organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­anilino)-3-(2-hy­droxy­ethyl)quinazolin-4(3H)-one

aFaculty of Chemistry and Life Science, Xianning University, Xianning 437100, People's Republic of China
*Correspondence e-mail: minghuwu@hotmail.com

(Received 14 October 2008; accepted 7 November 2008; online 13 November 2008)

In the title mol­ecule, C16H14ClN3O2, the dihedral angle between the chloro­phenyl and pyrimidinone rings is 14.8 (1)°, while the dihedral angle between the fused benzene ring and the pyrimidinone ring is 3.8 (1)°. In the crystal structure, intra­molecular N—H⋯O hydrogen bonds, together with inter­molecular O—H⋯O hydrogen-bonding inter­actions, are present.

Related literature

For the biological activities and applications of 4(3H)-quinazolinone, see: Armarego (1963[Armarego, W. L. F. (1963). Advanced Heterocyclic Chemistry, Vol. 1, pp. 253-309. New York: Academic Press.]); Fisnerova et al. (1986[Fisnerova, L., Grimova, J., Roubal, Z., Maturova, E. & Brunova, B. (1986). Cesk. Farm. 3, 447-450.]); Gravier et al. (1992[Gravier, D., Dupin, J. P., Casadebaig, F., Hou, G., Boisseau, M. & Bernard, H. (1992). Pharmazie, 47, 91-94.]). For details of our ongoing heterocyclic synthesis and drug discovery project, see: Yang et al. (2008[Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 5, 1365-1369.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClN3O2

  • Mr = 315.75

  • Monoclinic, P 21 /n

  • a = 9.0707 (18) Å

  • b = 11.345 (2) Å

  • c = 14.143 (3) Å

  • β = 96.98 (3)°

  • V = 1444.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 273 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.973

  • 8113 measured reflections

  • 2824 independent reflections

  • 2300 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.05

  • 2824 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.839 (18) 1.993 (19) 2.8017 (19) 161.8 (17)
O2—H2A⋯O1i 0.86 (2) 1.86 (2) 2.7180 (18) 174 (2)
Symmetry code: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

One of the most frequently encountered heterocyclic molecules in medicinal chemistry is 4(3H)-quinazolinone, which has wide application as a result of antibacterial, antifungal, anticonvulsant, and anti-inflammatory activities (Armarego, 1963; Gravier et al., 1992; Fisnerova et al., 1986). In our ongoing heterocyclic synthesis and drug discovery project (Yang et al., 2008) we have focused on the synthesis of quinazolinones and pyrazolo pyrimidinones. Herein, the title compound was synthesized and determined by single-crystal X-ray diffraction.

In the molecule (Fig. 1), the dihedral angle between the chlorophenyl and pyrimidinone rings is 14.8 (1)°, and the dihedral angle between the fused benzene and pyrimidinone rings is 3.8 (1)°.

In the crystal structure, molecules are linked by intramolecular N1–H1A···O2 hydrogen-bonds together with O2–H2A···O1i intermolecular hydrogen-bonding interactions (symmetry code: i, -1/2 - x,1/2 + y,3/2 - z) (Fig. 2).

Related literature top

For the biologigal activites and applications of 4(3H)-quinazolinone, see: Armarego (1963); Fisnerova et al. (1986); Gravier et al. (1992). For details of our ongoing heterocyclic synthesis and drug discovery project, see: Yang et al. (2008).

Experimental top

To a solution of 2-ethoxycarbonyliminophosphorane (1.27 g, 3 mmol) in 10 ml absolute anhydrous CH2Cl2, 4-chlorophenylisocyanate (0.46 g, 3 mmol) was added dropwise at room temperature. The reaction mixture was left unstirred for 6 h at 273–278 K, whereafter a solution of 2-hydroxyethylamine (0.18 g, 3 mmol) in 5 ml absolute anhydrous CH2Cl2was added. The reaction mixture was then stirred overnight, the solution cooled and the reaction product recrystallized from CH3OH to give colorless crystals of the title compound suitable for X-ray analysis in 58% yield.

Refinement top

H atoms bonded to C atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and included in the riding model approximation. The positional parameters of H atoms bonded to N and O atoms were refined independently. For all H atoms Uiso (H) = 1.2Uiso (C,N) or 1.5Uiso (O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the molecule with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed down the a axis. Hydrogen bonds are shown as dashed lines.
2-(4-Chloroanilino)-3-(2-hydroxyethyl)quinazolin-4(3H)-one top
Crystal data top
C16H14ClN3O2F(000) = 656
Mr = 315.75Dx = 1.452 Mg m3
Monoclinic, P21/nMelting point = 432–434 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.0707 (18) ÅCell parameters from 3170 reflections
b = 11.345 (2) Åθ = 2.3–26.2°
c = 14.143 (3) ŵ = 0.28 mm1
β = 96.98 (3)°T = 273 K
V = 1444.6 (5) Å3Block, colourless
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2824 independent reflections
Radiation source: fine-focus sealed tube2300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 119
Tmin = 0.947, Tmax = 0.973k = 1113
8113 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.2177P]
where P = (Fo2 + 2Fc2)/3
2824 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H14ClN3O2V = 1444.6 (5) Å3
Mr = 315.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0707 (18) ŵ = 0.28 mm1
b = 11.345 (2) ÅT = 273 K
c = 14.143 (3) Å0.20 × 0.20 × 0.10 mm
β = 96.98 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2824 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2300 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.973Rint = 0.019
8113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.16 e Å3
2824 reflectionsΔρmin = 0.24 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24608 (18)1.06958 (14)0.90802 (11)0.0460 (4)
H10.21031.07800.84390.055*
C20.34154 (18)1.15287 (15)0.95164 (11)0.0495 (4)
H20.36991.21730.91740.059*
C30.39474 (17)1.13990 (14)1.04660 (12)0.0460 (4)
C40.35073 (19)1.04650 (15)1.09827 (12)0.0524 (4)
H40.38571.03951.16260.063*
C50.25416 (18)0.96263 (15)1.05448 (11)0.0502 (4)
H50.22420.89951.08950.060*
C60.20225 (16)0.97305 (13)0.95836 (11)0.0397 (3)
C70.03780 (15)0.79644 (13)0.93558 (10)0.0396 (3)
C80.13344 (17)0.63934 (14)0.88093 (11)0.0465 (4)
C90.13969 (17)0.61551 (14)0.98083 (11)0.0460 (4)
C100.04823 (16)0.68016 (14)1.04878 (11)0.0427 (4)
C110.05282 (18)0.65638 (16)1.14562 (12)0.0520 (4)
H110.00910.69741.19150.062*
C120.1479 (2)0.57314 (17)1.17282 (13)0.0608 (5)
H120.15120.55881.23730.073*
C130.2398 (2)0.50952 (18)1.10526 (15)0.0672 (5)
H130.30440.45331.12470.081*
C140.2352 (2)0.52964 (16)1.01032 (13)0.0607 (5)
H140.29560.48620.96520.073*
C150.00780 (19)0.74122 (15)0.76189 (11)0.0477 (4)
H15A0.02080.66480.73120.057*
H15B0.09510.76430.76130.057*
C160.1053 (2)0.82925 (16)0.70402 (12)0.0572 (4)
H16A0.10050.81630.63670.069*
H16B0.20760.81940.71610.069*
Cl10.51722 (6)1.24474 (4)1.10084 (4)0.06868 (19)
N10.10834 (15)0.89234 (12)0.90499 (9)0.0450 (3)
H1A0.0750 (19)0.9182 (16)0.8510 (13)0.054*
N20.03685 (14)0.72897 (11)0.86188 (9)0.0422 (3)
N30.03988 (14)0.77194 (11)1.02486 (9)0.0436 (3)
O10.20317 (14)0.58621 (11)0.81420 (9)0.0639 (4)
O20.05636 (14)0.94472 (12)0.72940 (9)0.0606 (3)
H2A0.129 (3)0.992 (2)0.7132 (17)0.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0555 (9)0.0443 (9)0.0388 (8)0.0021 (7)0.0088 (7)0.0014 (7)
C20.0578 (10)0.0417 (9)0.0510 (9)0.0077 (7)0.0148 (7)0.0012 (7)
C30.0454 (8)0.0386 (8)0.0536 (9)0.0025 (7)0.0049 (7)0.0039 (7)
C40.0591 (10)0.0470 (9)0.0480 (9)0.0069 (8)0.0063 (7)0.0057 (7)
C50.0551 (10)0.0435 (9)0.0493 (9)0.0087 (7)0.0040 (7)0.0097 (7)
C60.0385 (8)0.0355 (8)0.0450 (8)0.0015 (6)0.0043 (6)0.0006 (6)
C70.0374 (8)0.0374 (8)0.0431 (8)0.0016 (6)0.0016 (6)0.0023 (6)
C80.0476 (9)0.0403 (9)0.0512 (9)0.0021 (7)0.0043 (7)0.0092 (7)
C90.0481 (9)0.0372 (8)0.0531 (9)0.0018 (7)0.0078 (7)0.0045 (7)
C100.0421 (8)0.0391 (8)0.0465 (8)0.0006 (6)0.0035 (6)0.0020 (7)
C110.0526 (9)0.0539 (10)0.0482 (9)0.0061 (8)0.0008 (7)0.0042 (8)
C120.0657 (11)0.0616 (12)0.0556 (10)0.0088 (9)0.0093 (9)0.0124 (9)
C130.0748 (13)0.0568 (12)0.0714 (12)0.0225 (10)0.0149 (10)0.0049 (10)
C140.0681 (11)0.0491 (10)0.0654 (11)0.0179 (9)0.0099 (9)0.0083 (9)
C150.0560 (10)0.0468 (9)0.0403 (8)0.0042 (7)0.0065 (7)0.0050 (7)
C160.0626 (11)0.0598 (11)0.0466 (9)0.0048 (9)0.0035 (8)0.0017 (8)
Cl10.0759 (4)0.0539 (3)0.0731 (3)0.0218 (2)0.0037 (3)0.0055 (2)
N10.0489 (7)0.0433 (8)0.0408 (7)0.0053 (6)0.0027 (6)0.0043 (6)
N20.0466 (7)0.0386 (7)0.0411 (7)0.0003 (5)0.0039 (5)0.0046 (5)
N30.0445 (7)0.0434 (7)0.0421 (7)0.0048 (5)0.0018 (5)0.0005 (6)
O10.0715 (8)0.0628 (8)0.0562 (7)0.0195 (6)0.0029 (6)0.0179 (6)
O20.0660 (8)0.0522 (8)0.0596 (7)0.0103 (6)0.0079 (6)0.0050 (6)
Geometric parameters (Å, º) top
C1—C21.376 (2)C9—C141.400 (2)
C1—C61.390 (2)C10—N31.3796 (19)
C1—H10.9300C10—C111.402 (2)
C2—C31.379 (2)C11—C121.365 (2)
C2—H20.9300C11—H110.9300
C3—C41.374 (2)C12—C131.391 (3)
C3—Cl11.7408 (16)C12—H120.9300
C4—C51.387 (2)C13—C141.368 (3)
C4—H40.9300C13—H130.9300
C5—C61.389 (2)C14—H140.9300
C5—H50.9300C15—N21.476 (2)
C6—N11.406 (2)C15—C161.508 (2)
C7—N31.2907 (19)C15—H15A0.9700
C7—N11.3593 (19)C15—H15B0.9700
C7—N21.400 (2)C16—O21.415 (2)
C8—O11.2283 (19)C16—H16A0.9700
C8—N21.390 (2)C16—H16B0.9700
C8—C91.446 (2)N1—H1A0.839 (18)
C9—C101.398 (2)O2—H2A0.86 (2)
C2—C1—C6120.99 (15)C12—C11—H11119.9
C2—C1—H1119.5C10—C11—H11119.9
C6—C1—H1119.5C11—C12—C13120.77 (17)
C1—C2—C3119.35 (15)C11—C12—H12119.6
C1—C2—H2120.3C13—C12—H12119.6
C3—C2—H2120.3C14—C13—C12120.04 (17)
C4—C3—C2120.70 (15)C14—C13—H13120.0
C4—C3—Cl1120.26 (13)C12—C13—H13120.0
C2—C3—Cl1119.04 (13)C13—C14—C9120.15 (17)
C3—C4—C5120.01 (15)C13—C14—H14119.9
C3—C4—H4120.0C9—C14—H14119.9
C5—C4—H4120.0N2—C15—C16114.90 (14)
C4—C5—C6119.95 (15)N2—C15—H15A108.5
C4—C5—H5120.0C16—C15—H15A108.5
C6—C5—H5120.0N2—C15—H15B108.5
C5—C6—C1118.97 (14)C16—C15—H15B108.5
C5—C6—N1125.54 (14)H15A—C15—H15B107.5
C1—C6—N1115.48 (14)O2—C16—C15109.27 (14)
N3—C7—N1122.16 (14)O2—C16—H16A109.8
N3—C7—N2123.99 (14)C15—C16—H16A109.8
N1—C7—N2113.85 (13)O2—C16—H16B109.8
O1—C8—N2119.21 (15)C15—C16—H16B109.8
O1—C8—C9125.53 (15)H16A—C16—H16B108.3
N2—C8—C9115.25 (13)C7—N1—C6128.91 (13)
C10—C9—C14119.79 (15)C7—N1—H1A116.0 (12)
C10—C9—C8118.88 (14)C6—N1—H1A112.9 (13)
C14—C9—C8121.33 (15)C8—N2—C7121.00 (13)
N3—C10—C9122.70 (14)C8—N2—C15116.40 (13)
N3—C10—C11118.15 (14)C7—N2—C15122.37 (13)
C9—C10—C11119.01 (14)C7—N3—C10117.54 (13)
C12—C11—C10120.22 (16)C16—O2—H2A107.7 (16)
C6—C1—C2—C30.2 (2)C12—C13—C14—C91.0 (3)
C1—C2—C3—C41.5 (3)C10—C9—C14—C130.4 (3)
C1—C2—C3—Cl1179.23 (12)C8—C9—C14—C13179.47 (17)
C2—C3—C4—C51.3 (3)N2—C15—C16—O275.96 (19)
Cl1—C3—C4—C5179.42 (13)N3—C7—N1—C66.0 (2)
C3—C4—C5—C60.1 (3)N2—C7—N1—C6174.53 (14)
C4—C5—C6—C11.4 (2)C5—C6—N1—C77.1 (3)
C4—C5—C6—N1177.75 (15)C1—C6—N1—C7173.72 (14)
C2—C1—C6—C51.2 (2)O1—C8—N2—C7176.07 (14)
C2—C1—C6—N1178.01 (14)C9—C8—N2—C75.2 (2)
O1—C8—C9—C10177.05 (16)O1—C8—N2—C159.3 (2)
N2—C8—C9—C101.6 (2)C9—C8—N2—C15169.47 (13)
O1—C8—C9—C143.1 (3)N3—C7—N2—C89.8 (2)
N2—C8—C9—C14178.30 (15)N1—C7—N2—C8169.68 (13)
C14—C9—C10—N3174.93 (15)N3—C7—N2—C15164.55 (14)
C8—C9—C10—N35.0 (2)N1—C7—N2—C1516.0 (2)
C14—C9—C10—C110.8 (2)C16—C15—N2—C894.27 (17)
C8—C9—C10—C11179.30 (14)C16—C15—N2—C791.15 (19)
N3—C10—C11—C12174.43 (16)N1—C7—N3—C10173.12 (13)
C9—C10—C11—C121.5 (3)N2—C7—N3—C106.3 (2)
C10—C11—C12—C131.0 (3)C9—C10—N3—C71.1 (2)
C11—C12—C13—C140.3 (3)C11—C10—N3—C7176.85 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.839 (18)1.993 (19)2.8017 (19)161.8 (17)
O2—H2A···O1i0.86 (2)1.86 (2)2.7180 (18)174 (2)
Symmetry code: (i) x1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H14ClN3O2
Mr315.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)9.0707 (18), 11.345 (2), 14.143 (3)
β (°) 96.98 (3)
V3)1444.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.947, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
8113, 2824, 2300
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.05
No. of reflections2824
No. of parameters205
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.24

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.839 (18)1.993 (19)2.8017 (19)161.8 (17)
O2—H2A···O1i0.86 (2)1.86 (2)2.7180 (18)174 (2)
Symmetry code: (i) x1/2, y+1/2, z+3/2.
 

Acknowledgements

We gratefully acknowledge financial support of this work as a project of the Natural Science Foundation of Hubei Province under grant No. 2006ABA334.

References

First citationArmarego, W. L. F. (1963). Advanced Heterocyclic Chemistry, Vol. 1, pp. 253–309. New York: Academic Press.  Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFisnerova, L., Grimova, J., Roubal, Z., Maturova, E. & Brunova, B. (1986). Cesk. Farm. 3, 447–450.  Google Scholar
First citationGravier, D., Dupin, J. P., Casadebaig, F., Hou, G., Boisseau, M. & Bernard, H. (1992). Pharmazie, 47, 91–94.  PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 5, 1365–1369.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds