organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Bis(prop-2-yn­yl­oxy)naphthalene

aCollege of Civil and Architectural Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, Henan, People's Republic of China
*Correspondence e-mail: zhw@henu.edu.cn

(Received 30 September 2008; accepted 12 November 2008; online 20 November 2008)

In the crystal structure of the title compound, C16H12O2, no classical hydrogen bonds or aromatic ππ stacking inter­actions were observed. The mol­ecules are linked into a three-dimensional framework by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds.

Related literature

For related structures, see: Zhang et al. (2008[Zhang, W., Cui, Q. & Yu, Z. (2008). Acta Cryst. E64, o317.]); Ghosh et al. (2007[Ghosh, S., Mukhopadhyay, R., Helliwell, M. & Mukherjee, A. K. (2007). Acta Cryst. C63, o496-o500.]); Wang & Kong (2007[Wang, X.-B. & Kong, L.-Y. (2007). Acta Cryst. E63, o4340.]). For the synthesis, see: Burchell et al. (2006[Burchell, T. J., Jennings, M. C. & Puddephatt, R. J. (2006). Inorg. Chim. Acta, 359, 2812-2818.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ππ stacking inter­actions, see: Steed & Atwood (2000[Steed, J. W. & Atwood, J. L. (2000). Supramolecular Chemistry, p. 26. Chichester: John Wiley & Sons.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O2

  • Mr = 236.26

  • Orthorhombic, P b c a

  • a = 8.2921 (12) Å

  • b = 9.0457 (14) Å

  • c = 33.070 (5) Å

  • V = 2480.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.18 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.989

  • 12468 measured reflections

  • 2182 independent reflections

  • 1782 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.04

  • 2182 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C6/C11–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2i 0.93 2.48 3.409 (2) 177
C3—H3ACg1ii 0.97 2.95 3.634 (2) 129
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound has been characterized by X–ray methods (Fig. 1). The bond lengths and angles are within normal ranges (Allen et al. 1987). Except for an ethinyl groug [–C15C16–H16], all the remaining non–H atoms are almost coplanar, with a mean deviation from the least-square plane to be 0.0402 (14) Å. The angle between the ethinyl and the plane is 23.80 (9)°.

While ππ stacking interactions are often found in aromatics (Wang et al. 2007), in the title complex the minimal distance between ring centroids is 5.188 (1) Å indicating that there are no ππ stacking interactions present(Steed et al. 2000).

The molecules of the title complex are linked into a three-dimensional framework by a combination of C—H···O and C—H···π (arene) hydrogen bonds (Fig. 2, Fig. 3, Table 1). [Cg1 id the centroid of the C4–C6/C11–C13 ring. Symmetry codes: (i) -x, y + 1/2, -z + 1/2; (ii) -x - 1/2, y - 1/2, z + 2.]

Related literature top

For related structures, see: Zhang et al. (2008); Ghosh et al. (2007); Wang & Kong (2007). For the synthesis, see: Burchell et al. (2006). For bond-length data, see: Allen et al. (1987). For ππ stacking interactions, see: Steed & Atwood (2000). Cg1 id the centroid of the C4–C6/C11–C13 ring.

Experimental top

The title compound was obtained unintentionally during an attempted synthesis of a network complex (Burchell et al., 2006) based on Co(II) and 2,3-bis(prop-2-ynyloxy)naphthalene, involving the evaporation of a methyl alchol and acetone solution of CoCl~2~, NaN~3~ and the title molecule, at 298 K.

Refinement top

All the H atoms could be detected in the difference electron density maps. Nevertheless, they were situated into the idealized position and refined using a riding model. C—H = 0.97 Å for the methylene groups and C—H = 0.93 Å for the remaining H atoms. Uiso(H) = 1.2 Ueq (carrier C) for all the H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbritary radii.
[Figure 2] Fig. 2. The three-dimensional supramolecular framework of the title complound formed by C—H···O and C—H···π (arene) hydrogen bonds, viewed along the a axis.
[Figure 3] Fig. 3. The three-dimensional supramolecular framework of the title complound formed by C—H···O and C—H···π (arene) hydrogen bonds, viewed along the b axis.
2,3-bis(prop-2-ynyloxy)naphthalene top
Crystal data top
C16H12O2F(000) = 992
Mr = 236.26Dx = 1.265 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3821 reflections
a = 8.2921 (12) Åθ = 2.8–25.7°
b = 9.0457 (14) ŵ = 0.08 mm1
c = 33.070 (5) ÅT = 298 K
V = 2480.5 (6) Å3Block, colourless
Z = 80.18 × 0.16 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2182 independent reflections
Radiation source: fine-focus sealed tube1782 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.984, Tmax = 0.989k = 1010
12468 measured reflectionsl = 3929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.338P]
where P = (Fo2 + 2Fc2)/3
2182 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H12O2V = 2480.5 (6) Å3
Mr = 236.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.2921 (12) ŵ = 0.08 mm1
b = 9.0457 (14) ÅT = 298 K
c = 33.070 (5) Å0.18 × 0.16 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2182 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1782 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.989Rint = 0.033
12468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
2182 reflectionsΔρmin = 0.19 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1360 (2)0.0848 (2)0.32753 (6)0.0752 (6)
H10.14250.16720.31080.090*
C20.1277 (2)0.01867 (18)0.34856 (5)0.0574 (4)
C30.1181 (2)0.14633 (16)0.37505 (5)0.0554 (4)
H3A0.22490.18650.37980.066*
H3B0.07200.11820.40090.066*
C40.00170 (15)0.38601 (15)0.37523 (4)0.0400 (3)
C50.05860 (17)0.42250 (16)0.41224 (4)0.0462 (4)
H50.11820.35320.42670.055*
C60.03174 (17)0.56457 (16)0.42903 (4)0.0451 (4)
C70.0984 (2)0.60874 (19)0.46649 (4)0.0586 (4)
H70.16090.54220.48110.070*
C80.0727 (3)0.7468 (2)0.48143 (5)0.0703 (5)
H80.11820.77410.50600.084*
C90.0218 (2)0.8480 (2)0.45997 (5)0.0696 (5)
H90.04010.94170.47060.084*
C100.0875 (2)0.80997 (18)0.42353 (5)0.0577 (4)
H100.15000.87820.40950.069*
C110.06147 (17)0.66812 (16)0.40699 (4)0.0443 (3)
C120.12274 (17)0.62803 (15)0.36856 (4)0.0436 (3)
H120.18300.69590.35380.052*
C130.09452 (16)0.49128 (15)0.35298 (4)0.0391 (3)
C140.24207 (18)0.53826 (15)0.29190 (4)0.0447 (3)
H14A0.30800.48090.27350.054*
H14B0.31390.59470.30920.054*
C150.14206 (18)0.64031 (16)0.26860 (4)0.0448 (4)
C160.0667 (2)0.71916 (18)0.24743 (5)0.0575 (4)
H160.00730.78140.23070.069*
O10.01832 (12)0.25415 (10)0.35571 (3)0.0479 (3)
O20.14871 (12)0.43928 (10)0.31646 (3)0.0471 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0882 (14)0.0598 (11)0.0778 (12)0.0163 (10)0.0254 (11)0.0032 (10)
C20.0584 (10)0.0467 (9)0.0672 (10)0.0065 (7)0.0180 (8)0.0088 (8)
C30.0586 (10)0.0444 (8)0.0631 (9)0.0032 (7)0.0164 (8)0.0104 (7)
C40.0354 (7)0.0398 (7)0.0448 (8)0.0031 (6)0.0005 (6)0.0047 (6)
C50.0454 (8)0.0499 (8)0.0433 (8)0.0030 (7)0.0040 (6)0.0117 (7)
C60.0448 (8)0.0544 (9)0.0361 (7)0.0091 (7)0.0050 (6)0.0042 (6)
C70.0660 (10)0.0696 (11)0.0403 (8)0.0089 (8)0.0054 (8)0.0055 (8)
C80.0896 (14)0.0803 (13)0.0410 (8)0.0154 (11)0.0053 (9)0.0092 (8)
C90.0884 (13)0.0660 (11)0.0545 (10)0.0014 (10)0.0006 (9)0.0156 (9)
C100.0643 (10)0.0572 (9)0.0517 (9)0.0036 (8)0.0007 (8)0.0081 (7)
C110.0418 (8)0.0508 (8)0.0403 (7)0.0042 (6)0.0051 (6)0.0007 (6)
C120.0418 (8)0.0453 (8)0.0438 (8)0.0042 (6)0.0031 (6)0.0029 (6)
C130.0345 (7)0.0440 (7)0.0388 (7)0.0025 (6)0.0021 (6)0.0022 (6)
C140.0452 (8)0.0438 (7)0.0453 (7)0.0025 (6)0.0115 (7)0.0018 (6)
C150.0497 (8)0.0442 (8)0.0405 (7)0.0073 (7)0.0029 (7)0.0073 (6)
C160.0616 (10)0.0558 (9)0.0552 (9)0.0044 (8)0.0124 (8)0.0009 (8)
O10.0499 (6)0.0404 (5)0.0535 (6)0.0050 (4)0.0135 (5)0.0027 (4)
O20.0535 (6)0.0423 (5)0.0454 (5)0.0060 (5)0.0140 (5)0.0010 (4)
Geometric parameters (Å, º) top
C1—C21.168 (2)C8—H80.9300
C1—H10.9300C9—C101.367 (2)
C2—C31.452 (2)C9—H90.9300
C3—O11.4299 (16)C10—C111.412 (2)
C3—H3A0.9700C10—H100.9300
C3—H3B0.9700C11—C121.416 (2)
C4—C51.363 (2)C12—C131.3603 (19)
C4—O11.3663 (16)C12—H120.9300
C4—C131.4285 (18)C13—O21.3718 (15)
C5—C61.418 (2)C14—O21.4354 (16)
C5—H50.9300C14—C151.461 (2)
C6—C71.414 (2)C14—H14A0.9700
C6—C111.416 (2)C14—H14B0.9700
C7—C81.360 (2)C15—C161.179 (2)
C7—H70.9300C16—H160.9300
C8—C91.399 (3)
C2—C1—H1180.0C10—C9—H9119.8
C1—C2—C3179.39 (17)C8—C9—H9119.8
O1—C3—C2107.72 (12)C9—C10—C11120.64 (16)
O1—C3—H3A110.2C9—C10—H10119.7
C2—C3—H3A110.2C11—C10—H10119.7
O1—C3—H3B110.2C10—C11—C12121.72 (14)
C2—C3—H3B110.2C10—C11—C6119.03 (13)
H3A—C3—H3B108.5C12—C11—C6119.23 (13)
C5—C4—O1126.24 (12)C13—C12—C11120.74 (13)
C5—C4—C13119.93 (13)C13—C12—H12119.6
O1—C4—C13113.83 (11)C11—C12—H12119.6
C4—C5—C6120.91 (13)C12—C13—O2126.08 (12)
C4—C5—H5119.5C12—C13—C4120.25 (12)
C6—C5—H5119.5O2—C13—C4113.67 (11)
C7—C6—C11118.51 (14)O2—C14—C15112.73 (12)
C7—C6—C5122.53 (14)O2—C14—H14A109.0
C11—C6—C5118.93 (12)C15—C14—H14A109.0
C8—C7—C6121.10 (16)O2—C14—H14B109.0
C8—C7—H7119.4C15—C14—H14B109.0
C6—C7—H7119.4H14A—C14—H14B107.8
C7—C8—C9120.29 (16)C16—C15—C14175.37 (15)
C7—C8—H8119.9C15—C16—H16180.0
C9—C8—H8119.9C4—O1—C3117.03 (11)
C10—C9—C8120.41 (17)C13—O2—C14117.45 (10)
O1—C4—C5—C6178.85 (12)C10—C11—C12—C13179.18 (14)
C13—C4—C5—C60.5 (2)C6—C11—C12—C130.7 (2)
C4—C5—C6—C7177.07 (13)C11—C12—C13—O2179.26 (12)
C4—C5—C6—C111.0 (2)C11—C12—C13—C40.2 (2)
C11—C6—C7—C80.7 (2)C5—C4—C13—C120.1 (2)
C5—C6—C7—C8178.81 (15)O1—C4—C13—C12179.33 (12)
C6—C7—C8—C90.5 (3)C5—C4—C13—O2179.43 (12)
C7—C8—C9—C100.9 (3)O1—C4—C13—O21.12 (16)
C8—C9—C10—C110.2 (3)C5—C4—O1—C33.1 (2)
C9—C10—C11—C12177.43 (15)C13—C4—O1—C3176.35 (12)
C9—C10—C11—C61.0 (2)C2—C3—O1—C4177.75 (12)
C7—C6—C11—C101.4 (2)C12—C13—O2—C141.0 (2)
C5—C6—C11—C10179.60 (13)C4—C13—O2—C14179.51 (11)
C7—C6—C11—C12177.05 (13)C15—C14—O2—C1381.84 (15)
C5—C6—C11—C121.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.932.483.409 (2)177
C3—H3A···Cg1ii0.972.953.634 (2)129
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H12O2
Mr236.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)8.2921 (12), 9.0457 (14), 33.070 (5)
V3)2480.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.984, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
12468, 2182, 1782
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.04
No. of reflections2182
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.932.483.409 (2)177
C3—H3A···Cg1ii0.972.953.634 (2)129
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/2, y1/2, z.
 

Acknowledgements

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 0111030700).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurchell, T. J., Jennings, M. C. & Puddephatt, R. J. (2006). Inorg. Chim. Acta, 359, 2812–2818.  Web of Science CSD CrossRef CAS Google Scholar
First citationGhosh, S., Mukhopadhyay, R., Helliwell, M. & Mukherjee, A. K. (2007). Acta Cryst. C63, o496–o500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2000). Supramolecular Chemistry, p. 26. Chichester: John Wiley & Sons.  Google Scholar
First citationWang, X.-B. & Kong, L.-Y. (2007). Acta Cryst. E63, o4340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W., Cui, Q. & Yu, Z. (2008). Acta Cryst. E64, o317.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds