metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(2,2′-bi­pyridine-κ2N:N′)cobalt(III) trichloride tetra­hydrate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn

(Received 14 October 2008; accepted 16 November 2008; online 22 November 2008)

The title compound, [Co(C10H8N2)3]Cl3·4H2O, contains discrete [Co(bpy)3]3+ cations (bpy is 2,2′-bipyridine), Cl anions and water mol­ecules. The [Co(bpy)3]3+ complex cation exhibits C2 symmetry with the twofold axis through the central Co atom and bis­ecting one bpy ligand and one of the Cl anions. The four solvent water mol­ecules and the remaining two Cl anions lie on a mirror plane. Hydrogen-bond inter­actions define a two-dimensional layer structure parallel to (100), which consists of seven-membered [Cl2(H2O)5], eight-membered [Cl4(H2O)4] and ten-membered [Cl2(H2O)8] rings.

Related literature

For general background, see: Liu et al. (1996[Liu, K., Brown, M. G., Carter, C., Saykally, R. J., Gregory, J. K. & Clary, D. C. (1996). Nature (London), 381, 501-503.]); Nauta & Miller (2000[Nauta, K. & Miller, R. E. (2000). Science, 287, 293-295.]); Ludwig (2001[Ludwig, R. (2001). Angew. Chem. Int. Ed. 40, 1808-1827.]); Saha & Bernal (2005[Saha, M. K. & Bernal, I. (2005). Inorg. Chem. Commun. 8, 871-873.]); Reger et al. (2006[Reger, D. L., Semeniuc, R. F., Pettinari, C., Luna-Giles, F. & Smith, M. D. (2006). Cryst. Growth Des. 6, 1068-1070.]); Li et al. (2007[Li, P., Qiu, Y. C., Liu, J. Q., Ling, Y., Cai, Y. P. & Yue, S. T. (2007). Inorg. Chem. Commun. 10, 705-708.]); Mir & Vittal (2007[Mir, M. H. & Vittal, J. J. (2007). Angew. Chem. Int. Ed. 46, 5925-5928.]). For related structures, see: Hernández-Molina et al. (1998[Hernández-Molina, M., Lloret, F., Ruiz-Pérez, C. & Julve, M. (1998). Inorg. Chem. 37, 4131-4135.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H8N2)3]Cl3·4H2O

  • Mr = 705.90

  • Orthorhombic, C m c a

  • a = 20.171 (4) Å

  • b = 23.170 (5) Å

  • c = 13.316 (3) Å

  • V = 6223 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 295 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.929

  • 3430 measured reflections

  • 2824 independent reflections

  • 1980 reflections with I > 2σ(I)

  • Rint = 0.049

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.162

  • S = 1.03

  • 2824 reflections

  • 225 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W2⋯O2 0.85 (4) 2.04 (5) 2.885 (9) 176 (9)
O1—H1W1⋯Cl1 0.83 (4) 2.30 (4) 3.127 (7) 180 (9)
O2—H2W1⋯Cl1i 0.84 (4) 2.48 (4) 3.317 (7) 175 (6)
O2—H2W2⋯Cl2 0.84 (3) 2.33 (3) 3.165 (5) 173 (7)
O3—H3W1⋯Cl1ii 0.85 (6) 2.33 (6) 3.161 (5) 166 (6)
O3—H3W2⋯Cl2iii 0.84 (4) 2.27 (5) 3.095 (5) 170 (7)
O4—H4W1⋯O1 0.79 (5) 2.06 (5) 2.841 (8) 169 (5)
O4—H4W2⋯O3 0.81 (3) 2.00 (3) 2.795 (8) 168 (7)
Symmetry codes: (i) [-x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x, -y+1, -z+1; (iv) [-x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Due to the central role that water plays in biological and chemical processes, research on its structure, properties and functions has attracted the scientist's attention (Liu, et al., 1996; Nauta & Miller, 2000; Ludwig, 2001; Mir & Vittal, 2007). However, there are only a few reports focused on the experimental identificaion and analysis of hydrogen-bond networks between water of crystallization and chloride counterions in crystalline materials. As a few examples we can mention [cis-α-(trine)CoCl2]Cl.3H2O (Saha & Bernal, 2005) where a two-dimensional layered structure containing [Cl2(H2O)4] six-membered rings build up. In the crystal structure of {p-C6H4[CH2OCH2C(pz)3]2[Ru(p-cymene)]2}Cl4.14H2O two-dimensional layers built from four-membered [Cl(H2O)3], five-membered [Cl(H2O)4], six-membered [Cl(H2O)5] and seven-membered [Cl3(H2O)4] rings formed through hydrogen bond self-assembly (Reger, et al., 2006). A hybrid water-chloride structure of 14 water molecules and 4 Cl- anions connected into layers is formed in the crystal structure of an europium complex [Eu3(BDC)3(phen)3Cl(H2O)6]Cl2.4H2O (Li, et al., 2007). The references suggest that a great variety of mixed water-chloride supramolecular self-assemblies is possible. Herein, we describe a structure of a cobalt(III) complex containing discrete tris(2,2'-bipyridine)cobalt(III) cations and infinite layers of water and chloride anions, and where seven-membered (Cl2(H2O)5), eight-membered (Cl4(H2O)4) and ten-membered (Cl2(H2O)8) rings can be found.

The crystal structure of the title compound is composed of [Co(bpy)3]3+ complex cations, Cl- anions and crystal H2O molecules (Fig. 1). Within the trivalent complex cations, the Co atoms are each surrounded by six N atoms of three chelating bpy ligands to complete a distorted octahedral coordination with d(Co—N) = 1,928 (3)–1.939 (3) Å, the cis and trans N—Co—N bond angles in the range 83.50 (19)–93.82 (14) and 175.23 (14)–176.38 (19)°, respectively. Such distances are similar to those found in other related structures (Hernández-Molina, et al., 1998). The complex cation exhibits C2 symmetry with the twofold axis through the central Co atom and bisecting the C5—C5i bond of one bpy ligand (i = -x + 1/2, y, -z + 3/2), as well as one of the Cl- anions (Cl3). Through a C—H···Cl weak hydrogen bond the [Co(phen)3]3+ moieties are interlink into one-dimensional chains along the [001] direction (Fig.2). There are no π-π stacking interactions in the chains.

The most starling feature of the solid-state structure of 1 is the hydrogen-bonding interactions of the four water molecules and the remaining two Cl- anions (Cl1 and Cl2), which lay on a mirror plane. The four crystal water molecules (O1, O2, O3,and O4) locate at the crystallographic 8f position and through intermolecular hydrogen bonds determine a linear water tetramer (H2O)4. The O···O distances span the range 2.795 (8)–2.885 (9) Å. Interestingly, such tetrameric water groups are further hydrogen-bond-interacting with the Cl- anions to complete a two-dimensional water-chloride framework parallel to (100). As Shown in Fig. 3, the two-dimensional layers are composed by seven- (five water molecules and two Cl- anions), eight- (four water molecules and four Cl- anions) and ten-membered (eight water molecules and two Cl- anions) rings through O—H···O and O—H···Cl interactions (Table 1). The O···Cl distances range from 3.095 (5) to 3.317 (7) Å and O—H···Cl angles span the range 166 (6) to 180 (9)°. The water-chloride layer can be viewed as building blocks, which are pillared by [Co(bpy)3]3+ spacers to produce an infinite three-dimensional supramolecular edifice. In this sense, the layer is different from already reported water clusters and other morphologies, which are situated within the host cavities or channels generated by organic and inorganic moieties (Fig. 4).

Related literature top

For general background, see: Liu et al. (1996); Nauta & Miller (2000); Ludwig (2001); Saha & Bernal (2005); Reger et al. (2006); Li et al. (2007); Mir & Vittal (2007). For related structures, see: Hernández-Molina et al. (1998).

Experimental top

Addition of 10 ml CH3OH containing 0.162 g (1.04 mmol) 2,2'-bipyridine (bpy) to an aqueous solution of 0.238 g (1.00 mmol) CoCl2.6H2O in 10 ml H2O gave a yellow solution, then dropwise added 3 ml 30% H2O2 solution to the mixture, stirred for ca half an hour. The resulting light-yellow solution (PH = 6.48) was allowed to stand at room temperature. After 8 days, a small amount of yellow block crystals had grown.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.5 Ueq(O).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 40% probability level. [Symmetry code: (i) -x + 1/2, y, -z + 3/2]
[Figure 2] Fig. 2. The one-dimensional chain of the [Co(phen)3]3+ cations along with [001] direction.
[Figure 3] Fig. 3. The two-dimensional water-chloride framework parallel to (100). [Symmetry codes: (ii) -x, -y + 3/2, z - 1/2; (iii) -x, -y + 3/2, z + 1/2; (iv): x, -y + 1, -z + 1]
[Figure 4] Fig. 4. Packing diagram of the supramolecular edifice viewed along the crystallographic c axis.
Tris(2,2'-bipyridine-κ2N:N')cobalt(III) trichloride tetrahydrate top
Crystal data top
[Co(C10H8N2)3]Cl3·4H2OF(000) = 2912
Mr = 705.90Dx = 1.507 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 25 reflections
a = 20.171 (4) Åθ = 5.0–12.5°
b = 23.170 (5) ŵ = 0.86 mm1
c = 13.316 (3) ÅT = 295 K
V = 6223 (2) Å3Block, yellow
Z = 80.12 × 0.10 × 0.08 mm
Data collection top
Bruker P4
diffractometer
1980 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
θ/2θ scansh = 231
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 127
Tmin = 0.905, Tmax = 0.929l = 115
3430 measured reflections3 standard reflections every 97 reflections
2824 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1023P)2]
where P = (Fo2 + 2Fc2)/3
2824 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 1.01 e Å3
12 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Co(C10H8N2)3]Cl3·4H2OV = 6223 (2) Å3
Mr = 705.90Z = 8
Orthorhombic, CmcaMo Kα radiation
a = 20.171 (4) ŵ = 0.86 mm1
b = 23.170 (5) ÅT = 295 K
c = 13.316 (3) Å0.12 × 0.10 × 0.08 mm
Data collection top
Bruker P4
diffractometer
1980 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.049
Tmin = 0.905, Tmax = 0.9293 standard reflections every 97 reflections
3430 measured reflections intensity decay: none
2824 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05612 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.01 e Å3
2824 reflectionsΔρmin = 0.66 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.25000.40805 (3)0.75000.0230 (2)
Cl10.00000.80958 (8)0.57842 (16)0.0580 (5)
Cl20.00000.52160 (8)0.83302 (13)0.0487 (5)
Cl30.25000.71245 (7)0.75000.0508 (5)
N10.19627 (15)0.47048 (14)0.6973 (2)0.0254 (7)
N20.19583 (15)0.34934 (14)0.6871 (3)0.0278 (8)
N30.29820 (15)0.40542 (14)0.6251 (2)0.0267 (8)
C10.13885 (18)0.46643 (19)0.6478 (3)0.0328 (10)
H1A0.12270.43000.63160.039*
C20.1025 (2)0.51433 (19)0.6198 (3)0.0367 (11)
H2A0.06280.51000.58520.044*
C30.1256 (2)0.5687 (2)0.6436 (3)0.0382 (11)
H3A0.10160.60140.62570.046*
C40.1849 (2)0.57363 (18)0.6944 (3)0.0370 (11)
H4A0.20190.60980.71020.044*
C50.21896 (19)0.52388 (17)0.7216 (3)0.0267 (9)
C60.1430 (2)0.32196 (18)0.7267 (4)0.0368 (11)
H6A0.13160.32860.79340.044*
C70.1052 (2)0.28387 (19)0.6695 (4)0.0453 (12)
H7A0.06950.26460.69830.054*
C80.1204 (2)0.27501 (19)0.5722 (4)0.0486 (13)
H8A0.09390.25120.53300.058*
C90.1750 (2)0.30103 (18)0.5309 (4)0.0407 (11)
H9A0.18670.29400.46450.049*
C100.2128 (2)0.33844 (17)0.5904 (3)0.0300 (9)
C110.27255 (19)0.36858 (17)0.5557 (3)0.0284 (9)
C120.3015 (2)0.3604 (2)0.4646 (3)0.0410 (11)
H12A0.28240.33580.41760.049*
C130.3601 (2)0.3892 (2)0.4427 (4)0.0452 (12)
H13A0.38130.38350.38150.054*
C140.3861 (2)0.4261 (2)0.5121 (3)0.0397 (11)
H14A0.42510.44590.49840.048*
C150.3545 (2)0.43360 (18)0.6017 (3)0.0329 (10)
H15A0.37250.45910.64820.039*
O10.00000.6769 (3)0.6215 (5)0.092 (2)
H1W10.00000.7122 (17)0.610 (8)0.138*
H1W20.00000.673 (5)0.685 (3)0.138*
O20.00000.6582 (2)0.8357 (5)0.0643 (15)
H2W10.00000.664 (3)0.898 (3)0.096*
H2W20.00000.6220 (14)0.829 (6)0.096*
O30.00000.6013 (2)0.2581 (4)0.0701 (17)
H3W10.00000.620 (3)0.203 (4)0.105*
H3W20.00000.5664 (14)0.241 (6)0.105*
O40.00000.5921 (2)0.4674 (4)0.0566 (13)
H4W10.00000.619 (2)0.504 (4)0.085*
H4W20.00000.600 (3)0.408 (2)0.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0243 (4)0.0150 (4)0.0297 (4)0.0000.0016 (3)0.000
Cl10.0727 (12)0.0362 (10)0.0651 (12)0.0000.0000.0075 (9)
Cl20.0512 (9)0.0463 (10)0.0486 (10)0.0000.0000.0087 (8)
Cl30.0791 (12)0.0197 (8)0.0537 (10)0.0000.0244 (9)0.000
N10.0284 (17)0.0208 (17)0.0269 (17)0.0004 (14)0.0009 (14)0.0003 (15)
N20.0262 (17)0.0184 (17)0.039 (2)0.0013 (14)0.0021 (14)0.0005 (15)
N30.0277 (17)0.0194 (16)0.0331 (18)0.0035 (14)0.0010 (14)0.0009 (15)
C10.026 (2)0.030 (2)0.042 (2)0.0006 (18)0.0036 (19)0.002 (2)
C20.031 (2)0.043 (3)0.037 (2)0.0062 (19)0.0053 (19)0.007 (2)
C30.037 (2)0.032 (2)0.046 (3)0.0104 (19)0.002 (2)0.007 (2)
C40.043 (3)0.016 (2)0.052 (3)0.0019 (18)0.000 (2)0.003 (2)
C50.0297 (19)0.022 (2)0.028 (2)0.0002 (18)0.0029 (17)0.0022 (17)
C60.034 (2)0.022 (2)0.054 (3)0.0020 (19)0.001 (2)0.001 (2)
C70.034 (2)0.026 (2)0.076 (4)0.0095 (19)0.005 (2)0.002 (2)
C80.045 (3)0.029 (3)0.072 (4)0.005 (2)0.018 (3)0.015 (3)
C90.044 (3)0.028 (2)0.051 (3)0.000 (2)0.008 (2)0.012 (2)
C100.031 (2)0.022 (2)0.038 (2)0.0031 (17)0.0054 (19)0.0041 (19)
C110.034 (2)0.021 (2)0.030 (2)0.0027 (17)0.0067 (18)0.0040 (18)
C120.049 (3)0.037 (2)0.037 (3)0.007 (2)0.005 (2)0.006 (2)
C130.044 (3)0.056 (3)0.036 (3)0.014 (2)0.008 (2)0.003 (2)
C140.038 (2)0.037 (2)0.044 (3)0.000 (2)0.006 (2)0.007 (2)
C150.033 (2)0.027 (2)0.040 (3)0.0023 (18)0.0043 (19)0.000 (2)
O10.168 (7)0.043 (3)0.064 (4)0.0000.0000.000 (3)
O20.069 (3)0.053 (3)0.071 (4)0.0000.0000.016 (3)
O30.112 (5)0.038 (3)0.060 (4)0.0000.0000.004 (3)
O40.078 (3)0.043 (3)0.048 (3)0.0000.0000.006 (3)
Geometric parameters (Å, º) top
Co1—N3i1.928 (3)C7—C81.347 (7)
Co1—N31.928 (3)C7—H7A0.9300
Co1—N2i1.935 (3)C8—C91.370 (7)
Co1—N21.935 (3)C8—H8A0.9300
Co1—N11.939 (3)C9—C101.401 (6)
Co1—N1i1.939 (3)C9—H9A0.9300
N1—C11.336 (5)C10—C111.467 (6)
N1—C51.358 (5)C11—C121.360 (6)
N2—C61.348 (5)C12—C131.388 (7)
N2—C101.355 (5)C12—H12A0.9300
N3—C151.347 (5)C13—C141.363 (7)
N3—C111.360 (5)C13—H13A0.9300
C1—C21.381 (6)C14—C151.363 (6)
C1—H1A0.9300C14—H14A0.9300
C2—C31.379 (6)C15—H15A0.9300
C2—H2A0.9300O1—H1W10.83 (3)
C3—C41.379 (6)O1—H1W20.85 (3)
C3—H3A0.9300O2—H2W10.85 (3)
C4—C51.390 (6)O2—H2W20.84 (3)
C4—H4A0.9300O3—H3W10.85 (3)
C5—C5i1.462 (8)O3—H3W20.84 (3)
C6—C71.394 (6)O4—H4W10.80 (3)
C6—H6A0.9300O4—H4W20.81 (3)
N3i—Co1—N3176.38 (19)N1—C5—C5i114.3 (2)
N3i—Co1—N2i83.63 (14)C4—C5—C5i123.9 (3)
N3—Co1—N2i93.82 (14)N2—C6—C7121.1 (4)
N3i—Co1—N293.82 (14)N2—C6—H6A119.4
N3—Co1—N283.63 (14)C7—C6—H6A119.4
N2i—Co1—N290.69 (19)C8—C7—C6119.8 (4)
N3i—Co1—N193.09 (13)C8—C7—H7A120.1
N3—Co1—N189.61 (13)C6—C7—H7A120.1
N2i—Co1—N1175.23 (14)C7—C8—C9120.2 (4)
N2—Co1—N192.99 (13)C7—C8—H8A119.9
N3i—Co1—N1i89.61 (13)C9—C8—H8A119.9
N3—Co1—N1i93.09 (13)C8—C9—C10118.9 (5)
N2i—Co1—N1i92.99 (13)C8—C9—H9A120.6
N2—Co1—N1i175.23 (14)C10—C9—H9A120.6
N1—Co1—N1i83.50 (19)N2—C10—C9121.0 (4)
C1—N1—C5118.3 (3)N2—C10—C11114.7 (3)
C1—N1—Co1127.6 (3)C9—C10—C11124.3 (4)
C5—N1—Co1113.9 (2)N3—C11—C12122.0 (4)
C6—N2—C10119.0 (4)N3—C11—C10113.4 (3)
C6—N2—Co1127.4 (3)C12—C11—C10124.6 (4)
C10—N2—Co1113.5 (3)C11—C12—C13119.1 (4)
C15—N3—C11117.9 (4)C11—C12—H12A120.5
C15—N3—Co1127.6 (3)C13—C12—H12A120.5
C11—N3—Co1114.5 (3)C14—C13—C12119.1 (4)
N1—C1—C2122.5 (4)C14—C13—H13A120.5
N1—C1—H1A118.8C12—C13—H13A120.5
C2—C1—H1A118.8C13—C14—C15119.6 (4)
C3—C2—C1119.5 (4)C13—C14—H14A120.2
C3—C2—H2A120.3C15—C14—H14A120.2
C1—C2—H2A120.3N3—C15—C14122.3 (4)
C2—C3—C4118.8 (4)N3—C15—H15A118.9
C2—C3—H3A120.6C14—C15—H15A118.9
C4—C3—H3A120.6H1W1—O1—H1W2107 (7)
C3—C4—C5119.2 (4)H2W1—O2—H2W2106 (5)
C3—C4—H4A120.4H3W1—O3—H3W2106 (5)
C5—C4—H4A120.4H4W1—O4—H4W2114 (5)
N1—C5—C4121.8 (4)
Symmetry code: (i) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W2···O20.85 (4)2.04 (5)2.885 (9)176 (9)
O1—H1W1···Cl10.83 (4)2.30 (4)3.127 (7)180 (9)
O2—H2W1···Cl1ii0.84 (4)2.48 (4)3.317 (7)175 (6)
O2—H2W2···Cl20.84 (3)2.33 (3)3.165 (5)173 (7)
O3—H3W1···Cl1iii0.85 (6)2.33 (6)3.161 (5)166 (6)
O3—H3W2···Cl2iv0.84 (4)2.27 (5)3.095 (5)170 (7)
O4—H4W1···O10.79 (5)2.06 (5)2.841 (8)169 (5)
O4—H4W2···O30.81 (3)2.00 (3)2.795 (8)168 (7)
C1—H1A···N20.932.492.993 (5)114
C4—H4A···Cl30.932.623.552 (4)179
C6—H6A···N3i0.932.523.007 (6)113
C8—H8A···Cl1iv0.932.793.710 (5)172
C12—H12A···Cl3v0.932.583.477 (4)162
C14—H14A···Cl2v0.932.773.526 (4)139
C15—H15A···N1i0.932.492.991 (5)114
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+1, z+1; (v) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C10H8N2)3]Cl3·4H2O
Mr705.90
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)295
a, b, c (Å)20.171 (4), 23.170 (5), 13.316 (3)
V3)6223 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.905, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
3430, 2824, 1980
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.162, 1.03
No. of reflections2824
No. of parameters225
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.01, 0.66

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W2···O20.85 (4)2.04 (5)2.885 (9)176 (9)
O1—H1W1···Cl10.83 (4)2.30 (4)3.127 (7)180 (9)
O2—H2W1···Cl1i0.84 (4)2.48 (4)3.317 (7)175 (6)
O2—H2W2···Cl20.84 (3)2.33 (3)3.165 (5)173 (7)
O3—H3W1···Cl1ii0.85 (6)2.33 (6)3.161 (5)166 (6)
O3—H3W2···Cl2iii0.84 (4)2.27 (5)3.095 (5)170 (7)
O4—H4W1···O10.79 (5)2.06 (5)2.841 (8)169 (5)
O4—H4W2···O30.81 (3)2.00 (3)2.795 (8)168 (7)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+1, z+1.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University, the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061), and the Newer Training Program Foundation for Talent of the Science and Technology Department of Zhejiang Province (grant No. 2007R40G2070020).

References

First citationHernández-Molina, M., Lloret, F., Ruiz-Pérez, C. & Julve, M. (1998). Inorg. Chem. 37, 4131–4135.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, P., Qiu, Y. C., Liu, J. Q., Ling, Y., Cai, Y. P. & Yue, S. T. (2007). Inorg. Chem. Commun. 10, 705–708.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, K., Brown, M. G., Carter, C., Saykally, R. J., Gregory, J. K. & Clary, D. C. (1996). Nature (London), 381, 501–503.  CrossRef CAS Web of Science Google Scholar
First citationLudwig, R. (2001). Angew. Chem. Int. Ed. 40, 1808–1827.  CrossRef CAS Google Scholar
First citationMir, M. H. & Vittal, J. J. (2007). Angew. Chem. Int. Ed. 46, 5925–5928.  Web of Science CSD CrossRef CAS Google Scholar
First citationNauta, K. & Miller, R. E. (2000). Science, 287, 293–295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReger, D. L., Semeniuc, R. F., Pettinari, C., Luna-Giles, F. & Smith, M. D. (2006). Cryst. Growth Des. 6, 1068–1070.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaha, M. K. & Bernal, I. (2005). Inorg. Chem. Commun. 8, 871–873.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds