organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(3-bromo­phen­yl)-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai, Tamilnadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 6 November 2008; accepted 7 November 2008; online 13 November 2008)

The complete mol­ecule of the title compound, C20H19Br2NO, is generated by crystallographic mirror symmetry, with two C, one O and one N atom lying on the mirror plane. The compound exists in a twin-chair conformation with equatorial dispositions of the 3-bromo­phenyl groups [dihedral angle between rings = 27.37 (3)°]. The packing is stabilized by weak N—H⋯O and C—H⋯O inter­actions.

Related literature

For background, see: Barker et al. (2005[Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565-4575.]); Jeyaraman & Avila (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]); Padegimas & Kovacic (1972[Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672-2676.]); Smith-Verdier et al. (1983[Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101-103.]). For a similiar structure, see: Parthiban et al. (2008[Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008). Acta Cryst. E64, o1586.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Web & Becker (1967[Web, N. C. & Becker, M. R. (1967). J. Chem. Soc. B, pp. 1317-1321.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19Br2NO

  • Mr = 449.18

  • Orthorhombic, P n m a

  • a = 7.1595 (6) Å

  • b = 24.5891 (19) Å

  • c = 10.2598 (6) Å

  • V = 1806.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.49 mm−1

  • T = 298 (2) K

  • 0.34 × 0.25 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.310, Tmax = 0.498 (expected range = 0.277–0.445)

  • 12758 measured reflections

  • 2286 independent reflections

  • 1554 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.103

  • S = 1.05

  • 2286 reflections

  • 118 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.87 (5) 2.41 (5) 3.168 (5) 145 (4)
C1—H1⋯O1ii 0.98 2.54 3.361 (4) 142
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{5\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Azabicyclic ketones are an important class of heterocycles due to their broad-spectrum biological activities (Jeyaraman & Avila, 1981; Barker et al., 2005). Owing to the diverse possibilities in conformations, viz., chair-chair (Parthiban et al., 2008), chair-boat (Smith-Verdier et al., 1983) and boat-boat (Padegimas & Kovacic, 1972) for the azabicycle, the present crystal study was undertaken to explore the conformation, stereochemistry and bondings in the title compound, (I).

The piperidine ring in (I) adopts an ideal chair conformation with the deviation of ring atoms C3 and N1 from the C1/C2/C2i/C1i (i = x, 3/2-y, z) plane being 0.686 (3) and -0.702 (3) Å, respectively. The q2 and q3 values are 0.010 (3) and -0.617 (3)Å and the total puckering amplitude, QT = 0.617 (3)Å and θ = 180.0 (3)° (Cremer & Pople, 1975; Web & Becker, 1967).

The cyclohexane ring deviate from the ideal chair conformation by the deviation of ring atoms C3 and C5 from the C2/C4/C4i/C2i plane by -0.725 (4) and 0.525 (3)Å, respectively. For the cyclohexane, the q2 and q3 parameters are 0.150 (4) and 0.543 (4)Å respectively. The total puckering amplitude, QT = 0.563 (3)Å and θ =15.6 (4)°. Hence, the title compound, exists in a twin-chair conformation with equatorial orientations of the 3-bromophenyl groups on the heterocycle, which are orientated at an angle of 27.37 (3)° to each other. The torsion angles of C3—C2—C1—C6 and its mirror plane C3—C2i—C1i—C6i is 174.45 (4)°. The packing is stabilized by weak N—H···O and C—H···O bonds (Table 1).

Related literature top

For background, see: Barker et al. (2005); Jeyaraman & Avila (1981); Padegimas & Kovacic (1972); Smith-Verdier et al. (1983); Web et al. (1967). For a similiar structure, see: Parthiban et al. (2008). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

0.1 mol of meta Bromobenzaldehyde and 0.05 mol of cyclohexanone were simultaneously added to a warm solution of 0.075 mol ammonium acetate in 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate till the yellow colour formed during the mixing of the reactants and cooled to room temperature. Then 50 ml of ether was added and allowed to stir over night at warm condition (303–305 K). At the end, the crude azabicyclic ketone was separated by filtration and washed with 1:5 v/v ethanol-ether mixture until the solid become colourless. Colourless blocks of (I) were recrystallised from acetone.

Refinement top

The nitrogen-bound H atom was located in a difference map and refined isotropically. The other hydrogen atoms were fixed geometrically (C—H = 0.93–0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with non-hydrogen atoms represented as 30% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram with N—H···O (blue) and C—H···O (red) interactions.
2,4-Bis(3-bromophenyl)-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C20H19Br2NOF(000) = 896
Mr = 449.18Dx = 1.652 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3647 reflections
a = 7.1595 (6) Åθ = 3.2–23.5°
b = 24.5891 (19) ŵ = 4.49 mm1
c = 10.2598 (6) ÅT = 298 K
V = 1806.2 (2) Å3Block, colourless
Z = 40.34 × 0.25 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2286 independent reflections
Radiation source: fine-focus sealed tube1554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 28.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 99
Tmin = 0.310, Tmax = 0.498k = 3333
12758 measured reflectionsl = 139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0338P)2 + 2.5194P]
where P = (Fo2 + 2Fc2)/3
2286 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C20H19Br2NOV = 1806.2 (2) Å3
Mr = 449.18Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.1595 (6) ŵ = 4.49 mm1
b = 24.5891 (19) ÅT = 298 K
c = 10.2598 (6) Å0.34 × 0.25 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2286 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1554 reflections with I > 2σ(I)
Tmin = 0.310, Tmax = 0.498Rint = 0.035
12758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.84 e Å3
2286 reflectionsΔρmin = 0.71 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.06375 (6)0.580496 (16)0.86233 (5)0.07173 (19)
C10.5903 (4)0.70119 (11)1.1050 (3)0.0328 (6)
H10.62840.70401.19650.039*
C20.7711 (4)0.69950 (12)1.0210 (3)0.0353 (6)
H20.84510.66771.04620.042*
C30.8806 (6)0.75001.0506 (4)0.0332 (9)
C40.7389 (4)0.69827 (13)0.8727 (3)0.0401 (7)
H4A0.85770.69190.82980.048*
H4B0.65770.66790.85210.048*
C50.6529 (6)0.75000.8173 (4)0.0418 (10)
H5A0.66850.75000.72340.050*
H5B0.52000.75000.83560.050*
C60.4822 (4)0.64879 (11)1.0899 (3)0.0350 (6)
C70.3394 (4)0.64162 (11)1.0003 (3)0.0376 (7)
H70.29830.67070.94980.045*
C80.2582 (4)0.59064 (12)0.9868 (3)0.0431 (8)
C90.3157 (5)0.54686 (12)1.0597 (4)0.0541 (9)
H90.26100.51291.04880.065*
C100.4556 (6)0.55456 (15)1.1489 (4)0.0621 (11)
H100.49550.52541.19960.074*
C110.5382 (5)0.60472 (14)1.1647 (4)0.0511 (9)
H110.63240.60911.22620.061*
N10.4821 (5)0.75001.0736 (3)0.0303 (7)
O11.0403 (4)0.75001.0910 (3)0.0493 (8)
H1A0.376 (6)0.75001.115 (4)0.033 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0813 (3)0.0450 (2)0.0889 (4)0.01841 (19)0.0190 (2)0.0091 (2)
C10.0371 (15)0.0305 (14)0.0308 (16)0.0038 (12)0.0021 (12)0.0031 (12)
C20.0324 (15)0.0331 (14)0.0404 (16)0.0064 (12)0.0004 (12)0.0023 (13)
C30.030 (2)0.045 (2)0.025 (2)0.0000.0024 (16)0.000
C40.0390 (16)0.0432 (17)0.0382 (17)0.0025 (13)0.0047 (13)0.0087 (14)
C50.039 (2)0.058 (3)0.028 (2)0.0000.0000 (19)0.000
C60.0401 (16)0.0260 (13)0.0387 (16)0.0037 (12)0.0105 (13)0.0017 (12)
C70.0434 (17)0.0247 (14)0.0447 (18)0.0012 (12)0.0046 (14)0.0023 (13)
C80.0480 (18)0.0284 (15)0.0531 (19)0.0031 (13)0.0108 (16)0.0070 (14)
C90.066 (2)0.0213 (14)0.075 (3)0.0032 (15)0.016 (2)0.0009 (16)
C100.071 (3)0.0344 (18)0.081 (3)0.0068 (17)0.001 (2)0.0204 (19)
C110.054 (2)0.0394 (18)0.060 (2)0.0025 (15)0.0034 (17)0.0154 (16)
N10.0286 (17)0.0237 (16)0.0385 (19)0.0000.0056 (15)0.000
O10.0322 (17)0.064 (2)0.0520 (19)0.0000.0072 (14)0.000
Geometric parameters (Å, º) top
Br1—C81.905 (3)C5—H5A0.9700
C1—N11.464 (3)C5—H5B0.9700
C1—C61.511 (4)C6—C71.386 (4)
C1—C21.555 (4)C6—C111.387 (4)
C1—H10.9800C7—C81.389 (4)
C2—C31.500 (4)C7—H70.9300
C2—C41.540 (4)C8—C91.374 (5)
C2—H20.9800C9—C101.369 (5)
C3—O11.216 (5)C9—H90.9300
C3—C2i1.500 (4)C10—C111.377 (5)
C4—C51.523 (4)C10—H100.9300
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700N1—C1i1.464 (3)
C5—C4i1.523 (4)N1—H1A0.87 (5)
N1—C1—C6113.9 (2)C4i—C5—H5B108.9
N1—C1—C2109.9 (2)C4—C5—H5B108.9
C6—C1—C2110.3 (2)H5A—C5—H5B107.7
N1—C1—H1107.5C7—C6—C11118.8 (3)
C6—C1—H1107.5C7—C6—C1123.7 (3)
C2—C1—H1107.5C11—C6—C1117.4 (3)
C3—C2—C4107.1 (3)C6—C7—C8119.3 (3)
C3—C2—C1107.5 (2)C6—C7—H7120.3
C4—C2—C1115.1 (2)C8—C7—H7120.3
C3—C2—H2109.0C9—C8—C7121.8 (3)
C4—C2—H2109.0C9—C8—Br1118.8 (2)
C1—C2—H2109.0C7—C8—Br1119.4 (2)
O1—C3—C2124.10 (16)C10—C9—C8118.3 (3)
O1—C3—C2i124.10 (17)C10—C9—H9120.8
C2—C3—C2i111.8 (3)C8—C9—H9120.8
C5—C4—C2114.4 (3)C9—C10—C11121.1 (3)
C5—C4—H4A108.7C9—C10—H10119.5
C2—C4—H4A108.7C11—C10—H10119.4
C5—C4—H4B108.7C10—C11—C6120.7 (3)
C2—C4—H4B108.7C10—C11—H11119.7
H4A—C4—H4B107.6C6—C11—H11119.7
C4i—C5—C4113.3 (4)C1i—N1—C1110.1 (3)
C4i—C5—H5A108.9C1i—N1—H1A110.7 (13)
C4—C5—H5A108.9C1—N1—H1A110.7 (14)
N1—C1—C2—C359.2 (3)C2—C1—C6—C1182.1 (3)
C6—C1—C2—C3174.5 (2)C11—C6—C7—C80.8 (4)
N1—C1—C2—C460.1 (3)C1—C6—C7—C8175.0 (3)
C6—C1—C2—C466.3 (3)C6—C7—C8—C90.1 (5)
C4—C2—C3—O1113.3 (4)C6—C7—C8—Br1179.3 (2)
C1—C2—C3—O1122.5 (4)C7—C8—C9—C100.8 (5)
C4—C2—C3—C2i65.3 (4)Br1—C8—C9—C10180.0 (3)
C1—C2—C3—C2i58.9 (4)C8—C9—C10—C110.5 (6)
C3—C2—C4—C552.8 (3)C9—C10—C11—C60.4 (6)
C1—C2—C4—C566.7 (4)C7—C6—C11—C101.1 (5)
C2—C4—C5—C4i43.3 (5)C1—C6—C11—C10175.0 (3)
N1—C1—C6—C730.3 (4)C6—C1—N1—C1i173.61 (18)
C2—C1—C6—C793.7 (3)C2—C1—N1—C1i62.1 (4)
N1—C1—C6—C11153.8 (3)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.87 (5)2.41 (5)3.168 (5)145 (4)
C1—H1···O1iii0.982.543.361 (4)142
Symmetry codes: (ii) x1, y, z; (iii) x1/2, y+3/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC20H19Br2NO
Mr449.18
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)7.1595 (6), 24.5891 (19), 10.2598 (6)
V3)1806.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)4.49
Crystal size (mm)0.34 × 0.25 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.310, 0.498
No. of measured, independent and
observed [I > 2σ(I)] reflections
12758, 2286, 1554
Rint0.035
(sin θ/λ)max1)0.679
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.05
No. of reflections2286
No. of parameters118
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.71

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.87 (5)2.41 (5)3.168 (5)145 (4)
C1—H1···O1ii0.982.543.361 (4)142
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+5/2.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBarker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationPadegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672–2676.  CrossRef CAS Web of Science Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008). Acta Cryst. E64, o1586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWeb, N. C. & Becker, M. R. (1967). J. Chem. Soc. B, pp. 1317–1321.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds