organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Thio­phene-2-carbaldehyde 2,4-di­nitro­phenyl­hydrazone

aKey Laboratory of Surface and Interface Science of Henan, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China, and bDepartment of Materials and Chemical Engineering, Guiling University of Technology, People's Republic of China
*Correspondence e-mail: yinck@263.net

(Received 13 November 2008; accepted 18 November 2008; online 22 November 2008)

In the approximately planar molecule of the title compound, C11H8N4O4S, the dihedral angle between the thio­phene and benzene rings is 5.73 (10)°. In the crystal structure, bifurcated inter/intra­molecular N—H⋯(O,O) hydrogen bonds are present. The intermolecular links lead to inversion dimers containing an R22(12) graph-set motif.

Related literature

For general background, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8N4O4S

  • Mr = 292.27

  • Monoclinic, P 21 /c

  • a = 4.8994 (17) Å

  • b = 9.520 (3) Å

  • c = 25.708 (8) Å

  • β = 92.71 (2)°

  • V = 1197.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 291 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.929

  • 11010 measured reflections

  • 2285 independent reflections

  • 1718 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.087

  • S = 1.02

  • 2285 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O1i 0.87 (2) 2.57 (2) 3.338 (2) 148.2 (19)
N3—H1⋯O1 0.87 (2) 2.01 (2) 2.630 (2) 127.4 (19)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,4-Dinitrophenylhydrazine is a reagent which is widely used for condensation with aldehydes and ketones. Several phenylhydrazone derivatives have been shown to be potentially DNA-damaging and are mutagenic agents(Okabe et al. 1993). As part of our work, we have synthesized the title compound (I) and reported its cyrstal structure.

The title molecule is roughly planar. Indeed, the benzene and the thiophene rings are only slight twisted, making a dihedral angle of 5.73 (10)° (Fig. 1). The two nitro groups, O1/N1/O2 and O3/N2/O4 are coplanar with the benzene ring to which they are attached.

Intermolecular N-H···O hydrogen bonds link the molecule two by two around inversion center, building then a R22(12) graph set motif (Etter et al., 1990; Bernstein et al., 1995) if the intramolecular N-H···O hydrogen bonds are ignored (Table 1, Fig.2).

Related literature top

For general background, see: Okabe et al. (1993). For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

2,4-dinitrophenylhydrazine(1 mmol, 0.198 g) was dissolved in anhydrous methanol, H2SO4 (98% 0.5 ml) was added to this, the mixture was stirred for several minitutes at 351 K, thiophene-2-carbaldehyde (1 mmol 0.112 g) in methanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized in methanol, purple single crystals of (I) was obtained after 5 d.

Refinement top

All H atoms were placed in calculated positions and treated as riding with C—H=0.93Å (aromatic) and N—H=0.86Å with Uiso(H)=1.2Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View showing the N-H···O hydrogen bonds buiding a R22(12) graph set motif. Hydrogen bonds are shown as dashed lines.
Thiophene-2-carbaldehyde 2,4-dinitrophenylhydrazone top
Crystal data top
C11H8N4O4SF(000) = 600
Mr = 292.27Dx = 1.621 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5391 reflections
a = 4.8994 (17) Åθ = 2.3–27.4°
b = 9.520 (3) ŵ = 0.29 mm1
c = 25.708 (8) ÅT = 291 K
β = 92.71 (2)°Block, purple
V = 1197.7 (7) Å30.30 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2285 independent reflections
Radiation source: sealed tube1718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 65
Tmin = 0.915, Tmax = 0.929k = 1111
11010 measured reflectionsl = 3129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
2285 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C11H8N4O4SV = 1197.7 (7) Å3
Mr = 292.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8994 (17) ŵ = 0.29 mm1
b = 9.520 (3) ÅT = 291 K
c = 25.708 (8) Å0.30 × 0.26 × 0.24 mm
β = 92.71 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2285 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1718 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.929Rint = 0.047
11010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.16 e Å3
2285 reflectionsΔρmin = 0.19 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1154 (4)0.2360 (2)0.04553 (7)0.0342 (4)
C20.0759 (4)0.1287 (2)0.04720 (7)0.0350 (4)
H20.20100.11500.01930.042*
C30.0801 (4)0.04351 (18)0.08984 (7)0.0315 (4)
C40.1065 (4)0.0673 (2)0.13207 (7)0.0383 (5)
H40.10480.00870.16100.046*
C50.2882 (4)0.1738 (2)0.13141 (7)0.0350 (4)
H50.40960.18700.15990.042*
C60.2980 (4)0.26512 (18)0.08856 (7)0.0291 (4)
C70.8165 (4)0.49823 (19)0.13079 (7)0.0389 (5)
H70.79740.56140.10330.047*
C81.0163 (4)0.52284 (19)0.17283 (7)0.0341 (4)
C91.1994 (5)0.6353 (2)0.17481 (8)0.0418 (5)
H91.20660.70500.14960.050*
C101.3738 (5)0.6289 (2)0.22076 (9)0.0465 (5)
H101.51070.69390.22900.056*
C111.3173 (5)0.5174 (2)0.25090 (8)0.0522 (6)
H111.41130.49750.28230.063*
N10.0973 (4)0.31477 (18)0.00000 (6)0.0394 (4)
N20.2778 (4)0.06932 (17)0.09065 (7)0.0414 (4)
N30.4846 (4)0.37052 (17)0.08923 (6)0.0378 (4)
H10.483 (5)0.426 (2)0.0624 (9)0.045*
N40.6631 (3)0.38663 (15)0.13180 (6)0.0321 (4)
O10.2484 (4)0.41150 (16)0.00353 (6)0.0545 (4)
O20.0594 (3)0.29004 (14)0.03604 (5)0.0461 (4)
O30.4272 (3)0.08987 (16)0.05310 (6)0.0526 (4)
O40.2847 (3)0.13710 (15)0.12986 (6)0.0513 (4)
S11.05706 (12)0.41736 (6)0.22559 (2)0.04762 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0302 (10)0.0438 (10)0.0277 (10)0.0016 (8)0.0096 (8)0.0034 (7)
C20.0330 (10)0.0410 (10)0.0303 (10)0.0007 (8)0.0046 (8)0.0039 (7)
C30.0326 (10)0.0290 (8)0.0325 (9)0.0001 (7)0.0024 (8)0.0025 (7)
C40.0414 (12)0.0417 (10)0.0314 (10)0.0038 (8)0.0038 (9)0.0075 (8)
C50.0259 (10)0.0463 (10)0.0323 (10)0.0090 (8)0.0035 (8)0.0005 (8)
C60.0270 (9)0.0339 (8)0.0262 (9)0.0002 (7)0.0004 (7)0.0062 (7)
C70.0510 (12)0.0394 (10)0.0257 (9)0.0026 (9)0.0057 (8)0.0013 (8)
C80.0316 (10)0.0353 (9)0.0349 (9)0.0023 (8)0.0025 (8)0.0079 (7)
C90.0473 (13)0.0361 (9)0.0412 (11)0.0042 (9)0.0073 (9)0.0059 (8)
C100.0387 (12)0.0416 (10)0.0581 (14)0.0045 (9)0.0105 (10)0.0220 (10)
C110.0629 (15)0.0558 (13)0.0357 (11)0.0052 (11)0.0222 (11)0.0131 (9)
N10.0383 (10)0.0452 (9)0.0335 (9)0.0104 (8)0.0120 (8)0.0013 (7)
N20.0360 (10)0.0421 (9)0.0453 (10)0.0026 (7)0.0074 (8)0.0047 (8)
N30.0387 (10)0.0443 (9)0.0290 (9)0.0077 (7)0.0126 (7)0.0001 (7)
N40.0345 (8)0.0344 (8)0.0266 (8)0.0003 (6)0.0087 (7)0.0040 (6)
O10.0659 (11)0.0525 (9)0.0435 (9)0.0225 (8)0.0163 (8)0.0158 (7)
O20.0471 (9)0.0505 (8)0.0383 (8)0.0317 (7)0.0222 (7)0.0182 (6)
O30.0488 (10)0.0534 (9)0.0537 (9)0.0260 (7)0.0185 (8)0.0002 (7)
O40.0566 (10)0.0451 (8)0.0519 (9)0.0169 (7)0.0008 (8)0.0131 (7)
S10.0480 (3)0.0553 (3)0.0385 (3)0.0071 (2)0.0093 (2)0.0040 (2)
Geometric parameters (Å, º) top
C1—C21.388 (3)C8—C91.396 (3)
C1—N11.389 (2)C8—S11.692 (2)
C1—C61.417 (2)C9—C101.426 (3)
C2—C31.365 (3)C9—H90.9300
C2—H20.9300C10—C111.351 (3)
C3—C41.404 (2)C10—H100.9300
C3—N21.447 (2)C11—S11.696 (2)
C4—C51.350 (3)C11—H110.9300
C4—H40.9300N1—O11.188 (2)
C5—C61.406 (3)N1—O21.1983 (19)
C5—H50.9300N2—O41.199 (2)
C6—N31.357 (2)N2—O31.199 (2)
C7—N41.302 (2)N3—N41.377 (2)
C7—C81.442 (2)N3—H10.87 (2)
C7—H70.9300
C2—C1—N1114.01 (15)C9—C8—S1112.01 (14)
C2—C1—C6121.47 (17)C7—C8—S1123.66 (14)
N1—C1—C6124.40 (17)C8—C9—C10110.86 (19)
C3—C2—C1119.87 (17)C8—C9—H9124.6
C3—C2—H2120.1C10—C9—H9124.6
C1—C2—H2120.1C11—C10—C9112.19 (18)
C2—C3—C4119.41 (17)C11—C10—H10123.9
C2—C3—N2119.22 (15)C9—C10—H10123.9
C4—C3—N2121.36 (16)C10—C11—S1113.08 (15)
C5—C4—C3121.14 (18)C10—C11—H11123.5
C5—C4—H4119.4S1—C11—H11123.5
C3—C4—H4119.4O1—N1—O2118.16 (16)
C4—C5—C6121.43 (17)O1—N1—C1117.89 (14)
C4—C5—H5119.3O2—N1—C1123.94 (16)
C6—C5—H5119.3O4—N2—O3123.26 (17)
N3—C6—C5119.70 (15)O4—N2—C3117.21 (15)
N3—C6—C1123.69 (17)O3—N2—C3119.53 (16)
C5—C6—C1116.55 (17)C6—N3—N4119.65 (16)
N4—C7—C8119.31 (16)C6—N3—H1117.6 (14)
N4—C7—H7120.3N4—N3—H1122.8 (14)
C8—C7—H7120.3C7—N4—N3114.87 (15)
C9—C8—C7124.33 (18)C8—S1—C1191.85 (11)
N1—C1—C2—C3180.00 (18)C8—C9—C10—C110.6 (3)
C6—C1—C2—C33.8 (3)C9—C10—C11—S10.1 (3)
C1—C2—C3—C41.3 (3)C2—C1—N1—O1177.51 (19)
C1—C2—C3—N2178.99 (18)C6—C1—N1—O11.5 (3)
C2—C3—C4—C50.6 (3)C2—C1—N1—O23.3 (3)
N2—C3—C4—C5179.16 (18)C6—C1—N1—O2179.4 (2)
C3—C4—C5—C60.1 (3)C2—C3—N2—O4176.10 (19)
C4—C5—C6—N3179.66 (19)C4—C3—N2—O43.6 (3)
C4—C5—C6—C12.5 (3)C2—C3—N2—O33.1 (3)
C2—C1—C6—N3178.60 (18)C4—C3—N2—O3177.21 (19)
N1—C1—C6—N32.8 (3)C5—C6—N3—N40.2 (3)
C2—C1—C6—C54.3 (3)C1—C6—N3—N4176.76 (17)
N1—C1—C6—C5179.88 (19)C8—C7—N4—N3178.20 (17)
N4—C7—C8—C9177.13 (19)C6—N3—N4—C7173.88 (18)
N4—C7—C8—S12.5 (3)C9—C8—S1—C110.66 (18)
C7—C8—C9—C10178.8 (2)C7—C8—S1—C11179.01 (19)
S1—C8—C9—C100.8 (2)C10—C11—S1—C80.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O1i0.87 (2)2.57 (2)3.338 (2)148.2 (19)
N3—H1···O10.87 (2)2.01 (2)2.630 (2)127.4 (19)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H8N4O4S
Mr292.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)4.8994 (17), 9.520 (3), 25.708 (8)
β (°) 92.71 (2)
V3)1197.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.915, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
11010, 2285, 1718
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.087, 1.02
No. of reflections2285
No. of parameters184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O1i0.87 (2)2.57 (2)3.338 (2)148.2 (19)
N3—H1···O10.87 (2)2.01 (2)2.630 (2)127.4 (19)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors express their deep appreciation to the Startup Fund for PhDs of Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 2005001) and the Startup Fund for Masters of Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 000455).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds