organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6,8-Tetra­kis(4-fluoro­phen­yl)-3,7-di­aza­bi­cyclo­[3.3.1]nonan-9-one

aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, bDepartment of Chemistry, VIT University, Vellore 632 014, India, cDepartment of Physics, The Madura College, Madurai 625 011, India, and dDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk

(Received 17 November 2008; accepted 21 November 2008; online 29 November 2008)

In the title compound, C31H24F4N2O, the bicyclo­[3.3.1]nonane ring exists in a chair-boat conformation. Two of the four fluorine-substituted rings adopt equatorial dispositions with the piperidin-4-one rings. Mol­ecules are linked into a two-dimensional network parallel to ([\overline{1}]01) by N—H⋯O, C—H⋯F and C—H⋯O hydrogen bonds. Inter­molecular N—H⋯π and C—H⋯π inter­actions are also observed.

Related literature

For general background, see: Asakawa (1995[Asakawa, Y. (1995). In Progress in the Chemistry of Organic Natural Products, edited by G. W. Moore, R. E. Steglich & W. Tamm. New York: Springer-Verlag.]); Jeyaraman & Avila (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]).

[Scheme 1]

Experimental

Crystal data
  • C31H24F4N2O

  • Mr = 516.52

  • Monoclinic, C 2/c

  • a = 37.1521 (9) Å

  • b = 7.1458 (5) Å

  • c = 26.2165 (7) Å

  • β = 133.249 (4)°

  • V = 5069.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.19 × 0.16 × 0.11 mm

Data collection
  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.986, Tmax = 0.991

  • 5315 measured reflections

  • 4465 independent reflections

  • 2735 reflections with I > 2σ(I)

  • Rint = 0.024

  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.02

  • 4465 reflections

  • 351 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯F4i 0.93 2.52 3.254 (3) 136
C3—H3⋯O1ii 0.98 2.56 3.358 (2) 138
N2—H1A⋯O1iii 0.86 (2) 2.53 (2) 3.292 (2) 148 (3)
N1—H2ACg3iv 0.89 (2) 2.70 (3) 3.549 (3) 160 (2)
C36—H36⋯Cg2v 0.93 2.81 3.696 (3) 160
C42—H42⋯Cg1v 0.93 2.78 3.651 (3) 157
C45—H45⋯Cg3iii 0.93 2.65 3.494 (3) 151
Symmetry codes: (i) -x, -y+2, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) -x, -y+1, -z; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1, Cg2 and Cg3 are the centroids of the C31–C36, C41–C46 and C61–C66 rings, respectively.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Azabicyclononane and their derivatives are studied intensively because of their pharmaceutical use and their application as an important structure in the field of molecular recognition. The 3-azabicyclo[3.3.1] nonane skeletal system easily constructed via a double Mannich reaction (Jeyaraman & Avila, 1981), has been known for some time. The bicyclo[3.3.1]nonane carbon framework is frequently encountered in natural products, in particular in alkaloids and terpenoids, e.g. trifarienols (Asakawa, 1995). Further, the study of conformation of the bicyclic ring helps in the understanding of interactions that are possible between the substituted aryl rings.

The molecular structure of the title compound is shown in Fig.1. The bicyclic [3.3.1]nonane ring can exist in chair-chair, chair-boat and boat-boat conformations. Among these, the chair-chair conformation is the most favourable. In the title compound, the bicyclic ring system adopts a chair-boat conformation. In the N1-piperidine ring of the compound, atoms N1 and C7 deviate from the C1/C2/C5/C6 plane by 0.652 (3) and 0.685 (3) Å, respectively, indicating a nearly ideal boat conformation. The phenyl rings substituted at C1 and C6 positions are oriented at an angle of 28.2 (1)° to each other. The phenyl rings substituted at C3 and C4 are oriented with an angle of 28.6 (1)° between them and they are equatorially disposed with respect to the piperidine ring, with torsion angles C7—C5—C4—C41 = -175.1 (2)° and C7—C2—C3—C31 = 173.3 (2)°.

Fig. 2 shows the packing viewed down the c axis. Pairs of intermolecular C—H···F (Table 1) hydrogen bonds form centrosymmetric R22(24) dimers. The moelcules are linked into a two-dimensional network parallel to the (101) by N—H···O, C—H···F and C—H···O hydrogen bonds. In addition, some C—H···π interactions (Table 1 ; Cg1, Cg2 and Cg3 refer to centroids of C31-C36, C41-C46 and C61-C66 rings, respectively).

Related literature top

For general background, see: Asakawa (1995); Jeyaraman & Avila (1981). Cg1, Cg2 and Cg3 are the centroids of the C31–C36, C41–C46 and C61–C66 rings, respectively.

Experimental top

A mixture of 0.73 ml of dry acetone (0.01 mol), 4.96 ml of 4-fluorobenzaldehyde (0.04 mol), 1.54 g dry ammonium acetate (0.02 mol) were taken in a flask with ethanol as solvent. Contents were heated with constant shaking until it becomes pale orange in colour. Then the contents were kept aside for 24 h and the title compound was filtered through the Buchner funnel, washed with 1:1 ethanol-ether mixture until the yellow colour disappeared and dried (yield 45%, m.p. 484 K).

Refinement top

Atoms H1A and H2A were located in a difference Fourier map and their positional and isotropic displacement parameters were refined. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C-H = 0.93–0.98 Å and Uiso = 1.2Ueq(C) for CH group.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram viewed down the c axis.
2,4,6,8-Tetrakis(4-fluorophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one top
Crystal data top
C31H24F4N2OF(000) = 2144
Mr = 516.52Dx = 1.353 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 37.1521 (9) Åθ = 2–25°
b = 7.1458 (5) ŵ = 0.10 mm1
c = 26.2165 (7) ÅT = 293 K
β = 133.249 (4)°Block, colourless
V = 5069.5 (4) Å30.19 × 0.16 × 0.11 mm
Z = 8
Data collection top
Nonius MACH-3
diffractometer
2735 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω–2θ scansh = 044
Absorption correction: ψ scan
(North et al., 1968)
k = 18
Tmin = 0.986, Tmax = 0.991l = 3122
5315 measured reflections2 standard reflections every 60 min
4465 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0552P)2 + 1.3466P]
where P = (Fo2 + 2Fc2)/3
4465 reflections(Δ/σ)max = 0.001
351 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C31H24F4N2OV = 5069.5 (4) Å3
Mr = 516.52Z = 8
Monoclinic, C2/cMo Kα radiation
a = 37.1521 (9) ŵ = 0.10 mm1
b = 7.1458 (5) ÅT = 293 K
c = 26.2165 (7) Å0.19 × 0.16 × 0.11 mm
β = 133.249 (4)°
Data collection top
Nonius MACH-3
diffractometer
2735 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.986, Tmax = 0.9912 standard reflections every 60 min
5315 measured reflections intensity decay: none
4465 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.14 e Å3
4465 reflectionsΔρmin = 0.23 e Å3
351 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11845 (6)0.4616 (3)0.20424 (9)0.0401 (5)
H10.11510.32510.20020.048*
C20.17256 (7)0.5147 (3)0.24318 (10)0.0385 (4)
H20.18710.58850.28500.046*
C30.20558 (6)0.3394 (3)0.26425 (9)0.0378 (5)
H30.23790.38380.28380.045*
C40.18263 (7)0.3426 (3)0.15308 (9)0.0377 (4)
H40.21660.38480.17980.045*
C50.14991 (6)0.5202 (3)0.12939 (9)0.0371 (4)
H50.15080.59740.09940.044*
C60.09512 (6)0.4758 (3)0.09015 (9)0.0398 (5)
H60.08970.34030.08360.048*
C70.17300 (7)0.6262 (3)0.19522 (10)0.0386 (5)
C110.10312 (7)0.5332 (3)0.24153 (10)0.0430 (5)
C120.11071 (9)0.4228 (4)0.29154 (12)0.0621 (6)
H120.12580.30670.30250.074*
C130.09628 (10)0.4816 (4)0.32551 (13)0.0711 (7)
H130.10170.40680.35930.085*
C140.07391 (8)0.6514 (4)0.30841 (12)0.0571 (6)
C150.06615 (8)0.7656 (3)0.26035 (12)0.0564 (6)
H150.05120.88170.25000.068*
C160.08102 (8)0.7055 (3)0.22704 (11)0.0504 (5)
H160.07600.78290.19410.060*
C310.21368 (7)0.2239 (3)0.31941 (9)0.0394 (5)
C320.18761 (7)0.0614 (3)0.30531 (11)0.0476 (5)
H320.16460.01580.25970.057*
C330.19552 (8)0.0333 (3)0.35830 (12)0.0531 (6)
H330.17780.14130.34860.064*
C340.22973 (8)0.0344 (3)0.42487 (11)0.0520 (6)
C350.25679 (8)0.1928 (3)0.44138 (11)0.0526 (6)
H350.28010.23610.48730.063*
C360.24843 (7)0.2856 (3)0.38825 (10)0.0462 (5)
H360.26660.39290.39870.055*
C410.16646 (6)0.2296 (3)0.09174 (9)0.0377 (4)
C420.17840 (7)0.2953 (3)0.05514 (10)0.0486 (5)
H420.19640.40560.06970.058*
C430.16441 (8)0.2022 (3)0.00210 (11)0.0572 (6)
H430.17250.24830.02630.069*
C440.13822 (8)0.0401 (3)0.02224 (11)0.0552 (6)
C450.12559 (8)0.0312 (3)0.01184 (11)0.0550 (6)
H450.10780.14230.00310.066*
C460.13961 (7)0.0644 (3)0.06916 (10)0.0476 (5)
H460.13100.01760.09270.057*
C610.06009 (7)0.5723 (3)0.01948 (10)0.0406 (5)
C620.03742 (8)0.7397 (3)0.00973 (12)0.0590 (6)
H620.04200.79040.04650.071*
C630.00812 (9)0.8329 (4)0.05342 (13)0.0697 (7)
H630.00710.94500.05950.084*
C640.00196 (8)0.7583 (4)0.10652 (11)0.0596 (6)
C650.02287 (8)0.5928 (3)0.10022 (11)0.0546 (6)
H650.01770.54350.13760.066*
C660.05205 (7)0.4997 (3)0.03665 (10)0.0469 (5)
H660.06650.38630.03150.056*
N10.08615 (6)0.5436 (3)0.13358 (8)0.0448 (4)
N20.18264 (6)0.2354 (2)0.20033 (8)0.0396 (4)
O10.19350 (5)0.7766 (2)0.21027 (7)0.0521 (4)
F10.05822 (5)0.7074 (2)0.34005 (7)0.0799 (4)
F20.23818 (6)0.0598 (2)0.47714 (7)0.0775 (4)
F30.12520 (6)0.0562 (2)0.07769 (7)0.0844 (5)
F40.02642 (6)0.8518 (2)0.16843 (7)0.0923 (5)
H1A0.1975 (8)0.130 (3)0.2109 (11)0.057 (7)*
H2A0.0545 (8)0.522 (3)0.1100 (10)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (10)0.0390 (12)0.0455 (11)0.0006 (9)0.0318 (9)0.0010 (9)
C20.0420 (10)0.0344 (11)0.0438 (10)0.0014 (9)0.0313 (9)0.0037 (9)
C30.0366 (10)0.0367 (11)0.0427 (11)0.0005 (9)0.0282 (9)0.0008 (9)
C40.0358 (9)0.0366 (11)0.0442 (11)0.0001 (9)0.0288 (9)0.0007 (9)
C50.0401 (10)0.0341 (11)0.0429 (10)0.0006 (8)0.0308 (9)0.0023 (9)
C60.0395 (10)0.0392 (12)0.0443 (10)0.0017 (9)0.0302 (9)0.0026 (9)
C70.0359 (10)0.0317 (11)0.0527 (12)0.0042 (9)0.0321 (9)0.0020 (9)
C110.0399 (10)0.0480 (13)0.0455 (11)0.0007 (10)0.0309 (9)0.0007 (10)
C120.0749 (15)0.0619 (16)0.0706 (15)0.0213 (13)0.0580 (14)0.0195 (13)
C130.0894 (18)0.083 (2)0.0738 (16)0.0217 (16)0.0686 (15)0.0244 (15)
C140.0563 (13)0.0735 (17)0.0589 (14)0.0002 (12)0.0463 (12)0.0053 (13)
C150.0618 (13)0.0542 (15)0.0660 (14)0.0085 (12)0.0487 (12)0.0040 (12)
C160.0588 (13)0.0490 (13)0.0573 (12)0.0035 (11)0.0452 (11)0.0051 (11)
C310.0411 (10)0.0378 (11)0.0454 (11)0.0036 (9)0.0320 (9)0.0010 (9)
C320.0539 (12)0.0384 (12)0.0529 (12)0.0034 (10)0.0374 (11)0.0054 (10)
C330.0688 (14)0.0370 (12)0.0703 (15)0.0002 (11)0.0541 (13)0.0017 (11)
C340.0722 (15)0.0462 (14)0.0604 (14)0.0155 (12)0.0543 (13)0.0130 (12)
C350.0642 (14)0.0536 (14)0.0472 (12)0.0036 (12)0.0410 (12)0.0026 (11)
C360.0526 (11)0.0424 (12)0.0481 (11)0.0034 (10)0.0362 (10)0.0050 (10)
C410.0370 (9)0.0359 (11)0.0425 (10)0.0037 (9)0.0282 (9)0.0026 (9)
C420.0570 (12)0.0449 (12)0.0589 (13)0.0065 (10)0.0455 (11)0.0042 (11)
C430.0716 (14)0.0621 (16)0.0597 (13)0.0006 (13)0.0535 (13)0.0007 (12)
C440.0622 (13)0.0568 (15)0.0434 (11)0.0048 (12)0.0350 (11)0.0062 (11)
C450.0626 (13)0.0443 (13)0.0531 (12)0.0088 (11)0.0378 (11)0.0084 (11)
C460.0554 (12)0.0427 (13)0.0520 (12)0.0045 (11)0.0397 (11)0.0012 (10)
C610.0379 (10)0.0403 (12)0.0447 (11)0.0010 (9)0.0288 (9)0.0001 (9)
C620.0704 (15)0.0555 (15)0.0572 (13)0.0157 (13)0.0462 (13)0.0046 (12)
C630.0783 (17)0.0603 (17)0.0675 (16)0.0270 (14)0.0488 (14)0.0153 (14)
C640.0550 (13)0.0605 (16)0.0488 (13)0.0061 (12)0.0300 (11)0.0138 (12)
C650.0497 (12)0.0654 (16)0.0438 (12)0.0071 (12)0.0301 (11)0.0051 (12)
C660.0432 (11)0.0477 (13)0.0474 (12)0.0013 (10)0.0301 (10)0.0027 (10)
N10.0374 (9)0.0567 (12)0.0455 (9)0.0043 (9)0.0303 (8)0.0037 (9)
N20.0479 (9)0.0329 (10)0.0443 (9)0.0049 (8)0.0340 (8)0.0024 (8)
O10.0620 (9)0.0362 (8)0.0657 (9)0.0095 (7)0.0467 (8)0.0059 (7)
F10.0926 (10)0.1006 (12)0.0882 (10)0.0073 (9)0.0781 (9)0.0025 (9)
F20.1203 (12)0.0641 (9)0.0821 (9)0.0118 (8)0.0825 (10)0.0192 (8)
F30.1090 (11)0.0841 (11)0.0633 (8)0.0052 (9)0.0602 (9)0.0224 (8)
F40.0987 (11)0.0894 (12)0.0591 (8)0.0184 (9)0.0426 (9)0.0273 (8)
Geometric parameters (Å, º) top
C1—N11.473 (2)C32—C331.384 (3)
C1—C111.518 (3)C32—H320.93
C1—C21.554 (2)C33—C341.362 (3)
C1—H10.98C33—H330.93
C2—C71.498 (3)C34—F21.356 (2)
C2—C31.566 (3)C34—C351.372 (3)
C2—H20.98C35—C361.372 (3)
C3—N21.459 (2)C35—H350.93
C3—C311.505 (3)C36—H360.93
C3—H30.98C41—C421.386 (3)
C4—N21.456 (2)C41—C461.389 (3)
C4—C411.508 (3)C42—C431.377 (3)
C4—C51.562 (3)C42—H420.93
C4—H40.98C43—C441.365 (3)
C5—C71.503 (3)C43—H430.93
C5—C61.559 (2)C44—C451.361 (3)
C5—H50.98C44—F31.363 (2)
C6—N11.470 (2)C45—C461.387 (3)
C6—C611.516 (3)C45—H450.93
C6—H60.98C46—H460.93
C7—O11.216 (2)C61—C621.382 (3)
C11—C161.381 (3)C61—C661.386 (3)
C11—C121.383 (3)C62—C631.379 (3)
C12—C131.383 (3)C62—H620.93
C12—H120.93C63—C641.356 (3)
C13—C141.361 (3)C63—H630.93
C13—H130.93C64—F41.359 (2)
C14—C151.356 (3)C64—C651.361 (3)
C14—F11.360 (2)C65—C661.386 (3)
C15—C161.383 (3)C65—H650.93
C15—H150.93C66—H660.93
C16—H160.93N1—H2A0.89 (2)
C31—C361.388 (3)N2—H1A0.86 (2)
C31—C321.390 (3)
N1—C1—C11109.51 (15)C32—C31—C3123.93 (17)
N1—C1—C2107.55 (15)C33—C32—C31120.76 (19)
C11—C1—C2112.45 (15)C33—C32—H32119.6
N1—C1—H1109.1C31—C32—H32119.6
C11—C1—H1109.1C34—C33—C32118.8 (2)
C2—C1—H1109.1C34—C33—H33120.6
C7—C2—C1109.37 (15)C32—C33—H33120.6
C7—C2—C3105.39 (14)F2—C34—C33119.0 (2)
C1—C2—C3112.61 (15)F2—C34—C35118.6 (2)
C7—C2—H2109.8C33—C34—C35122.42 (19)
C1—C2—H2109.8C34—C35—C36118.1 (2)
C3—C2—H2109.8C34—C35—H35121.0
N2—C3—C31113.52 (16)C36—C35—H35121.0
N2—C3—C2107.60 (14)C35—C36—C31121.9 (2)
C31—C3—C2111.73 (14)C35—C36—H36119.0
N2—C3—H3107.9C31—C36—H36119.0
C31—C3—H3107.9C42—C41—C46118.01 (18)
C2—C3—H3107.9C42—C41—C4118.32 (17)
N2—C4—C41113.15 (16)C46—C41—C4123.66 (16)
N2—C4—C5108.19 (14)C43—C42—C41122.0 (2)
C41—C4—C5112.21 (15)C43—C42—H42119.0
N2—C4—H4107.7C41—C42—H42119.0
C41—C4—H4107.7C44—C43—C42117.9 (2)
C5—C4—H4107.7C44—C43—H43121.0
C7—C5—C6108.66 (14)C42—C43—H43121.0
C7—C5—C4106.05 (14)C45—C44—F3118.8 (2)
C6—C5—C4113.94 (15)C45—C44—C43122.6 (2)
C7—C5—H5109.4F3—C44—C43118.6 (2)
C6—C5—H5109.4C44—C45—C46119.0 (2)
C4—C5—H5109.4C44—C45—H45120.5
N1—C6—C61109.65 (16)C46—C45—H45120.5
N1—C6—C5107.95 (15)C45—C46—C41120.48 (19)
C61—C6—C5110.70 (15)C45—C46—H46119.8
N1—C6—H6109.5C41—C46—H46119.8
C61—C6—H6109.5C62—C61—C66117.84 (19)
C5—C6—H6109.5C62—C61—C6121.58 (18)
O1—C7—C2124.21 (18)C66—C61—C6120.48 (18)
O1—C7—C5123.78 (18)C63—C62—C61121.3 (2)
C2—C7—C5111.69 (17)C63—C62—H62119.3
C16—C11—C12117.76 (18)C61—C62—H62119.3
C16—C11—C1122.54 (18)C64—C63—C62118.8 (2)
C12—C11—C1119.69 (19)C64—C63—H63120.6
C13—C12—C11121.3 (2)C62—C63—H63120.6
C13—C12—H12119.3C63—C64—F4118.7 (2)
C11—C12—H12119.3C63—C64—C65122.4 (2)
C14—C13—C12118.5 (2)F4—C64—C65118.9 (2)
C14—C13—H13120.7C64—C65—C66118.3 (2)
C12—C13—H13120.7C64—C65—H65120.8
C15—C14—F1118.8 (2)C66—C65—H65120.8
C15—C14—C13122.4 (2)C65—C66—C61121.2 (2)
F1—C14—C13118.8 (2)C65—C66—H66119.4
C14—C15—C16118.5 (2)C61—C66—H66119.4
C14—C15—H15120.8C6—N1—C1114.91 (15)
C16—C15—H15120.8C6—N1—H2A107.3 (13)
C11—C16—C15121.5 (2)C1—N1—H2A110.8 (13)
C11—C16—H16119.2C4—N2—C3111.62 (15)
C15—C16—H16119.2C4—N2—H1A111.2 (14)
C36—C31—C32117.96 (18)C3—N2—H1A109.6 (14)
C36—C31—C3118.09 (18)
N1—C1—C2—C71.1 (2)C31—C32—C33—C340.6 (3)
C11—C1—C2—C7121.79 (18)C32—C33—C34—F2178.90 (18)
N1—C1—C2—C3117.95 (17)C32—C33—C34—C350.2 (3)
C11—C1—C2—C3121.40 (17)F2—C34—C35—C36179.10 (18)
C7—C2—C3—N261.43 (18)C33—C34—C35—C360.4 (3)
C1—C2—C3—N257.74 (18)C34—C35—C36—C310.3 (3)
C7—C2—C3—C31173.32 (15)C32—C31—C36—C351.1 (3)
C1—C2—C3—C3167.52 (19)C3—C31—C36—C35177.44 (18)
N2—C4—C5—C759.39 (18)N2—C4—C41—C42161.32 (17)
C41—C4—C5—C7175.09 (15)C5—C4—C41—C4275.9 (2)
N2—C4—C5—C660.09 (19)N2—C4—C41—C4619.6 (2)
C41—C4—C5—C665.43 (19)C5—C4—C41—C46103.2 (2)
C7—C5—C6—N13.4 (2)C46—C41—C42—C430.1 (3)
C4—C5—C6—N1114.62 (17)C4—C41—C42—C43179.00 (19)
C7—C5—C6—C61116.65 (18)C41—C42—C43—C440.3 (3)
C4—C5—C6—C61125.36 (17)C42—C43—C44—C450.1 (3)
C1—C2—C7—O1128.28 (19)C42—C43—C44—F3178.32 (19)
C3—C2—C7—O1110.4 (2)F3—C44—C45—C46178.73 (19)
C1—C2—C7—C558.06 (19)C43—C44—C45—C460.3 (3)
C3—C2—C7—C563.24 (18)C44—C45—C46—C410.5 (3)
C6—C5—C7—O1125.73 (19)C42—C41—C46—C450.3 (3)
C4—C5—C7—O1111.4 (2)C4—C41—C46—C45179.37 (19)
C6—C5—C7—C260.57 (19)N1—C6—C61—C6220.6 (3)
C4—C5—C7—C262.32 (17)C5—C6—C61—C6298.4 (2)
N1—C1—C11—C1628.4 (3)N1—C6—C61—C66163.06 (17)
C2—C1—C11—C1691.1 (2)C5—C6—C61—C6677.9 (2)
N1—C1—C11—C12150.81 (19)C66—C61—C62—C630.6 (3)
C2—C1—C11—C1289.7 (2)C6—C61—C62—C63175.7 (2)
C16—C11—C12—C130.6 (3)C61—C62—C63—C640.4 (4)
C1—C11—C12—C13178.6 (2)C62—C63—C64—F4179.1 (2)
C11—C12—C13—C140.4 (4)C62—C63—C64—C651.3 (4)
C12—C13—C14—C151.2 (4)C63—C64—C65—C661.0 (3)
C12—C13—C14—F1178.0 (2)F4—C64—C65—C66179.5 (2)
F1—C14—C15—C16178.3 (2)C64—C65—C66—C610.2 (3)
C13—C14—C15—C160.8 (4)C62—C61—C66—C651.0 (3)
C12—C11—C16—C151.0 (3)C6—C61—C66—C65175.47 (18)
C1—C11—C16—C15178.22 (19)C61—C6—N1—C1179.30 (16)
C14—C15—C16—C110.3 (3)C5—C6—N1—C158.6 (2)
N2—C3—C31—C36159.61 (16)C11—C1—N1—C6176.23 (16)
C2—C3—C31—C3678.5 (2)C2—C1—N1—C661.3 (2)
N2—C3—C31—C3221.9 (2)C41—C4—N2—C3171.16 (15)
C2—C3—C31—C32100.0 (2)C5—C4—N2—C363.87 (18)
C36—C31—C32—C331.3 (3)C31—C3—N2—C4170.94 (14)
C3—C31—C32—C33177.17 (18)C2—C3—N2—C464.88 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···F4i0.932.523.254 (3)136
C3—H3···O1ii0.982.563.358 (2)138
N2—H1A···O1iii0.86 (2)2.53 (2)3.292 (2)148 (3)
N1—H2A···Cg3iv0.89 (2)2.70 (3)3.549 (3)160 (2)
C36—H36···Cg2v0.932.813.696 (3)160
C42—H42···Cg1v0.932.783.651 (3)157
C45—H45···Cg3iii0.932.653.494 (3)151
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC31H24F4N2O
Mr516.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)37.1521 (9), 7.1458 (5), 26.2165 (7)
β (°) 133.249 (4)
V3)5069.5 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.19 × 0.16 × 0.11
Data collection
DiffractometerNonius MACH-3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.986, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5315, 4465, 2735
Rint0.024
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.02
No. of reflections4465
No. of parameters351
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.23

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···F4i0.932.523.254 (3)136
C3—H3···O1ii0.982.563.358 (2)138
N2—H1A···O1iii0.86 (2)2.53 (2)3.292 (2)148 (3)
N1—H2A···Cg3iv0.89 (2)2.70 (3)3.549 (3)160 (2)
C36—H36···Cg2v0.932.813.696 (3)160
C42—H42···Cg1v0.932.783.651 (3)157
C45—H45···Cg3iii0.932.653.494 (3)151
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

SN thanks the DST for the FIST programme.

References

First citationAsakawa, Y. (1995). In Progress in the Chemistry of Organic Natural Products, edited by G. W. Moore, R. E. Steglich & W. Tamm. New York: Springer-Verlag.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds