organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­meth­oxy­benzaldehyde thio­semicarbazone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 October 2008; accepted 28 October 2008; online 8 November 2008)

In the title mol­ecule, C10H13N3O2S, the dihedral angle between benzene and –N—C(=S)—N—N=C– planes is 9.20 (6)°. The two meth­oxy groups are coplanar with the benzene ring [C—O—C—C torsion angles of −2.31 (18) and −6.45 (17)°]. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯S, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the biomedical properties of thio­semicarbazones, see: Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini-Rev. Med. Chem. 4, 31-39.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N3O2S

  • Mr = 239.29

  • Orthorhombic, P b c a

  • a = 11.0713 (1) Å

  • b = 13.0603 (2) Å

  • c = 15.7808 (2) Å

  • V = 2281.82 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100.0 (1) K

  • 0.34 × 0.28 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.943

  • 18486 measured reflections

  • 3486 independent reflections

  • 2834 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.06

  • 3486 reflections

  • 157 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯S1i 0.84 (4) 2.718 (18) 3.5375 (12) 166 (2)
N3—H2N3⋯S1ii 0.86 (1) 2.811 (13) 3.5047 (12) 139 (1)
N3—H1N3⋯O2iii 0.86 (1) 2.145 (11) 2.9617 (15) 159 (2)
C3—H3A⋯O1iv 0.93 2.51 3.3027 (16) 143
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Thiosemicarbazones are of great interest because of their profound biomedical properties (Beraldo et al., 2004). Flexibility and bioactivity of these compounds arise due to the presence of amino group (–NCH–) in addition to thioamino moieties present in the skeleton of the molecule. We have synthesized the title compound and its crystal structure is reported here.

The bond lengths in the title molecule (Fig.1) are found to have normal values (Allen et al., 1987). The two methoxy groups are coplanar with the benzene ring, with C9—O1—C1—C2 and C10—O2—C4—C3 torsion angles of -2.31 (18) and -6.45 (17)°, respectively. The dihedral angle between the C1—C6 and S1/N1—N3/C7/C8 planes is 9.20 (6)°.

In the crystal packing, the molecules are linked together by intermolecular N—H···S, N—H···O and C—H···O hydrogen bonds (Table 1) to form a three-dimensional network (Fig.2).

Related literature top

For the biomedical properties of thiosemicarbazones, see: Beraldo et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by refluxing 2,5-dimethoxy benzaldehyde (0.075 mol) and thiosemicarbazone (0.05 mol) in methanol (100 ml) for 2 h. The solution was then allowed to cool, poured into a beaker containing water and stirred for 30 min. The product was separated by filtration and the crude sample obtained was recrystallized twice from hot methanol.

Refinement top

N-bound H atoms were located in a difference map and were refined with an N—H distance restraint of 0.86 (1) Å. C-bound H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005) and SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds.
2,5-Dimethoxybenzaldehyde thiosemicarbazone top
Crystal data top
C10H13N3O2SF(000) = 1008
Mr = 239.29Dx = 1.393 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4233 reflections
a = 11.0713 (1) Åθ = 2.6–30.0°
b = 13.0603 (2) ŵ = 0.27 mm1
c = 15.7808 (2) ÅT = 100 K
V = 2281.82 (5) Å3Block, colourless
Z = 80.34 × 0.28 × 0.22 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3486 independent reflections
Radiation source: fine-focus sealed tube2834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1511
Tmin = 0.912, Tmax = 0.943k = 1418
18486 measured reflectionsl = 2219
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.8407P]
where P = (Fo2 + 2Fc2)/3
3486 reflections(Δ/σ)max = 0.002
157 parametersΔρmax = 0.40 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C10H13N3O2SV = 2281.82 (5) Å3
Mr = 239.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.0713 (1) ŵ = 0.27 mm1
b = 13.0603 (2) ÅT = 100 K
c = 15.7808 (2) Å0.34 × 0.28 × 0.22 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3486 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2834 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.943Rint = 0.043
18486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.40 e Å3
3486 reflectionsΔρmin = 0.27 e Å3
157 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01083 (3)1.16558 (3)0.45083 (2)0.01697 (9)
O10.35907 (8)0.80559 (7)0.68704 (6)0.0191 (2)
O20.72695 (8)1.07776 (7)0.61508 (6)0.0165 (2)
N10.28066 (10)1.06262 (9)0.56220 (6)0.0150 (2)
N20.16335 (10)1.07175 (9)0.53426 (7)0.0157 (2)
N30.21269 (11)1.23005 (9)0.48405 (7)0.0178 (2)
C10.45590 (12)0.86889 (10)0.67348 (7)0.0150 (2)
C20.57116 (12)0.85165 (10)0.70424 (8)0.0174 (3)
H2A0.58680.79390.73700.021*
C30.66395 (12)0.92047 (10)0.68638 (8)0.0175 (3)
H3A0.74140.90850.70700.021*
C40.64053 (11)1.00689 (10)0.63780 (7)0.0144 (2)
C50.52450 (12)1.02595 (10)0.60844 (7)0.0145 (2)
H5A0.50911.08460.57680.017*
C60.43114 (11)0.95785 (10)0.62609 (7)0.0138 (2)
C70.30819 (12)0.97659 (10)0.59612 (8)0.0153 (2)
H7A0.24970.92590.60170.018*
C80.13017 (11)1.15736 (10)0.49192 (7)0.0142 (2)
C90.37938 (13)0.71375 (11)0.73357 (9)0.0231 (3)
H9A0.30490.67660.73870.035*
H9B0.40920.73040.78900.035*
H9C0.43770.67240.70440.035*
C100.84490 (12)1.06643 (11)0.65093 (8)0.0184 (3)
H10A0.89651.12000.63030.028*
H10B0.87771.00120.63500.028*
H10C0.83971.07050.71160.028*
H1N20.1156 (16)1.0222 (14)0.5376 (11)0.024 (4)*
H2N30.2833 (10)1.2200 (13)0.5055 (10)0.025 (4)*
H1N30.1967 (18)1.2835 (10)0.4545 (10)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01117 (16)0.01533 (17)0.02441 (16)0.00118 (11)0.00228 (12)0.00302 (11)
O10.0150 (5)0.0161 (5)0.0261 (5)0.0003 (4)0.0023 (4)0.0075 (4)
O20.0115 (4)0.0155 (5)0.0224 (4)0.0017 (3)0.0022 (3)0.0021 (3)
N10.0109 (5)0.0158 (5)0.0184 (5)0.0003 (4)0.0023 (4)0.0008 (4)
N20.0107 (5)0.0134 (5)0.0231 (5)0.0015 (4)0.0029 (4)0.0036 (4)
N30.0139 (5)0.0143 (5)0.0251 (5)0.0012 (4)0.0037 (4)0.0035 (4)
C10.0154 (6)0.0134 (6)0.0161 (5)0.0008 (5)0.0028 (5)0.0010 (4)
C20.0187 (7)0.0140 (6)0.0196 (5)0.0031 (5)0.0001 (5)0.0035 (4)
C30.0143 (6)0.0176 (6)0.0205 (6)0.0035 (5)0.0029 (5)0.0008 (5)
C40.0129 (6)0.0141 (6)0.0161 (5)0.0002 (5)0.0007 (4)0.0015 (4)
C50.0152 (6)0.0131 (6)0.0154 (5)0.0010 (5)0.0009 (4)0.0013 (4)
C60.0125 (6)0.0137 (6)0.0151 (5)0.0016 (5)0.0000 (4)0.0004 (4)
C70.0130 (6)0.0152 (6)0.0176 (5)0.0009 (5)0.0001 (4)0.0013 (4)
C80.0132 (6)0.0137 (6)0.0156 (5)0.0010 (4)0.0009 (4)0.0008 (4)
C90.0223 (7)0.0168 (7)0.0301 (7)0.0002 (5)0.0039 (6)0.0085 (5)
C100.0127 (6)0.0206 (7)0.0218 (6)0.0005 (5)0.0025 (5)0.0017 (5)
Geometric parameters (Å, º) top
S1—C81.6938 (13)C2—H2A0.93
O1—C11.3706 (16)C3—C41.3888 (18)
O1—C91.4242 (16)C3—H3A0.93
O2—C41.3788 (15)C4—C51.3881 (17)
O2—C101.4308 (15)C5—C61.3917 (18)
N1—C71.2813 (16)C5—H5A0.93
N1—N21.3768 (15)C6—C71.4617 (18)
N2—C81.3533 (16)C7—H7A0.93
N2—H1N20.838 (18)C9—H9A0.96
N3—C81.3235 (17)C9—H9B0.96
N3—H2N30.861 (9)C9—H9C0.96
N3—H1N30.857 (9)C10—H10A0.96
C1—C21.3837 (19)C10—H10B0.96
C1—C61.4087 (17)C10—H10C0.96
C2—C31.3938 (19)
C1—O1—C9117.71 (10)C6—C5—H5A119.8
C4—O2—C10117.46 (10)C5—C6—C1119.26 (12)
C7—N1—N2115.73 (11)C5—C6—C7121.33 (11)
C8—N2—N1119.06 (11)C1—C6—C7119.41 (12)
C8—N2—H1N2119.9 (12)N1—C7—C6120.23 (12)
N1—N2—H1N2120.5 (12)N1—C7—H7A119.9
C8—N3—H2N3118.7 (11)C6—C7—H7A119.9
C8—N3—H1N3119.5 (14)N3—C8—N2116.85 (12)
H2N3—N3—H1N3121.6 (17)N3—C8—S1123.70 (10)
O1—C1—C2124.64 (11)N2—C8—S1119.44 (10)
O1—C1—C6115.35 (11)O1—C9—H9A109.5
C2—C1—C6120.00 (12)O1—C9—H9B109.5
C1—C2—C3120.25 (12)H9A—C9—H9B109.5
C1—C2—H2A119.9O1—C9—H9C109.5
C3—C2—H2A119.9H9A—C9—H9C109.5
C4—C3—C2119.87 (12)H9B—C9—H9C109.5
C4—C3—H3A120.1O2—C10—H10A109.5
C2—C3—H3A120.1O2—C10—H10B109.5
O2—C4—C5115.78 (11)H10A—C10—H10B109.5
O2—C4—C3124.03 (11)O2—C10—H10C109.5
C5—C4—C3120.19 (12)H10A—C10—H10C109.5
C4—C5—C6120.39 (12)H10B—C10—H10C109.5
C4—C5—H5A119.8
C7—N1—N2—C8174.96 (11)C4—C5—C6—C10.54 (18)
C9—O1—C1—C22.31 (18)C4—C5—C6—C7179.74 (11)
C9—O1—C1—C6179.11 (11)O1—C1—C6—C5179.27 (11)
O1—C1—C2—C3179.55 (12)C2—C1—C6—C52.07 (18)
C6—C1—C2—C31.93 (19)O1—C1—C6—C70.45 (17)
C1—C2—C3—C40.25 (19)C2—C1—C6—C7178.20 (11)
C10—O2—C4—C5173.96 (11)N2—N1—C7—C6178.52 (10)
C10—O2—C4—C36.45 (17)C5—C6—C7—N18.95 (18)
C2—C3—C4—O2178.28 (11)C1—C6—C7—N1171.33 (11)
C2—C3—C4—C51.30 (19)N1—N2—C8—N33.50 (17)
O2—C4—C5—C6178.47 (11)N1—N2—C8—S1175.42 (9)
C3—C4—C5—C61.14 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.84 (4)2.718 (18)3.5375 (12)166 (2)
N3—H2N3···S1ii0.86 (1)2.81 (1)3.5047 (12)139 (1)
N3—H1N3···O2iii0.86 (1)2.15 (1)2.9617 (15)159 (2)
C3—H3A···O1iv0.932.513.3027 (16)143
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y+5/2, z+1; (iii) x1/2, y+5/2, z+1; (iv) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H13N3O2S
Mr239.29
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)11.0713 (1), 13.0603 (2), 15.7808 (2)
V3)2281.82 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.34 × 0.28 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.912, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
18486, 3486, 2834
Rint0.043
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.06
No. of reflections3486
No. of parameters157
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.27

Computer programs: , APEX2 (Bruker, 2005) and SAINT (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.84 (4)2.718 (18)3.5375 (12)166 (2)
N3—H2N3···S1ii0.86 (1)2.811 (13)3.5047 (12)139 (1)
N3—H1N3···O2iii0.86 (1)2.145 (11)2.9617 (15)159 (2)
C3—H3A···O1iv0.932.513.3027 (16)143
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y+5/2, z+1; (iii) x1/2, y+5/2, z+1; (iv) x+1/2, y, z+3/2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

§Current address: Department of Physics, KLE Society's KLE Institute of Technology, Gokul, Hubli 590 030, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBeraldo, H. & Gambino, D. (2004). Mini-Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds