metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1618-m1619

catena-Poly[[[N′-(4-cyano­benzyl­­idene)nicotinohydrazide)silver(I)]-μ-N′-(4-cyano­benzyl­­idene)nicotinohydrazide] hexa­fluorido­phosphate]

aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: niu_cy2000@yahoo.com.cn

(Received 11 October 2008; accepted 20 November 2008; online 26 November 2008)

In the title polymer, {[Ag(C14H10N4O)2]PF6}n, each AgI ion is coordinated by two N atoms from two pyridyl rings of independent N′-(4-cyano­benzyl­idene)nicotinohydrazide ligands, and one N atom from one carbonitrile group of a symmetry-related ligand in a distorted T-shaped geometry. The ligands exhibit two modes of coordination. One acts as a bridge connecting Ag atoms to form one-dimensional chains along [[\overline{1}]01]. The other acts as a terminal monodentate ligand, coordinating to Ag through its pyridyl N atom. Two neighbouring anti­parallel chains in the crystal are connected through N—H⋯O hydrogen bonds. Other adjacent chains are packed via Ag⋯O inter­actions, with Ag⋯O separations of 2.876 (2) Å. In addition, PF6 counter-anions inter­act with the hydrazone groups through N—H⋯F hydrogen bonds. The PF6 anion is disordered over two sites, with occupancies of 0.773 (8) and 0.227 (8).

Related literature

For background on fluorescent silver coordination complexes, see: Dong et al. (2004[Dong, Y.-B., Zhao, X., Huang, R.-Q., Smith, M. D. & zur Loye, H.-C. (2004). Inorg. Chem. 43, 5603-5612.]); Sumby & Hardie (2005[Sumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395-6399.]). For related structures, see: Niu et al. (2007[Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Li, Z.-J. & Hou, H.-W. (2007). Dalton Trans. pp. 5710-5713.], 2008[Niu, C.-Y., Zheng, X.-F., Bai, L.-L., Wu, X.-L. & Kou, C.-H. (2008). Acta Cryst. C64, m305-m307.]); Vatsadze et al. (2004[Vatsadze, S. Z., Kovalkina, M. A., Sviridenkova, N. V., Zyk, N. V., Churakov, A. V., Kuz'mina, L. G. & Howard, J. A. K. (2004). CrystEngComm, 6, 112-115.]); Zheng et al. (2003[Zheng, Y., Du, M., Li, J.-R., Zhang, R.-H. & Bu, X.-H. (2003). Dalton Trans. pp. 1509-1514.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C14H10N4O)2]PF6

  • Mr = 753.36

  • Monoclinic, C 2/c

  • a = 22.3252 (17) Å

  • b = 13.6939 (11) Å

  • c = 19.8523 (16) Å

  • β = 99.9770 (10)°

  • V = 5977.4 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 173 (2) K

  • 0.44 × 0.32 × 0.29 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.718, Tmax = 0.799

  • 19020 measured reflections

  • 6823 independent reflections

  • 5105 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.03

  • 6823 reflections

  • 460 parameters

  • 96 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N1 2.172 (2)
Ag1—N2 2.199 (2)
Ag1—N8i 2.456 (3)
N1—Ag1—N2 156.22 (8)
N1—Ag1—N8i 109.53 (9)
N2—Ag1—N8i 92.22 (9)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H28⋯O2ii 0.865 (18) 2.15 (2) 2.990 (3) 162 (3)
N6—H29⋯F5 0.853 (18) 2.21 (2) 3.001 (4) 155 (3)
Symmetry code: (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97 and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridyl organic ligands with carbonitrile groups can be used to construct silver coordination complexes with fascinating structures and good fluorescent properties (Sumby & Hardie, 2005; Dong et al., 2004). We also synthesized one-dimensional and two-dimensional silver coordination polymers using this kind of ligands (Niu et al., 2007, 2008). Herein, a one-dimensional silver coordination polymer constructed with a new bridging ligand of this type, 4-cyanobenzylidene nicotinohydrazide, is reported.

In the title compound, (I), the central AgI ion is coordinated by two N atoms from two pyridyl rings of two different ligands (N1, N2) and one N atom from one carbonitrile group of another ligand [N8i, symmetry code: (i) x - 1/2, -y + 3/2, z + 1/2], forming a slightly distorted T-shaped coordination environment (Fig. 1). The N1—Ag1—N2 bond angle is 156.22 (8)°, indicating these three atoms are not exactly in one line. Bond angles N1—Ag1—N8i and N2—Ag1—N8i are larger than 90° (Table 1). The Ag—N bond distances for pyridyl rings are in the range 2.172 (2)–2.199 (2) Å, which is smaller than N—Ag bond distance for the carbonitrile group (Table 1).

One 4-cyanobenzylidene nicotinohydrazide molecule acts as a µ2-bridging ligand, by coordinating pyridyl and carbonitrile N atoms. Each bridging ligand connects two silver atoms together by one pyridyl N atom (N1) and one carbonitrile N atom (N8) to form a one-dimensional chain along the [-1 0 1] direction. The separation between two neighbouring Ag atoms in one chain is about 16 Å. Meanwhile, the other independent ligand is acting as a terminal ligand, being coordinated to Ag only through a pyridyl N atom. Two terminal ligands connected to two adjacent Ag atoms in one chain are located at the opposite positions away from the chain (Fig. 2).

There are hydrogen bonds between uncoordinating groups, including pyridyl rings of terminal ligands and all hydrazone groups, as well as other groups like counteranions. On one hand, counteranions PF6- interact with the ligands in the polymer through N—H···F hydrogen bonds (Table 2). Four F atoms (F1 to F4) of the PF6- anion are disordered over two sites, with occupancies 0.773 (8) and 0.227 (8). On the other hand, there are also N—H···O hydrogen bonds between two neighbouring antiparallel chains in the crystal (Fig. 3). In addition to these intermolecular contacts, there are weak Ag···O interactions between one O atom (O1) of the terminal ligand and one Ag atom in the neighbouring chain, with Ag···O separations of 2.876 (2) Å. These noncovalent interactions have large contributions to the supramolecular three-dimensional framework.

One-dimensional AgI coordination polymers with T-shaped coordination geometry were previously described in a few compounds: {[Ag(2,6-di(3-pyridylmethylidene) cyclohexanone)](NO3)}n (Vatsadze et al., 2004) and {[Ag(2,2'-(methylenebis(thio)) bis(pyrimidine))](NO3)}n (Zheng et al., 2003). The N—Ag—N bond angles in these two compounds deviate from 180° (ca. 158 and 131°, respectively), which are close to that observed in (I).

Related literature top

For background on fluorescent silver coordination complexes, see: Dong et al. (2004); Sumby & Hardie (2005). For related structures, see: Niu et al. (2007, 2008); Vatsadze et al. (2004); Zheng et al. (2003).

Experimental top

A solution of AgPF6 (0.025 g, 0.1 mmol) in CH3OH (10 ml) was carefully layered on a CH3OH/CHCl3 solution (5 ml/10 ml) of 4-cyanobenzylidene nicotinohydrazide (0.025 g, 0.1 mmol) in a straight glass tube. About ten days later, colourless single crystals suitable for X-ray analysis were obtained (yield: ca. 50%). Analysis, calculated for C28H20AgN8O2F6P: C 44.64, H 2.68, N 14.87%; found: C 44.79, H 2.69, N 14.99%.

Refinement top

C-bound H atoms were placed in calculated positions and refined using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The N-bound H atoms were first introduced in calculated positions, and then their positions and displacement parameters were refined with the N—H bond lengths restrained to 0.88 (2) Å. Four F atoms (F1/F2/F3/F4) of the hexafluorophosphate anion are disordered over two positions (F1'/F2'/F3'/F4'), and all P—F bond lengths were restrained to a target value of 1.58 (2) Å. Displacement parameters for disordered F atoms were also subjected to restraints. The final difference map had a highest peak at 0.88 Å from Ag1 and a deepest hole at 0.71 Å from Ag1, but was otherwise featureless.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the AgI coordination environment in the polymeric structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii [Symmetry code: (i) x - 1/2, -y + 3/2, z + 1/2].
[Figure 2] Fig. 2. A ball and stick diagram showing the one-dimensional chain. All counteranions and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A diagram showing the intermolecular hydrogen bonds, indicated by dashed lines.
catena-Poly[[[N'-(4-cyanobenzylidene)nicotinohydrazide)silver(I)]-µ- N'-(4-cyanobenzylidene)nicotinohydrazide] hexafluorophosphate] top
Crystal data top
[Ag(C14H10N4O)2]PF6F(000) = 3008
Mr = 753.36Dx = 1.674 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5745 reflections
a = 22.3252 (17) Åθ = 2.1–27.5°
b = 13.6939 (11) ŵ = 0.81 mm1
c = 19.8523 (16) ÅT = 173 K
β = 99.977 (1)°Prism, colourless
V = 5977.4 (8) Å30.44 × 0.32 × 0.29 mm
Z = 8
Data collection top
Siemens SMART CCD area-detector
diffractometer
6823 independent reflections
Radiation source: fine-focus sealed tube5105 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 2825
Tmin = 0.718, Tmax = 0.800k = 1617
19020 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0457P)2 + 5.9377P]
where P = (Fo2 + 2Fc2)/3
6823 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 0.92 e Å3
96 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Ag(C14H10N4O)2]PF6V = 5977.4 (8) Å3
Mr = 753.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.3252 (17) ŵ = 0.81 mm1
b = 13.6939 (11) ÅT = 173 K
c = 19.8523 (16) Å0.44 × 0.32 × 0.29 mm
β = 99.977 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
6823 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
5105 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.800Rint = 0.022
19020 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03796 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.92 e Å3
6823 reflectionsΔρmin = 0.67 e Å3
460 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N80.61351 (13)0.7668 (2)0.23514 (14)0.0680 (8)
C280.57801 (14)0.7655 (3)0.20064 (15)0.0538 (7)
C250.53188 (13)0.7592 (2)0.15834 (14)0.0478 (7)
C240.50609 (14)0.6686 (2)0.14987 (15)0.0531 (7)
H240.51840.61280.17240.064*
C260.51433 (15)0.8411 (3)0.12646 (17)0.0601 (8)
H260.53150.90310.13300.072*
C270.47114 (15)0.8310 (2)0.08462 (18)0.0601 (8)
H270.45920.88680.06180.072*
C230.46282 (14)0.6602 (2)0.10881 (15)0.0510 (7)
H230.44490.59850.10320.061*
C220.44513 (13)0.7418 (2)0.07544 (14)0.0477 (7)
C210.40138 (14)0.7334 (2)0.02860 (15)0.0520 (7)
H210.39600.78640.00060.062*
N70.37061 (11)0.6556 (2)0.02684 (12)0.0494 (6)
N60.33253 (11)0.6554 (2)0.02109 (12)0.0486 (6)
Ag10.182725 (12)0.812121 (16)0.197931 (13)0.05723 (10)
C120.44862 (16)1.2299 (3)0.09411 (17)0.0643 (9)
H120.46991.19670.12480.077*
C190.24057 (13)0.66761 (18)0.10608 (13)0.0401 (6)
H190.25090.72700.08620.048*
C150.19185 (13)0.5876 (2)0.18284 (14)0.0429 (6)
H150.16730.58970.21740.052*
C60.24333 (13)1.19804 (19)0.14358 (14)0.0416 (6)
C180.26109 (12)0.58116 (18)0.08291 (12)0.0367 (5)
C90.38638 (14)1.3271 (2)0.00520 (16)0.0532 (7)
H90.36511.36080.02530.064*
C70.33364 (14)1.1743 (2)0.01789 (15)0.0502 (7)
H70.32561.10730.00760.060*
C40.20356 (12)1.13009 (19)0.17502 (13)0.0380 (6)
C170.24587 (13)0.49446 (19)0.11196 (14)0.0449 (6)
H170.25940.43360.09710.054*
C160.21082 (14)0.4979 (2)0.16270 (14)0.0486 (7)
H160.19990.43960.18340.058*
C10.13502 (14)1.0108 (2)0.24051 (14)0.0507 (7)
H10.11080.96950.26340.061*
C30.16615 (14)1.1703 (2)0.21661 (15)0.0482 (7)
H30.16471.23900.22260.058*
C50.20473 (13)1.02969 (19)0.16908 (13)0.0410 (6)
H50.23041.00180.14080.049*
C130.40755 (16)1.1802 (2)0.06192 (17)0.0606 (8)
H130.40061.11260.07080.073*
C110.45847 (15)1.3286 (3)0.08112 (17)0.0575 (8)
C80.37610 (13)1.2281 (2)0.01660 (14)0.0485 (7)
C140.50138 (17)1.3823 (3)0.1134 (2)0.0713 (10)
C20.13130 (14)1.1097 (2)0.24891 (16)0.0535 (8)
H20.10481.13610.27690.064*
C100.42664 (15)1.3771 (2)0.03712 (17)0.0576 (8)
H100.43281.44500.02910.069*
N30.26781 (11)1.16107 (18)0.09093 (12)0.0452 (5)
N20.20658 (11)0.67179 (15)0.15560 (11)0.0417 (5)
N40.30732 (11)1.21732 (18)0.06194 (12)0.0474 (6)
N10.17155 (11)0.96955 (16)0.20120 (11)0.0443 (5)
N50.53463 (17)1.4260 (3)0.1381 (2)0.1005 (13)
P10.37466 (4)0.89969 (6)0.14663 (5)0.0599 (2)
O20.29542 (10)0.50513 (15)0.01052 (10)0.0563 (5)
O10.25284 (10)1.28063 (15)0.16533 (11)0.0584 (6)
C200.29779 (12)0.57604 (19)0.02673 (13)0.0409 (6)
F50.38656 (13)0.78661 (16)0.13688 (14)0.1030 (8)
F60.35972 (14)1.01041 (16)0.15169 (18)0.1254 (11)
F10.3229 (3)0.8764 (3)0.1891 (3)0.1111 (19)0.773 (8)
F20.4206 (3)0.9026 (5)0.2114 (4)0.182 (3)0.773 (8)
F30.4237 (2)0.9205 (3)0.1009 (4)0.129 (2)0.773 (8)
F40.3249 (2)0.8894 (4)0.0790 (2)0.1269 (19)0.773 (8)
F1'0.3816 (8)0.8806 (8)0.2243 (5)0.096 (5)0.227 (8)
F2'0.4440 (4)0.9236 (7)0.1569 (9)0.082 (4)0.227 (8)
F3'0.3702 (9)0.9217 (9)0.0687 (5)0.112 (5)0.227 (8)
F4'0.3055 (4)0.8774 (9)0.1384 (11)0.109 (5)0.227 (8)
H280.2574 (13)1.1069 (16)0.0696 (14)0.050 (9)*
H290.3373 (14)0.7020 (18)0.0501 (13)0.048 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N80.0642 (18)0.082 (2)0.0669 (17)0.0083 (15)0.0370 (15)0.0052 (15)
C280.0488 (17)0.067 (2)0.0496 (16)0.0054 (15)0.0193 (14)0.0023 (15)
C250.0400 (15)0.0643 (19)0.0425 (15)0.0035 (13)0.0168 (12)0.0011 (13)
C240.0556 (18)0.0592 (19)0.0508 (16)0.0032 (14)0.0264 (14)0.0007 (14)
C260.060 (2)0.0591 (19)0.068 (2)0.0163 (15)0.0323 (17)0.0065 (16)
C270.061 (2)0.057 (2)0.070 (2)0.0081 (15)0.0337 (17)0.0143 (16)
C230.0533 (18)0.0538 (17)0.0513 (16)0.0046 (13)0.0241 (14)0.0040 (13)
C220.0434 (16)0.0615 (19)0.0422 (14)0.0043 (13)0.0185 (13)0.0001 (13)
C210.0528 (18)0.0588 (19)0.0508 (16)0.0022 (14)0.0266 (14)0.0057 (14)
N70.0492 (14)0.0615 (15)0.0438 (13)0.0014 (12)0.0254 (11)0.0007 (11)
N60.0535 (15)0.0522 (15)0.0478 (13)0.0051 (11)0.0304 (12)0.0071 (11)
Ag10.07322 (19)0.03326 (13)0.07451 (18)0.00004 (10)0.03887 (14)0.00591 (10)
C120.064 (2)0.075 (2)0.062 (2)0.0135 (18)0.0322 (17)0.0016 (18)
C190.0487 (16)0.0332 (13)0.0431 (14)0.0006 (11)0.0210 (12)0.0034 (11)
C150.0494 (16)0.0379 (14)0.0468 (14)0.0020 (11)0.0230 (13)0.0003 (11)
C60.0461 (15)0.0332 (14)0.0469 (15)0.0052 (11)0.0122 (12)0.0029 (11)
C180.0411 (14)0.0351 (13)0.0366 (13)0.0005 (10)0.0145 (11)0.0020 (10)
C90.0540 (18)0.0563 (19)0.0534 (17)0.0099 (14)0.0210 (14)0.0056 (14)
C70.0539 (18)0.0480 (17)0.0508 (16)0.0006 (13)0.0151 (14)0.0028 (13)
C40.0431 (15)0.0345 (13)0.0377 (13)0.0032 (11)0.0107 (11)0.0017 (10)
C170.0579 (18)0.0308 (13)0.0502 (15)0.0018 (12)0.0210 (13)0.0012 (11)
C160.0652 (19)0.0339 (14)0.0519 (16)0.0052 (13)0.0246 (14)0.0049 (12)
C10.0609 (19)0.0464 (16)0.0517 (16)0.0040 (13)0.0294 (15)0.0037 (13)
C30.0550 (17)0.0375 (15)0.0556 (16)0.0041 (12)0.0194 (14)0.0086 (12)
C50.0520 (16)0.0349 (14)0.0396 (13)0.0029 (11)0.0176 (12)0.0028 (11)
C130.069 (2)0.054 (2)0.063 (2)0.0052 (15)0.0251 (17)0.0041 (15)
C110.0524 (18)0.067 (2)0.0578 (18)0.0096 (15)0.0222 (15)0.0139 (16)
C80.0455 (16)0.0573 (18)0.0444 (15)0.0042 (13)0.0123 (13)0.0069 (13)
C140.072 (2)0.070 (2)0.082 (2)0.0147 (18)0.041 (2)0.0162 (19)
C20.0587 (19)0.0492 (17)0.0604 (18)0.0035 (14)0.0321 (15)0.0082 (14)
C100.0587 (19)0.0539 (19)0.0648 (19)0.0017 (14)0.0238 (16)0.0081 (15)
N30.0534 (15)0.0370 (13)0.0491 (13)0.0059 (10)0.0197 (11)0.0014 (10)
N20.0493 (13)0.0349 (12)0.0466 (12)0.0005 (9)0.0247 (11)0.0001 (9)
N40.0512 (14)0.0456 (13)0.0482 (13)0.0036 (11)0.0163 (11)0.0063 (11)
N10.0579 (15)0.0331 (12)0.0463 (12)0.0004 (10)0.0215 (11)0.0037 (9)
N50.105 (3)0.084 (3)0.134 (3)0.009 (2)0.083 (3)0.021 (2)
P10.0625 (5)0.0379 (4)0.0841 (6)0.0022 (4)0.0261 (5)0.0005 (4)
O20.0716 (14)0.0488 (12)0.0551 (12)0.0005 (10)0.0296 (11)0.0130 (10)
O10.0766 (15)0.0328 (10)0.0723 (14)0.0048 (10)0.0310 (12)0.0021 (10)
C200.0463 (15)0.0397 (14)0.0403 (14)0.0051 (11)0.0179 (12)0.0000 (11)
F50.139 (2)0.0483 (12)0.125 (2)0.0164 (13)0.0331 (17)0.0072 (13)
F60.142 (2)0.0447 (13)0.208 (3)0.0124 (13)0.083 (2)0.0042 (16)
F10.141 (4)0.087 (2)0.128 (4)0.010 (2)0.085 (3)0.026 (2)
F20.143 (5)0.219 (6)0.156 (5)0.022 (4)0.051 (4)0.062 (4)
F30.112 (4)0.094 (3)0.207 (6)0.018 (2)0.105 (4)0.012 (3)
F40.110 (3)0.157 (4)0.101 (3)0.006 (3)0.017 (3)0.017 (3)
F1'0.149 (10)0.085 (7)0.064 (6)0.010 (7)0.041 (7)0.010 (5)
F2'0.056 (5)0.065 (6)0.125 (9)0.004 (4)0.020 (6)0.001 (6)
F3'0.146 (11)0.099 (8)0.085 (7)0.012 (8)0.000 (7)0.021 (6)
F4'0.075 (7)0.097 (8)0.156 (11)0.012 (5)0.020 (7)0.009 (8)
Geometric parameters (Å, º) top
N8—C281.134 (4)C9—C81.387 (4)
N8—Ag1i2.456 (3)C9—H90.9500
C28—C251.440 (4)C7—N41.279 (4)
C25—C261.378 (4)C7—C81.461 (4)
C25—C241.389 (4)C7—H70.9500
C24—C231.372 (4)C4—C51.381 (4)
C24—H240.9500C4—C31.386 (4)
C26—C271.384 (4)C17—C161.379 (4)
C26—H260.9500C17—H170.9500
C27—C221.379 (4)C16—H160.9500
C27—H270.9500C1—N11.347 (3)
C23—C221.390 (4)C1—C21.369 (4)
C23—H230.9500C1—H10.9500
C22—C211.465 (4)C3—C21.370 (4)
C21—N71.271 (4)C3—H30.9500
C21—H210.9500C5—N11.341 (3)
N7—N61.382 (3)C5—H50.9500
N6—C201.351 (4)C13—C81.397 (4)
N6—H290.853 (18)C13—H130.9500
Ag1—N12.172 (2)C11—C101.387 (4)
Ag1—N22.199 (2)C11—C141.443 (5)
Ag1—N8ii2.456 (3)C14—N51.130 (4)
C12—C131.384 (5)C2—H20.9500
C12—C111.387 (5)C10—H100.9500
C12—H120.9500N3—N41.371 (3)
C19—N21.343 (3)N3—H280.865 (18)
C19—C181.377 (3)P1—F21.500 (5)
C19—H190.9500P1—F1'1.545 (9)
C15—N21.338 (3)P1—F4'1.555 (10)
C15—C161.381 (4)P1—F61.559 (2)
C15—H150.9500P1—F2'1.560 (8)
C6—O11.216 (3)P1—F3'1.562 (9)
C6—N31.358 (3)P1—F31.564 (4)
C6—C41.495 (4)P1—F11.577 (3)
C18—C171.388 (4)P1—F51.589 (2)
C18—C201.496 (3)P1—F41.594 (4)
C9—C101.369 (4)O2—C201.216 (3)
C28—N8—Ag1i153.0 (3)C12—C13—H13119.6
N8—C28—C25177.1 (4)C8—C13—H13119.6
C26—C25—C24120.9 (3)C10—C11—C12120.1 (3)
C26—C25—C28120.5 (3)C10—C11—C14119.2 (3)
C24—C25—C28118.5 (3)C12—C11—C14120.7 (3)
C23—C24—C25119.7 (3)C9—C8—C13118.5 (3)
C23—C24—H24120.1C9—C8—C7121.3 (3)
C25—C24—H24120.1C13—C8—C7120.3 (3)
C25—C26—C27118.5 (3)N5—C14—C11178.6 (4)
C25—C26—H26120.7C1—C2—C3119.4 (3)
C27—C26—H26120.7C1—C2—H2120.3
C22—C27—C26121.4 (3)C3—C2—H2120.3
C22—C27—H27119.3C9—C10—C11120.1 (3)
C26—C27—H27119.3C9—C10—H10119.9
C24—C23—C22120.2 (3)C11—C10—H10119.9
C24—C23—H23119.9C6—N3—N4119.2 (2)
C22—C23—H23119.9C6—N3—H28126 (2)
C27—C22—C23119.2 (3)N4—N3—H28114 (2)
C27—C22—C21119.7 (3)C15—N2—C19117.9 (2)
C23—C22—C21121.0 (3)C15—N2—Ag1120.36 (17)
N7—C21—C22120.4 (3)C19—N2—Ag1121.45 (17)
N7—C21—H21119.8C7—N4—N3115.7 (2)
C22—C21—H21119.8C5—N1—C1117.3 (2)
C21—N7—N6114.8 (3)C5—N1—Ag1121.31 (17)
C20—N6—N7119.3 (2)C1—N1—Ag1121.18 (18)
C20—N6—H29123 (2)F2—P1—F4'127.9 (7)
N7—N6—H29116 (2)F1'—P1—F4'89.8 (7)
N1—Ag1—N2156.22 (8)F2—P1—F692.4 (3)
N1—Ag1—N8ii109.53 (9)F1'—P1—F694.9 (5)
N2—Ag1—N8ii92.22 (9)F4'—P1—F688.7 (5)
C13—C12—C11119.3 (3)F2—P1—F2'50.8 (5)
C13—C12—H12120.3F1'—P1—F2'88.9 (7)
C11—C12—H12120.3F4'—P1—F2'178.3 (8)
N2—C19—C18123.0 (2)F6—P1—F2'90.3 (4)
N2—C19—H19118.5F2—P1—F3'139.5 (7)
C18—C19—H19118.5F1'—P1—F3'177.5 (8)
N2—C15—C16122.7 (2)F4'—P1—F3'92.5 (8)
N2—C15—H15118.7F6—P1—F3'84.2 (4)
C16—C15—H15118.7F2'—P1—F3'88.8 (7)
O1—C6—N3123.4 (3)F2—P1—F392.8 (4)
O1—C6—C4120.7 (2)F1'—P1—F3130.6 (6)
N3—C6—C4115.9 (2)F4'—P1—F3139.2 (7)
C19—C18—C17118.5 (2)F6—P1—F392.24 (19)
C19—C18—C20123.1 (2)F3'—P1—F347.2 (6)
C17—C18—C20118.4 (2)F2—P1—F190.2 (4)
C10—C9—C8121.1 (3)F1'—P1—F152.3 (6)
C10—C9—H9119.5F6—P1—F188.72 (18)
C8—C9—H9119.5F2'—P1—F1140.8 (6)
N4—C7—C8120.0 (3)F3'—P1—F1129.9 (7)
N4—C7—H7120.0F3—P1—F1176.8 (3)
C8—C7—H7120.0F2—P1—F591.5 (3)
C5—C4—C3117.9 (2)F1'—P1—F588.1 (4)
C5—C4—C6124.2 (2)F4'—P1—F588.8 (5)
C3—C4—C6117.7 (2)F6—P1—F5176.14 (19)
C16—C17—C18119.0 (2)F2'—P1—F592.2 (4)
C16—C17—H17120.5F3'—P1—F592.9 (4)
C18—C17—H17120.5F3—P1—F587.63 (19)
C17—C16—C15118.9 (2)F1—P1—F591.21 (18)
C17—C16—H16120.5F2—P1—F4176.3 (4)
C15—C16—H16120.5F1'—P1—F4139.5 (6)
N1—C1—C2122.8 (3)F4'—P1—F450.2 (7)
N1—C1—H1118.6F6—P1—F490.8 (2)
C2—C1—H1118.6F2'—P1—F4131.2 (6)
C2—C3—C4119.2 (3)F3—P1—F489.0 (3)
C2—C3—H3120.4F1—P1—F487.9 (3)
C4—C3—H3120.4F5—P1—F485.3 (2)
N1—C5—C4123.4 (2)O2—C20—N6123.8 (2)
N1—C5—H5118.3O2—C20—C18121.3 (2)
C4—C5—H5118.3N6—C20—C18114.9 (2)
C12—C13—C8120.9 (3)
C26—C25—C24—C230.5 (5)C12—C13—C8—C7179.0 (3)
C28—C25—C24—C23178.8 (3)N4—C7—C8—C93.3 (5)
C24—C25—C26—C271.2 (5)N4—C7—C8—C13176.4 (3)
C28—C25—C26—C27178.1 (3)N1—C1—C2—C30.4 (5)
C25—C26—C27—C221.0 (5)C4—C3—C2—C11.2 (5)
C25—C24—C23—C220.4 (5)C8—C9—C10—C110.7 (5)
C26—C27—C22—C230.2 (5)C12—C11—C10—C91.4 (5)
C26—C27—C22—C21177.6 (3)C14—C11—C10—C9179.0 (3)
C24—C23—C22—C270.6 (5)O1—C6—N3—N42.7 (4)
C24—C23—C22—C21176.8 (3)C4—C6—N3—N4176.6 (2)
C27—C22—C21—N7169.9 (3)C16—C15—N2—C190.9 (4)
C23—C22—C21—N712.7 (5)C16—C15—N2—Ag1173.5 (2)
C22—C21—N7—N6177.8 (3)C18—C19—N2—C150.6 (4)
C21—N7—N6—C20179.8 (3)C18—C19—N2—Ag1173.8 (2)
N2—C19—C18—C170.1 (4)N1—Ag1—N2—C15169.9 (2)
N2—C19—C18—C20178.6 (3)N8ii—Ag1—N2—C1513.3 (2)
O1—C6—C4—C5159.2 (3)N1—Ag1—N2—C1915.9 (4)
N3—C6—C4—C520.1 (4)N8ii—Ag1—N2—C19172.5 (2)
O1—C6—C4—C316.2 (4)C8—C7—N4—N3179.3 (3)
N3—C6—C4—C3164.5 (3)C6—N3—N4—C7172.6 (3)
C19—C18—C17—C160.1 (4)C4—C5—N1—C10.7 (4)
C20—C18—C17—C16178.5 (3)C4—C5—N1—Ag1173.5 (2)
C18—C17—C16—C150.2 (4)C2—C1—N1—C50.6 (4)
N2—C15—C16—C170.7 (5)C2—C1—N1—Ag1173.6 (2)
C5—C4—C3—C21.1 (4)N2—Ag1—N1—C525.6 (4)
C6—C4—C3—C2176.9 (3)N8ii—Ag1—N1—C5179.3 (2)
C3—C4—C5—N10.2 (4)N2—Ag1—N1—C1160.4 (2)
C6—C4—C5—N1175.6 (3)N8ii—Ag1—N1—C15.3 (2)
C11—C12—C13—C80.1 (5)N7—N6—C20—O23.9 (4)
C13—C12—C11—C101.0 (5)N7—N6—C20—C18176.5 (2)
C13—C12—C11—C14179.5 (3)C19—C18—C20—O2150.7 (3)
C10—C9—C8—C130.4 (5)C17—C18—C20—O227.8 (4)
C10—C9—C8—C7179.4 (3)C19—C18—C20—N629.0 (4)
C12—C13—C8—C90.8 (5)C17—C18—C20—N6152.5 (3)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H28···O2iii0.87 (2)2.15 (2)2.990 (3)162 (3)
N6—H29···F50.85 (2)2.21 (2)3.001 (4)155 (3)
Symmetry code: (iii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Ag(C14H10N4O)2]PF6
Mr753.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)22.3252 (17), 13.6939 (11), 19.8523 (16)
β (°) 99.977 (1)
V3)5977.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.44 × 0.32 × 0.29
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.718, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
19020, 6823, 5105
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.03
No. of reflections6823
No. of parameters460
No. of restraints96
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.92, 0.67

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005).

Selected geometric parameters (Å, º) top
Ag1—N12.172 (2)Ag1—N8i2.456 (3)
Ag1—N22.199 (2)
N1—Ag1—N2156.22 (8)N2—Ag1—N8i92.22 (9)
N1—Ag1—N8i109.53 (9)
Symmetry code: (i) x1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H28···O2ii0.865 (18)2.15 (2)2.990 (3)162 (3)
N6—H29···F50.853 (18)2.21 (2)3.001 (4)155 (3)
Symmetry code: (ii) x+1/2, y+3/2, z.
 

Acknowledgements

We are grateful to Mrs Li (Wuhan University) for her assistance with the X-ray crystallographic analysis. We also gratefully acknowledge financial support from the Natural Science Foundation of Henan Province (2008B150008) and the Science and Technology Key Task of Henan Province (0624040011).

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDong, Y.-B., Zhao, X., Huang, R.-Q., Smith, M. D. & zur Loye, H.-C. (2004). Inorg. Chem. 43, 5603–5612.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNiu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Li, Z.-J. & Hou, H.-W. (2007). Dalton Trans. pp. 5710–5713.  Web of Science CSD CrossRef Google Scholar
First citationNiu, C.-Y., Zheng, X.-F., Bai, L.-L., Wu, X.-L. & Kou, C.-H. (2008). Acta Cryst. C64, m305–m307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395–6399.  Web of Science CSD CrossRef CAS Google Scholar
First citationVatsadze, S. Z., Kovalkina, M. A., Sviridenkova, N. V., Zyk, N. V., Churakov, A. V., Kuz'mina, L. G. & Howard, J. A. K. (2004). CrystEngComm, 6, 112–115.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Y., Du, M., Li, J.-R., Zhang, R.-H. & Bu, X.-H. (2003). Dalton Trans. pp. 1509–1514.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1618-m1619
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds