organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[4-(benzyl­oxy)anilino]-4-oxo-4,5-di­hydro­furan-3-carboxyl­ate

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 19 October 2008; accepted 3 November 2008; online 13 November 2008)

In the title compound, C20H19NO5, the dihydro­furan ring is almost planar [maximum deviation of 0.021 (2)°] and makes dihedral angles of 28.1 (7) and 54.5 (5)° with the benzyl and phenyl­amino rings, respectively. The mol­ecular packing is stabilized by intra­molecular N—H⋯O hydrogen bonds and inter­molecular C—H⋯O inter­actions.

Related literature

For background on the development of effective and tolerable therapeutic options for cervical cancer, see: Huang et al. (2007[Huang, A. C., Lin, T. P., Weng, Y. S., Ho, Y. T., Lin, H. J., Huang, L. J., Kuo, S. C. & Chung, J. G. (2007). Anticancer Res. 27, 2505-2514.]); Lu et al. (2008[Lu, K. W., Tsai, M. L., Chen, J. C., Hsu, S. C., Hsia, T. C., Lin, M. W., Huang, A. C., Chang, Y. H., Ip, S. W., Lu, H. F. & Chung, J. G. (2008). Anticancer Res. 28, 1093-1099.]). For the analysis of apoptosis induced by dihydro­furan carboxyl­ate compounds, see: Chen et al. (2006[Chen, T. G., Chen, T. L., Chang, H. C., Tai, Y. T., Cherng, Y. G., Chang, Y. T. & Chen, R. M. (2006). Toxicol. Appl. Pharmacol. 219, 42-53.]); Lin et al. (2006[Lin, J. G., Chen, G. W., Li, T. M., Chouh, S. T., Tan, T. W. & Chung, J. G. (2006). J. Urol. 175, 343-347.]); Zhang & Wei (2007[Zhang, L. & Wei, L. J. (2007). Life Sci. 80 , 1189-1197.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Erdsack et al. (2007[Erdsack, J., Schürmann, M., Preut, H. & Krause, N. (2007). Acta Cryst. E63, o664-o665.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19NO5

  • Mr = 353.36

  • Triclinic, [P \overline 1]

  • a = 9.1315 (3) Å

  • b = 10.4040 (3) Å

  • c = 11.1162 (4) Å

  • α = 84.848 (2)°

  • β = 66.436 (2)°

  • γ = 64.121 (2)°

  • V = 866.34 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.976, Tmax = 0.981

  • 22596 measured reflections

  • 5349 independent reflections

  • 3665 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.163

  • S = 1.03

  • 5349 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 2.12 2.7485 (15) 129
C6—H6⋯O3i 0.93 2.51 3.3951 (18) 160
C17—H17⋯O4ii 0.93 2.58 3.465 (2) 160
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Human cervical cancer is potentially lethal, and therefore the development of effective and tolerable therapeutic options is vital (Huang et al., 2007; Lu et al., 2008). Dihydrofuran carboxylate compounds induced morphological changes and cytotoxicity in a dose - dependent manner. Dihydrofuran carboxylate compounds induced apoptosis which was analyzed by flow cytometric methods and confirmed by DAPI staining and DNA fragmentation analyzed by DNA gel electrophoresis (Chen et al., 2006; Lin et al., 2006; Zhang & Wei, 2007). In view of this medicinal importance, an X-ray study of the title compound, (I), was carried out.

An ORTEP (Farrugia,1997) plot of the molecule is shown in Fig. 1. The bond lengths in (I) show normal values (Allen et al., 1987) and are comparable to the related structure (Erdsack et al., 2007). The dihydrofuran ring (O2/C1—C4) is planar with a maximum deviation of -0.021 (2)° for C3 from the least square plane defined by all non hydrogen atoms in the molecule. The dihydrofuran ring makes dihedral angles of 28.1 (7)° and 54.5 (5)°, respectively, with the benzyl ring (C12—C17) and phenylamino ring (C5—C10), whereas the benzyl and phenylamino rings are oriented at an angle of 78.6 (6)° with respect to each other.

The crystal structure is stabilized by intramolecular N—H···O interactions. In addition to the van der Waals interactions, the molecular packing in the crystal is also stabilized by intermolecular C—H···O interactions (Table 1, Fig. 2).

Related literature top

For background on the development of effective and tolerable therapeutic options for cervical cancer, see: Huang et al. (2007); Lu et al. (2008). For the analysis of apoptosis induced by dihydrofuran carboxylate compounds, see: Chen et al. (2006); Lin et al. (2006); Zhang & Wei (2007). For bond-length data, see: Allen et al. (1987). For a related structure, see: Erdsack et al. (2007).

Experimental top

1.0 mol of 4-(benzyloxy) aniline (1.0 g) and 1.0 mol of ethyl 2-chloro-4- oxo-4,5-dihydrofuran-3-carboxylate (0.9 g) was allowed to stir in 10 ml of dichloromethane which contains 0.5 ml of triethylamine at room temperature for about 8 hrs. The completion of the reaction was monitored by TLC. After the completion of reaction the crude solid was filtered and then recrystallized in ethanol.

Refinement top

H atoms were positioned geometrically and were treated as riding on their parent C atoms, with aromatic C—H distances of 0.93 Å, methyl C—H distances of 0.96 Å and methylene C—H distances of 0.97 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. Dashed line indicates hydrogen bond.
[Figure 2] Fig. 2. The packing of the molecules viewed down the c axis. Dashed lines indicate hydrogen bonds. H atoms not involed in hydrogen bonds have been omitted.
Ethyl 2-[4-(benzyloxy)anilino]-4-oxo-4,5-dihydrofuran-3-carboxylate top
Crystal data top
C20H19NO5Z = 2
Mr = 353.36F(000) = 372
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1315 (3) ÅCell parameters from 6361 reflections
b = 10.4040 (3) Åθ = 2.6–30.7°
c = 11.1162 (4) ŵ = 0.10 mm1
α = 84.848 (2)°T = 293 K
β = 66.436 (2)°Prism, yellow
γ = 64.121 (2)°0.25 × 0.20 × 0.20 mm
V = 866.34 (5) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
5349 independent reflections
Radiation source: fine-focus sealed tube3665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Bruker axs (kappa apex2) scansθmax = 30.7°, θmin = 2.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1313
Tmin = 0.976, Tmax = 0.981k = 1414
22596 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0812P)2 + 0.1488P]
where P = (Fo2 + 2Fc2)/3
5349 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H19NO5γ = 64.121 (2)°
Mr = 353.36V = 866.34 (5) Å3
Triclinic, P1Z = 2
a = 9.1315 (3) ÅMo Kα radiation
b = 10.4040 (3) ŵ = 0.10 mm1
c = 11.1162 (4) ÅT = 293 K
α = 84.848 (2)°0.25 × 0.20 × 0.20 mm
β = 66.436 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
5349 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3665 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.981Rint = 0.025
22596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
5349 reflectionsΔρmin = 0.20 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.26357 (19)0.57501 (15)0.0775 (2)0.0570 (4)
H1A1.32520.57140.13230.068*
H1B1.32240.60030.00860.068*
C21.26228 (18)0.43137 (14)0.06491 (15)0.0437 (3)
C31.07887 (17)0.46034 (12)0.12356 (14)0.0386 (3)
C40.98080 (17)0.60818 (13)0.15886 (14)0.0396 (3)
C50.71086 (17)0.83503 (13)0.24252 (14)0.0421 (3)
C60.58376 (19)0.91391 (14)0.19371 (16)0.0496 (3)
H60.56280.86840.13830.060*
C70.4878 (2)1.06059 (15)0.22738 (17)0.0517 (4)
H70.40111.11380.19560.062*
C80.52074 (18)1.12851 (14)0.30861 (15)0.0447 (3)
C90.6476 (2)1.04905 (15)0.35756 (16)0.0515 (4)
H90.66991.09410.41220.062*
C100.7412 (2)0.90186 (15)0.32472 (16)0.0513 (4)
H100.82530.84790.35870.062*
C110.4551 (2)1.34824 (16)0.41338 (19)0.0572 (4)
H11A0.57621.33710.36980.069*
H11B0.43961.31040.49830.069*
C120.3260 (2)1.50396 (14)0.43163 (15)0.0464 (3)
C130.1520 (2)1.54983 (19)0.51716 (18)0.0639 (4)
H130.11361.48360.56350.077*
C140.0329 (3)1.6920 (2)0.5359 (2)0.0798 (6)
H140.08531.72160.59400.096*
C150.0884 (3)1.78924 (19)0.4692 (3)0.0816 (7)
H150.00831.88580.48180.098*
C160.2604 (4)1.7455 (2)0.3842 (3)0.0888 (7)
H160.29831.81240.33900.107*
C170.3794 (3)1.6028 (2)0.3642 (2)0.0678 (5)
H170.49681.57340.30450.081*
C180.99189 (18)0.36906 (13)0.14162 (14)0.0416 (3)
C191.0226 (3)0.13250 (17)0.1330 (3)0.0729 (6)
H19A0.92520.15710.21930.088*
H19B0.97550.14090.06690.088*
C201.1542 (3)0.01258 (19)0.1230 (3)0.0969 (8)
H20A1.10100.07720.13620.145*
H20B1.19960.02050.18920.145*
H20C1.24980.03670.03720.145*
N10.80732 (15)0.68332 (11)0.20754 (13)0.0465 (3)
H10.74560.63660.21960.056*
O10.42051 (15)1.27356 (10)0.33465 (12)0.0582 (3)
O21.07889 (13)0.67841 (9)0.13778 (12)0.0516 (3)
O31.39676 (13)0.32190 (11)0.01100 (13)0.0599 (3)
O40.83217 (13)0.41370 (11)0.18030 (13)0.0568 (3)
O51.10361 (13)0.22984 (10)0.11310 (12)0.0522 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0359 (7)0.0384 (7)0.0945 (12)0.0144 (6)0.0230 (7)0.0096 (7)
C20.0369 (6)0.0328 (6)0.0618 (8)0.0125 (5)0.0221 (6)0.0017 (5)
C30.0350 (6)0.0269 (5)0.0514 (7)0.0118 (4)0.0164 (5)0.0010 (5)
C40.0365 (6)0.0293 (5)0.0512 (7)0.0138 (5)0.0161 (5)0.0010 (5)
C50.0329 (6)0.0283 (5)0.0550 (8)0.0099 (5)0.0111 (5)0.0017 (5)
C60.0440 (7)0.0350 (6)0.0669 (9)0.0108 (6)0.0241 (7)0.0080 (6)
C70.0477 (8)0.0345 (6)0.0683 (10)0.0062 (6)0.0297 (7)0.0062 (6)
C80.0396 (7)0.0313 (6)0.0531 (8)0.0074 (5)0.0159 (6)0.0064 (5)
C90.0499 (8)0.0383 (7)0.0627 (9)0.0108 (6)0.0261 (7)0.0081 (6)
C100.0473 (8)0.0365 (7)0.0638 (9)0.0073 (6)0.0275 (7)0.0013 (6)
C110.0551 (9)0.0374 (7)0.0748 (11)0.0102 (6)0.0299 (8)0.0108 (7)
C120.0490 (8)0.0342 (6)0.0518 (8)0.0126 (6)0.0204 (6)0.0068 (5)
C130.0594 (10)0.0494 (9)0.0610 (10)0.0147 (8)0.0135 (8)0.0040 (7)
C140.0601 (11)0.0616 (11)0.0776 (13)0.0030 (9)0.0178 (10)0.0184 (10)
C150.0951 (16)0.0345 (8)0.1246 (18)0.0077 (9)0.0732 (15)0.0061 (10)
C160.1034 (18)0.0548 (11)0.144 (2)0.0476 (12)0.0750 (17)0.0374 (12)
C170.0592 (10)0.0604 (10)0.0887 (13)0.0320 (9)0.0288 (10)0.0112 (9)
C180.0398 (7)0.0289 (5)0.0547 (8)0.0148 (5)0.0179 (6)0.0041 (5)
C190.0681 (11)0.0381 (8)0.1251 (17)0.0328 (8)0.0411 (11)0.0130 (9)
C200.0866 (15)0.0382 (9)0.163 (3)0.0326 (10)0.0444 (16)0.0207 (12)
N10.0357 (6)0.0280 (5)0.0686 (8)0.0124 (4)0.0146 (5)0.0015 (5)
O10.0597 (7)0.0308 (5)0.0779 (8)0.0033 (4)0.0362 (6)0.0140 (5)
O20.0383 (5)0.0299 (4)0.0823 (8)0.0144 (4)0.0185 (5)0.0058 (4)
O30.0359 (5)0.0388 (5)0.0931 (9)0.0083 (4)0.0198 (5)0.0128 (5)
O40.0388 (5)0.0388 (5)0.0878 (8)0.0184 (4)0.0185 (5)0.0037 (5)
O50.0450 (5)0.0266 (4)0.0821 (8)0.0160 (4)0.0215 (5)0.0018 (4)
Geometric parameters (Å, º) top
C1—O21.4466 (17)C11—H11A0.9700
C1—C21.5190 (19)C11—H11B0.9700
C1—H1A0.9700C12—C171.365 (2)
C1—H1B0.9700C12—C131.367 (2)
C2—O31.2156 (16)C13—C141.373 (2)
C2—C31.4291 (19)C13—H130.9300
C3—C41.3953 (16)C14—C151.357 (3)
C3—C181.4386 (17)C14—H140.9300
C4—N11.3126 (17)C15—C161.354 (4)
C4—O21.3281 (15)C15—H150.9300
C5—C101.371 (2)C16—C171.376 (3)
C5—C61.381 (2)C16—H160.9300
C5—N11.4287 (15)C17—H170.9300
C6—C71.3820 (18)C18—O41.2128 (17)
C6—H60.9300C18—O51.3316 (15)
C7—C81.387 (2)C19—C201.441 (3)
C7—H70.9300C19—O51.4506 (17)
C8—O11.3637 (15)C19—H19A0.9700
C8—C91.381 (2)C19—H19B0.9700
C9—C101.3847 (19)C20—H20A0.9600
C9—H90.9300C20—H20B0.9600
C10—H100.9300C20—H20C0.9600
C11—O11.4238 (18)N1—H10.8600
C11—C121.5022 (19)
O2—C1—C2105.83 (11)C17—C12—C13118.54 (15)
O2—C1—H1A110.6C17—C12—C11121.00 (15)
C2—C1—H1A110.6C13—C12—C11120.46 (15)
O2—C1—H1B110.6C12—C13—C14121.09 (18)
C2—C1—H1B110.6C12—C13—H13119.5
H1A—C1—H1B108.7C14—C13—H13119.5
O3—C2—C3131.81 (12)C15—C14—C13119.7 (2)
O3—C2—C1122.98 (13)C15—C14—H14120.1
C3—C2—C1105.18 (11)C13—C14—H14120.1
C4—C3—C2106.96 (11)C16—C15—C14119.92 (17)
C4—C3—C18121.03 (12)C16—C15—H15120.0
C2—C3—C18131.90 (11)C14—C15—H15120.0
N1—C4—O2117.79 (11)C15—C16—C17120.4 (2)
N1—C4—C3127.88 (12)C15—C16—H16119.8
O2—C4—C3114.33 (11)C17—C16—H16119.8
C10—C5—C6120.12 (12)C12—C17—C16120.32 (19)
C10—C5—N1120.95 (13)C12—C17—H17119.8
C6—C5—N1118.92 (13)C16—C17—H17119.8
C5—C6—C7119.82 (13)O4—C18—O5122.88 (12)
C5—C6—H6120.1O4—C18—C3123.59 (12)
C7—C6—H6120.1O5—C18—C3113.52 (11)
C6—C7—C8120.03 (14)C20—C19—O5109.29 (15)
C6—C7—H7120.0C20—C19—H19A109.8
C8—C7—H7120.0O5—C19—H19A109.8
O1—C8—C9124.60 (13)C20—C19—H19B109.8
O1—C8—C7115.48 (13)O5—C19—H19B109.8
C9—C8—C7119.92 (12)H19A—C19—H19B108.3
C8—C9—C10119.57 (14)C19—C20—H20A109.5
C8—C9—H9120.2C19—C20—H20B109.5
C10—C9—H9120.2H20A—C20—H20B109.5
C5—C10—C9120.52 (14)C19—C20—H20C109.5
C5—C10—H10119.7H20A—C20—H20C109.5
C9—C10—H10119.7H20B—C20—H20C109.5
O1—C11—C12107.46 (12)C4—N1—C5126.48 (11)
O1—C11—H11A110.2C4—N1—H1116.8
C12—C11—H11A110.2C5—N1—H1116.8
O1—C11—H11B110.2C8—O1—C11117.26 (12)
C12—C11—H11B110.2C4—O2—C1107.56 (10)
H11A—C11—H11B108.5C18—O5—C19115.87 (12)
O2—C1—C2—O3175.75 (15)C12—C13—C14—C150.4 (3)
O2—C1—C2—C32.44 (18)C13—C14—C15—C160.3 (3)
O3—C2—C3—C4174.22 (17)C14—C15—C16—C170.4 (4)
C1—C2—C3—C43.74 (17)C13—C12—C17—C161.0 (3)
O3—C2—C3—C181.9 (3)C11—C12—C17—C16178.56 (18)
C1—C2—C3—C18179.84 (16)C15—C16—C17—C121.1 (3)
C2—C3—C4—N1174.99 (15)C4—C3—C18—O44.4 (2)
C18—C3—C4—N11.6 (2)C2—C3—C18—O4171.19 (16)
C2—C3—C4—O24.03 (17)C4—C3—C18—O5174.86 (13)
C18—C3—C4—O2179.36 (13)C2—C3—C18—O59.5 (2)
C10—C5—C6—C70.3 (2)O2—C4—N1—C50.9 (2)
N1—C5—C6—C7179.38 (14)C3—C4—N1—C5179.88 (14)
C5—C6—C7—C80.8 (2)C10—C5—N1—C452.3 (2)
C6—C7—C8—O1179.24 (15)C6—C5—N1—C4128.62 (17)
C6—C7—C8—C91.1 (2)C9—C8—O1—C112.8 (2)
O1—C8—C9—C10179.81 (15)C7—C8—O1—C11177.55 (15)
C7—C8—C9—C100.1 (3)C12—C11—O1—C8178.33 (13)
C6—C5—C10—C91.3 (2)N1—C4—O2—C1176.74 (14)
N1—C5—C10—C9179.71 (14)C3—C4—O2—C12.39 (18)
C8—C9—C10—C51.0 (3)C2—C1—O2—C40.15 (18)
O1—C11—C12—C17104.90 (19)O4—C18—O5—C190.9 (2)
O1—C11—C12—C1375.5 (2)C3—C18—O5—C19178.40 (16)
C17—C12—C13—C140.3 (3)C20—C19—O5—C18168.96 (18)
C11—C12—C13—C14179.31 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.862.122.7485 (15)129
C6—H6···O3i0.932.513.3951 (18)160
C17—H17···O4ii0.932.583.465 (2)160
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H19NO5
Mr353.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.1315 (3), 10.4040 (3), 11.1162 (4)
α, β, γ (°)84.848 (2), 66.436 (2), 64.121 (2)
V3)866.34 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.976, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
22596, 5349, 3665
Rint0.025
(sin θ/λ)max1)0.718
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.163, 1.03
No. of reflections5349
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.20

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.862.122.7485 (15)129.4
C6—H6···O3i0.932.513.3951 (18)160.3
C17—H17···O4ii0.932.583.465 (2)160.2
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions, and also the Management of SRM, India, for their support.

References

First citationAllen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, T. G., Chen, T. L., Chang, H. C., Tai, Y. T., Cherng, Y. G., Chang, Y. T. & Chen, R. M. (2006). Toxicol. Appl. Pharmacol. 219, 42–53.  Web of Science CrossRef PubMed Google Scholar
First citationErdsack, J., Schürmann, M., Preut, H. & Krause, N. (2007). Acta Cryst. E63, o664–o665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuang, A. C., Lin, T. P., Weng, Y. S., Ho, Y. T., Lin, H. J., Huang, L. J., Kuo, S. C. & Chung, J. G. (2007). Anticancer Res. 27, 2505–2514.  Web of Science PubMed CAS Google Scholar
First citationLin, J. G., Chen, G. W., Li, T. M., Chouh, S. T., Tan, T. W. & Chung, J. G. (2006). J. Urol. 175, 343–347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, K. W., Tsai, M. L., Chen, J. C., Hsu, S. C., Hsia, T. C., Lin, M. W., Huang, A. C., Chang, Y. H., Ip, S. W., Lu, H. F. & Chung, J. G. (2008). Anticancer Res. 28, 1093–1099.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L. & Wei, L. J. (2007). Life Sci. 80 , 1189–1197.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds