	0.0215 (13)
C26	0.100 (2)	0.0523 (15)	0.085 (2)	0.0327 (16)	0.0071 (18)	0.0184 (15)

Geometric parameters (Å, °)

Cl2—C12	1.734 (3)	C14—C15	1.382 (4)
Cl4—C14	1.725 (3)	C15—C16	1.367 (4)
S21—C22	1.728 (2)	C22—C23	1.355 (4)
S21—C25	1.707 (3)	C23—C24	1.417 (4)
F5—C15	1.352 (3)	C23—C26	1.495 (4)
01—C1	1.219 (3)	C24—C25	1.349 (4)
N1—N2	1.382 (3)	C2—H2A	0.9600
N1—C1	1.360 (3)	C2—H2B	0.9600
N1—C5	1.476 (3)	C2—H2C	0.9600
N2—C3	1.293 (3)	C4—H4A	0.9700
C1—C2	1.503 (4)	C4—H4B	0.9700
C3—C4	1.511 (3)	С5—Н5	0.9800
C3—C11	1.475 (3)	C13—H13	0.9300
C4—C5	1.540 (3)	C16—H16	0.9300
C5—C22	1.517 (3)	C24—H24	0.9300
C11—C12	1.399 (3)	C25—H25	0.9300
C11—C16	1.397 (4)	C26—H26A	0.9600
C12—C13	1.399 (4)	C26—H26B	0.9600
C13—C14	1.365 (5)	C26—H26C	0.9600
Cl2…C4	3.064 (2)	C11C15 ⁱⁱ	3.391 (4)
Cl2…S21 ⁱ	3.6953 (10)	C14…C15 ⁱⁱⁱ	3.502 (4)
Cl4…N1 ⁱⁱ	3.488 (2)	C14…C16 ⁱⁱⁱ	3.514 (4)
Cl4…N2 ⁱⁱ	3.389 (2)	C15…C14 ⁱⁱⁱ	3.502 (4)
Cl4…C11 ⁱⁱⁱ	3.596 (2)	C15…C11 ⁱⁱ	3.391 (4)
Cl4…C16 ⁱⁱⁱ	3.524 (3)	C16····Cl4 ⁱⁱⁱ	3.524 (3)
Cl4…F5	2.917 (2)	C16…C14 ⁱⁱⁱ	3.514 (4)
Cl4…S21 ⁱⁱⁱ	3.4250 (13)	C16…C16 ⁱⁱ	3.600 (3)
Cl4…C1 ⁱⁱ	3.632 (3)	C22…O1	3.172 (3)
Cl2…H4A	2.8200	C24····O1 ^{vi}	3.408 (3)
Cl2···H4B	2.8400	C5…H26A	2.7500
Cl2…H4A ⁱ	3.0200	C24…H13 ⁱ	3.0000
Cl2…H4B ^{iv}	3.0600	C24…H25 ^x	3.0400
S21…N1	3.121 (2)	C24····H26B ^{vi}	3.0700
S21…C3	3.689 (2)	C25…H25 ^x	3.1000
S21…Cl2 ⁱ	3.6953 (10)	С26…Н5	2.7600
S21…Cl4 ⁱⁱⁱ	3.4250 (13)	H2A…O1 ^{viii}	2.5800
S21…H4A	3.1800	H2B…N2	2.4200
F5…Cl4	2.917 (2)	H4A…Cl2	2.8200
F5····C4 ^v	3.260 (3)	H4A…S21	3.1800
F5···H4B ^v	2.8200	H4A…Cl2 ⁱ	3.0200
O1…C22	3.172 (3)	H4B…Cl2	2.8400
O1…C24 ^{vi}	3.408 (3)	H4B…F5 ^{ix}	2.8200
O1…H5	2.6600	H4B…Cl2 ^{iv}	3.0600
O1…H25 ^{vii}	2.7900	Н5…О1	2.6600
O1…H2A ^{viii}	2.5800	H5…C26	2.7600

$01 \cdots H24^{v_i}$	2 6100	Н5…Н26А	2 1700
N1	3 121 (2)	$H13\cdots C24^{i}$	3,0000
$N1 \cdots C14^{ii}$	3.121(2) 3.488(2)	H16N2	2 4000
$N2Cl4^{ii}$	3 389 (2)	$H2401^{vi}$	2.4000
N2H2B	2 4200	$H_{25} = 01$	2.0100
N2112D	2.4200	H25C24x	2.7900
	2.4000	H25C25x	2 1000
$C_1 = C_1 $	3.032(3)		2,7500
	5.089 (2) 2.064 (2)	H26AC5	2.7500
	3.064 (2)		2.1/00
	3.260 (3)	H26B····C24 [™]	3.0700
C11····Cl4 ^m	3.596 (2)		
C22—S21—C25	91.98 (14)	C22—C23—C26	123.8 (3)
N2—N1—C1	123.08 (19)	C24—C23—C26	124.6 (3)
N2—N1—C5	112.89 (16)	C23—C24—C25	114.3 (3)
C1—N1—C5	123.97 (19)	S21-C25-C24	110.8(2)
N1-N2-C3	108.80(17)	C1 - C2 - H2A	109.00
01-C1-N1	118.9(2)	C1 - C2 - H2B	109.00
01-C1-C2	1235(2)	C1 - C2 - H2C	109.00
N1 - C1 - C2	125.5(2) 117.6(2)	$H_2 \Lambda C_2 H_2 B$	109.00
$N_{1} = C_{1} = C_{2}$ $N_{2} = C_{3} = C_{4}$	117.0(2) 113.05(18)	$H_2A = C_2 = H_2C$	110.00
$N_2 = C_3 = C_4$	117.69 (18)	$H_{2R} = C_2 = H_{2C}$	100.00
$C_4 = C_3 = C_{11}$	117.09(18) 120.25(10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111.00
C_{4}	129.23(19) 102.60(17)	$C_3 = C_4 = H_4 P_1$	111.00
C_{3} C_{4} C_{5} C_{4}	102.00(17) 101.26(16)	$C_5 = C_4 = \Pi_4 D$	111.00
NIC3C4	101.20(10) 110.08(19)	C_{5} C_{4} H_{4}	111.00
$NI = C_{22}$	110.98 (18)		111.00
C4 - C5 - C22	114.48 (19)	H4A—C4—H4B	109.00
	125.8 (2)	NI-C5-H5	110.00
C3-C11-C16	117.75 (19)	C4—C5—H5	110.00
C12—C11—C16	116.5 (2)	C22—C5—H5	110.00
Cl2—Cl2—Cl1	122.69 (19)	С12—С13—Н13	120.00
Cl2—C12—C13	115.80 (19)	C14—C13—H13	120.00
C11—C12—C13	121.5 (2)	C11—C16—H16	119.00
C12—C13—C14	120.5 (2)	C15—C16—H16	119.00
Cl4—C14—C13	121.7 (2)	C23—C24—H24	123.00
Cl4—C14—C15	120.0 (3)	C25—C24—H24	123.00
C13—C14—C15	118.3 (3)	S21—C25—H25	125.00
F5—C15—C14	119.0 (3)	С24—С25—Н25	125.00
F5—C15—C16	119.0 (2)	С23—С26—Н26А	110.00
C14—C15—C16	122.0 (3)	C23—C26—H26B	110.00
C11—C16—C15	121.2 (2)	С23—С26—Н26С	109.00
S21—C22—C5	119.58 (18)	H26A—C26—H26B	109.00
S21—C22—C23	111.36 (19)	H26A—C26—H26C	109.00
C5—C22—C23	129.0 (2)	H26B—C26—H26C	109.00
C22—C23—C24	111.6 (2)		
C25 S21 C22 C5	177 (0 (10)	C4 C5 C22 S21	((0, 0))
123 - 521 - 122 - 15	-1/1.00(19)	-122 - 521	00.8 (2)
C25—821—C22—C23	0.6 (2)	C4 - C5 - C22 - C23	-111.1(3)

C22 S21 C25 C24	-0.2(2)	C3 C11 C12 C12	24(3)
$C_{22} = 521 = C_{23} = C_{24}$	-170.7(2)	$C_{2} = C_{11} = C_{12} = C_{12}$	2.7(3) -178 4 (2)
CI = NI = N2 = C3	-1/0.7(2)	C_{3}	-178.4(2)
C_{3} N_{1} N_{2} C_{3}	0.0 (3)	C16—C11—C12—C12	-1/8.11 (18)
N2—N1—C1—O1	174.2 (2)	C16—C11—C12—C13	1.1 (3)
C5—N1—C1—O1	-2.8 (4)	C3-C11-C16-C15	179.5 (2)
N2—N1—C1—C2	-6.6 (4)	C12-C11-C16-C15	-0.1 (4)
C5—N1—C1—C2	176.4 (2)	Cl2—C12—C13—C14	178.2 (2)
N2—N1—C5—C4	-11.3 (3)	C11—C12—C13—C14	-1.0 (4)
C1—N1—C5—C4	166.0 (2)	C12-C13-C14-Cl4	178.5 (2)
N2—N1—C5—C22	110.7 (2)	C12-C13-C14-C15	0.0 (4)
C1—N1—C5—C22	-72.1 (3)	Cl4—C14—C15—F5	2.2 (4)
N1—N2—C3—C11	-179.1 (2)	Cl4—C14—C15—C16	-177.6 (2)
N1—N2—C3—C4	1.6 (3)	C13—C14—C15—F5	-179.3 (3)
N2—C3—C4—C5	-8.4 (3)	C13—C14—C15—C16	1.0 (4)
C4—C3—C11—C16	-173.1 (2)	F5-C15-C16-C11	179.3 (2)
N2-C3-C11-C12	-172.7 (2)	C14-C15-C16-C11	-1.0 (4)
N2-C3-C11-C16	7.8 (3)	S21—C22—C23—C24	-0.9 (3)
C11—C3—C4—C5	172.4 (2)	S21—C22—C23—C26	176.7 (2)
C4—C3—C11—C12	6.4 (4)	C5—C22—C23—C24	177.1 (2)
C3—C4—C5—N1	10.9 (2)	C5—C22—C23—C26	-5.3 (4)
C3—C4—C5—C22	-108.6 (2)	C22—C23—C24—C25	0.8 (3)
N1-C5-C22-S21	-47.0 (2)	C26—C23—C24—C25	-176.8(3)
N1—C5—C22—C23	135.1 (2)	C23—C24—C25—S21	-0.3 (3)

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*, -*y*+2, -*z*+1; (v) *x*, *y*-1, *z*; (vi) -*x*, -*y*+2, -*z*; (vii) *x*-1, *y*, *z*; (viii) -*x*-1, -*y*+1, -*z*; (ix) *x*, *y*+1, *z*; (x) -*x*+1, -*y*+2, -*z*; (xi) *x*+1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2A···O1 ^{viii}	0.96	2.58	3.533 (4)	171

Symmetry code: (viii) -x-1, -y+1, -z.