organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2466-o2467

4-(9-Anthr­yl)-1-(1-naphth­yl)spiro­[azetidine-3,9′-xanthen]-2-one n-hexane hemisolvate

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 20 November 2008; accepted 22 November 2008; online 29 November 2008)

In the title compound, C39H25NO2·0.5C6H14, the β-lactam ring is nearly planar [maximum deviation of 0.012 (2) Å from the mean plane] and makes dihedral angles of 36.41 (13), 88.87 (13) and 54.16 (12)°, respectively, with the naphthalene, xanthene and anthracene ring systems. The mol­ecular conformation is stabilized by intra­molecular C—H⋯O and C—H⋯N contacts. The complete solvent mol­ecule is generated by inversion. In the crystal structure, mol­ecules are linked to each other by C—H⋯π inter­actions.

Related literature

For general background on β-lactam anti­biotics, see: Bose et al. (2000[Bose, A. K., Manhas, M. S., Banik, B. K. & Srirajan, V. (2000). The Amide Linkage: Selected Structural Aspects in Chemistry, Biochemistry, and Material Science, edited by A. Greenberg, C. M. Breneman & J. F. Liebman, ch. 7, p. 157. New York: Wiley-Interscience.]); Banik & Becker (2000[Banik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551-6554.]); Jarrahpour & Khalili (2007[Jarrahpour, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140-7143.]); Chincholkar et al. (2007[Chincholkar, P. M., Puranik, V. G. & Deshmukh, A. R. A. S. (2007). Tetrahedron, 63, 9179-9187.]); Cremonesi et al. (2004[Cremonesi, G., Croce, P. D. & Rosa, C. L. (2004). Tetrahedron, 60, 93-97.]); Macias et al. (2004[Macias, A., Alonso, E., del Pozo, C., Venturini, A. & Gonzalez, J. (2004). J. Org. Chem. 69, 7004-7012.]); Banik et al. (2003[Banik, I., Becker, F. F. & Banik, B. K. (2003). J. Med. Chem. 46, 12-15.], 2004[Banik, B. K., Becker, F. F. & Banik, I. (2004). Bioorg. Med. Chem. 12, 2523-2528.]). For the crystal structures of related compounds, see: Akkurt et al. (2006[Akkurt, M., Karaca, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o866-o868.], 2007[Akkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3729-o3730.], 2008[Akkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008). Acta Cryst. E64, o902-o903.]); Pınar et al. (2006[Pınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804-o806.]). For geometric analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C39H25NO2·0.5C6H14

  • Mr = 582.69

  • Monoclinic, P 21 /c

  • a = 12.0788 (5) Å

  • b = 14.1379 (5) Å

  • c = 18.6133 (8) Å

  • β = 107.216 (3)°

  • V = 3036.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 (2) K

  • 0.55 × 0.38 × 0.26 mm

Data collection
  • Stoe IPDS2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.959, Tmax = 0.980

  • 18377 measured reflections

  • 6897 independent reflections

  • 3841 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.191

  • S = 0.97

  • 6897 reflections

  • 406 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N1 0.93 2.26 2.919 (3) 128
C38—H38⋯O1 0.93 2.41 3.074 (3) 128
C9—H9⋯Cg3i 0.93 2.60 3.471 (3) 156
C40—H40BCg1 0.97 2.82 3.572 (6) 135
C41—H41ACg2ii 0.97 2.85 3.728 (7) 150
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z+1. Cg1, Cg2 and Cg3 are the centroids of the C4/C5/C10–C12/C17, C5–C10 and C30–C34/C39 rings, respectively.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The role of β-lactam antibiotics is well known and since 1945, these have saved many lives (Bose et al., 2000; Banik & Becker, 2000). Several syntheses of spiro-β-lactams are available in the literature (Jarrahpour & Khalili, 2007; Chincholkar et al., 2007; Pınar et al., 2006; Akkurt et al., 2008). Many of them have employed the [2 + 2] cyclocondensation of ketenes and imines (Cremonesi et al., 2004; Macias et al., 2004), better known as the Staudinger reaction. The synthesis of novel anticancer β-lactams starting from imines, with pendent polyaromatic substituents have been reported (Banik et al., 2003; Banik et al., 2004).

In the title compound (I) (Fig. 1), the values of the geometric parameters of the β-lactam moiety (C1–C3/N1) are comparable with the values in our previously papers with the same unit (Akkurt et al., 2008; Akkurt et al., 2007; Pınar et al., 2006; Akkurt et al., 2006).

The β-lactam unit in(I) is nearly planar, with a maximum deviation of 0.012 (2) Å from the mean plane. This planarity is mainly due to the sp2 states of atoms C1 and N1. Atom O1 lies almost in the β-lactam plane, with a deviation of -0.029 (2) Å.

The dihedral angle between the naphthalene ring C30—C39 attached at N1 and the β-lactam is 36.41 (13)°.

In the xanthenering system, attached at C2, the benzene rings (C18–C23) and (C24–C29) are almost planar, forming a dihedral angle of 14.53 (17)° with each other. Its central ring, O2/C23/C18/C2/C29/C24, is not planar, with puckering parameters: QT = 0.187 (3) Å, θ = 84.0 (9)° and ϕ = 178.8 (10)° (Cremer & Pople, 1975). The mean plane of the xanthene ring system forms the dihedral angles of 88.87 (13)°, and 54.96 (8)°, with the β-lactam ring and the naphthalene ring, respectively.

The anthracene ring system, attached at C3, is almost planar, with maximum deviations of-0.081 (2) Å for C4, 0.062 (3) Å for C6 and, 0.061 (3) Å for C7, makes dihedral angle of 54.16 (12)°, 82.08 (7)° and 59.41 (7)°, with the β-lactam, naphthalene and the mean plane of the xanthene ring system, respectively.

The molecular conformation is stabilized by two intramolecular C—H···O and C—H···N hydrogen contacts. Molecules are linked to each other by C—H···π interactions (Table 2 and Fig. 2).

Related literature top

For general background on β-lactam antibiotics, see: Bose et al. (2000); Banik & Becker (2000); Jarrahpour & Khalili (2007); Chincholkar et al. (2007); Cremonesi et al. (2004); Macias et al. (2004); Banik et al. (2003, 2004). For the crystal structures of related compounds, see: Akkurt et al. (2006, 2007, 2008); Pınar et al. (2006). For geometric analysis, see: Cremer & Pople (1975). Cg1, Cg2 and Cg3 are the centroids of the C4/C5/C10–C12/C17, C5–C10 and C30–C34/C39 rings, respectively.

Experimental top

A mixture of Schiff base N-(anthracen-9-ylmethylene)naphthalen-1-amine (0.3 g,1.45 mmol), triethylamine (0.73 g, 7.27 mmol), 9H-xanthen-9-carboxylic acid (0. 49 g, 2.18 mmol) and tosyl chloride (0.42 g, 2.18 mmol) in CH2Cl2(15 ml) was strirred at room temperature for 24 h. Then it was washed with 1 N HCl (20 ml) and saturated sodium bicarbonate solution (20 ml), brine (20 ml), dried (Na2SO4) and the solvent was evaporated to give the crude orange product which was then purified by recrystalization from C6H14 to result in orange prisms of (I) [yield 68%, m.p.: 457–459 K].

Refinement top

The H atoms were positioned geometrically and refined a riding model, with the C—H = 0.93–0.98 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I): displacement ellipsoids for non-H atoms are drawn at the 30% probability level. The solvent molecule have been omitted for clarity.
[Figure 2] Fig. 2. View of the packing diagram of (I).
4-(9-Anthryl)-1-(1-naphthyl)spiro[azetidine-3,9'-xanthen]-2-one n-hexane hemisolvate top
Crystal data top
C39H25NO2·0.5C6H14F(000) = 1228
Mr = 582.69Dx = 1.275 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14824 reflections
a = 12.0788 (5) Åθ = 1.4–28.1°
b = 14.1379 (5) ŵ = 0.08 mm1
c = 18.6133 (8) ÅT = 295 K
β = 107.216 (3)°Prism, orange
V = 3036.2 (2) Å30.55 × 0.38 × 0.26 mm
Z = 4
Data collection top
Stoe IPDS2
diffractometer
6897 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3841 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.077
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 1.8°
ω scansh = 1515
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1818
Tmin = 0.959, Tmax = 0.980l = 2424
18377 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1P)2],
where P = (Fo2 + 2Fc2)/3
6897 reflections(Δ/σ)max < 0.001
406 parametersΔρmax = 0.38 e Å3
4 restraintsΔρmin = 0.34 e Å3
Crystal data top
C39H25NO2·0.5C6H14V = 3036.2 (2) Å3
Mr = 582.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0788 (5) ŵ = 0.08 mm1
b = 14.1379 (5) ÅT = 295 K
c = 18.6133 (8) Å0.55 × 0.38 × 0.26 mm
β = 107.216 (3)°
Data collection top
Stoe IPDS2
diffractometer
6897 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3841 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.980Rint = 0.077
18377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0634 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 0.97Δρmax = 0.38 e Å3
6897 reflectionsΔρmin = 0.34 e Å3
406 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21163 (13)0.44035 (12)0.32555 (9)0.0596 (6)
O20.56246 (17)0.32446 (18)0.51072 (19)0.1023 (9)
N10.13718 (15)0.30979 (13)0.37559 (10)0.0486 (5)
C10.21747 (17)0.37492 (15)0.36788 (12)0.0475 (6)
C20.31704 (18)0.32796 (15)0.42899 (13)0.0494 (7)
C30.22029 (18)0.25267 (15)0.43327 (12)0.0484 (6)
C40.19808 (18)0.23182 (15)0.50747 (12)0.0473 (6)
C50.10584 (18)0.26912 (16)0.53191 (12)0.0491 (6)
C60.0271 (2)0.34110 (18)0.49363 (14)0.0603 (8)
C70.0628 (2)0.3706 (2)0.51804 (16)0.0712 (9)
C80.0823 (2)0.3328 (2)0.58264 (16)0.0766 (10)
C90.0094 (2)0.2674 (2)0.62223 (15)0.0692 (9)
C100.08760 (19)0.23365 (17)0.59976 (12)0.0548 (7)
C110.1614 (2)0.16764 (19)0.64230 (13)0.0618 (8)
C120.2579 (2)0.13434 (17)0.62269 (13)0.0571 (7)
C130.3353 (2)0.0687 (2)0.66867 (15)0.0699 (9)
C140.4275 (2)0.0356 (2)0.64914 (17)0.0768 (10)
C150.4477 (2)0.0673 (2)0.58261 (17)0.0736 (10)
C160.3756 (2)0.13026 (18)0.53649 (15)0.0616 (8)
C170.27561 (18)0.16670 (16)0.55416 (13)0.0510 (7)
C180.37023 (19)0.38432 (17)0.49830 (13)0.0551 (7)
C190.3051 (2)0.4439 (2)0.52930 (15)0.0678 (9)
C200.3522 (3)0.4940 (2)0.59465 (18)0.0879 (11)
C210.4670 (4)0.4865 (3)0.63036 (19)0.1001 (15)
C220.5360 (3)0.4300 (3)0.6015 (2)0.0987 (14)
C230.4880 (2)0.3787 (2)0.53559 (18)0.0733 (9)
C240.5246 (3)0.2893 (2)0.4393 (3)0.0847 (13)
C250.6081 (3)0.2520 (3)0.4083 (4)0.127 (2)
C260.5794 (5)0.2166 (3)0.3394 (5)0.147 (3)
C270.4646 (5)0.2160 (3)0.2944 (3)0.124 (2)
C280.3790 (3)0.2518 (2)0.32380 (19)0.0884 (14)
C290.4081 (2)0.28880 (18)0.39584 (16)0.0647 (9)
C300.02468 (18)0.28109 (17)0.33022 (12)0.0516 (7)
C310.0011 (2)0.18699 (19)0.32192 (15)0.0648 (9)
C320.1085 (3)0.1549 (2)0.27798 (17)0.0794 (11)
C330.1912 (2)0.2177 (3)0.24441 (17)0.0784 (10)
C340.1725 (2)0.3153 (2)0.25397 (14)0.0694 (9)
C350.2611 (2)0.3819 (3)0.2219 (2)0.0932 (13)
C360.2437 (3)0.4762 (3)0.2340 (2)0.1023 (15)
C370.1373 (2)0.5103 (2)0.27835 (19)0.0825 (11)
C380.0490 (2)0.44851 (19)0.30912 (15)0.0637 (8)
C390.06302 (19)0.35014 (19)0.29768 (12)0.0564 (7)
C400.0309 (4)0.0054 (4)0.4689 (3)0.184 (4)
C410.1171 (7)0.0660 (5)0.5060 (4)0.228 (5)
C420.1800 (8)0.0640 (6)0.4491 (7)0.337 (8)
H30.234600.193100.410600.0580*
H60.037800.368600.450800.0720*
H70.112500.417000.491100.0850*
H80.145200.352800.597900.0920*
H90.021800.243100.665600.0830*
H110.147100.144200.685400.0740*
H130.322700.048000.713000.0840*
H140.477400.008100.679700.0920*
H150.511700.044700.569900.0880*
H160.391200.150100.492800.0740*
H190.226300.450300.504800.0810*
H200.305600.532600.614000.1060*
H210.499400.519700.674700.1200*
H220.615000.425900.626000.1190*
H250.685600.252300.436900.1530*
H260.636700.191700.320800.1760*
H270.445100.192300.245700.1490*
H280.301900.250700.294600.1060*
H310.057800.143400.345500.0780*
H320.123500.090400.272200.0950*
H330.262400.195800.214200.0940*
H350.332800.360600.192000.1120*
H360.303300.518400.212400.1230*
H370.126300.574900.287000.0990*
H380.022100.471900.338300.0760*
H40A0.016900.013300.419300.2200*
H40B0.063800.067700.467500.2200*
H41A0.082500.127200.509200.2730*
H41B0.164800.046200.555300.2730*
H42A0.242900.108300.462700.5050*
H42B0.209900.001500.446700.5050*
H42C0.128000.080700.400900.5050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0536 (9)0.0634 (10)0.0609 (10)0.0002 (7)0.0158 (7)0.0146 (8)
O20.0468 (11)0.0959 (16)0.150 (2)0.0110 (10)0.0071 (13)0.0133 (16)
N10.0468 (9)0.0546 (10)0.0439 (9)0.0002 (7)0.0129 (7)0.0018 (8)
C10.0463 (11)0.0527 (12)0.0447 (10)0.0017 (9)0.0155 (9)0.0026 (10)
C20.0436 (11)0.0535 (12)0.0539 (12)0.0055 (9)0.0189 (9)0.0066 (10)
C30.0511 (11)0.0498 (11)0.0466 (11)0.0030 (9)0.0181 (9)0.0015 (9)
C40.0488 (11)0.0472 (11)0.0464 (11)0.0014 (9)0.0151 (9)0.0012 (9)
C50.0489 (11)0.0543 (12)0.0434 (10)0.0036 (9)0.0125 (9)0.0047 (10)
C60.0658 (14)0.0656 (14)0.0530 (12)0.0109 (11)0.0232 (11)0.0015 (11)
C70.0691 (16)0.0813 (18)0.0656 (15)0.0170 (14)0.0237 (13)0.0047 (14)
C80.0684 (16)0.099 (2)0.0720 (17)0.0091 (15)0.0356 (14)0.0082 (16)
C90.0681 (15)0.0899 (19)0.0597 (14)0.0039 (14)0.0344 (13)0.0037 (14)
C100.0527 (12)0.0649 (14)0.0477 (12)0.0080 (10)0.0163 (10)0.0041 (11)
C110.0630 (14)0.0772 (16)0.0465 (12)0.0068 (12)0.0182 (11)0.0036 (12)
C120.0566 (13)0.0602 (13)0.0485 (12)0.0065 (10)0.0062 (10)0.0042 (11)
C130.0678 (15)0.0760 (17)0.0581 (14)0.0004 (13)0.0065 (12)0.0148 (13)
C140.0660 (16)0.0768 (18)0.0745 (18)0.0096 (13)0.0008 (13)0.0178 (15)
C150.0572 (14)0.0766 (18)0.0805 (18)0.0144 (12)0.0105 (13)0.0041 (15)
C160.0576 (13)0.0653 (14)0.0631 (14)0.0063 (11)0.0199 (11)0.0072 (12)
C170.0475 (11)0.0514 (12)0.0518 (12)0.0042 (9)0.0113 (9)0.0002 (10)
C180.0459 (11)0.0608 (13)0.0548 (12)0.0044 (10)0.0091 (10)0.0104 (11)
C190.0621 (14)0.0777 (17)0.0620 (15)0.0107 (12)0.0160 (12)0.0105 (13)
C200.100 (2)0.091 (2)0.0703 (18)0.0270 (18)0.0215 (18)0.0175 (16)
C210.121 (3)0.100 (3)0.0594 (17)0.038 (2)0.0038 (19)0.0046 (18)
C220.0737 (19)0.099 (3)0.090 (2)0.0298 (19)0.0274 (18)0.034 (2)
C230.0497 (13)0.0725 (16)0.0859 (18)0.0034 (12)0.0017 (13)0.0227 (15)
C240.0568 (16)0.0672 (17)0.143 (3)0.0137 (13)0.0493 (19)0.028 (2)
C250.079 (2)0.087 (3)0.248 (6)0.0196 (19)0.099 (4)0.023 (3)
C260.150 (4)0.087 (3)0.266 (7)0.035 (3)0.159 (5)0.030 (4)
C270.191 (5)0.083 (2)0.151 (4)0.040 (3)0.131 (4)0.019 (2)
C280.120 (3)0.0764 (19)0.092 (2)0.0296 (17)0.067 (2)0.0136 (17)
C290.0645 (15)0.0584 (14)0.0864 (18)0.0164 (11)0.0457 (14)0.0202 (13)
C300.0497 (11)0.0655 (14)0.0422 (10)0.0086 (10)0.0177 (9)0.0053 (10)
C310.0659 (15)0.0667 (15)0.0646 (15)0.0117 (12)0.0237 (12)0.0070 (13)
C320.085 (2)0.0829 (19)0.0791 (18)0.0320 (17)0.0381 (17)0.0203 (16)
C330.0557 (15)0.109 (2)0.0729 (17)0.0250 (16)0.0227 (13)0.0224 (17)
C340.0469 (13)0.103 (2)0.0591 (14)0.0113 (13)0.0171 (11)0.0092 (14)
C350.0448 (14)0.130 (3)0.094 (2)0.0001 (16)0.0039 (14)0.001 (2)
C360.0560 (18)0.119 (3)0.120 (3)0.0200 (18)0.0078 (18)0.013 (2)
C370.0563 (15)0.087 (2)0.100 (2)0.0097 (14)0.0168 (15)0.0100 (17)
C380.0501 (12)0.0719 (16)0.0661 (15)0.0005 (11)0.0125 (11)0.0034 (13)
C390.0468 (11)0.0779 (16)0.0458 (11)0.0050 (11)0.0156 (9)0.0043 (11)
C400.082 (4)0.103 (3)0.304 (12)0.005 (3)0.038 (4)0.075 (5)
C410.289 (10)0.270 (10)0.162 (5)0.219 (9)0.126 (7)0.125 (6)
C420.307 (13)0.164 (7)0.44 (2)0.106 (8)0.042 (13)0.011 (10)
Geometric parameters (Å, º) top
O1—C11.204 (3)C33—C341.401 (5)
O2—C231.363 (4)C34—C351.418 (4)
O2—C241.365 (6)C34—C391.420 (3)
N1—C11.375 (3)C35—C361.358 (6)
N1—C31.475 (3)C36—C371.392 (5)
N1—C301.430 (3)C37—C381.366 (4)
C1—C21.540 (3)C38—C391.410 (4)
C2—C31.600 (3)C3—H30.9800
C2—C181.490 (3)C6—H60.9300
C2—C291.516 (3)C7—H70.9300
C3—C41.512 (3)C8—H80.9300
C4—C51.424 (3)C9—H90.9300
C4—C171.414 (3)C11—H110.9300
C5—C61.431 (3)C13—H130.9300
C5—C101.435 (3)C14—H140.9300
C6—C71.361 (4)C15—H150.9300
C7—C81.398 (4)C16—H160.9300
C8—C91.338 (4)C19—H190.9300
C9—C101.437 (4)C20—H200.9300
C10—C111.369 (3)C21—H210.9300
C11—C121.402 (4)C22—H220.9300
C12—C131.412 (4)C25—H250.9300
C12—C171.430 (3)C26—H260.9300
C13—C141.353 (4)C27—H270.9300
C14—C151.405 (4)C28—H280.9300
C15—C161.358 (4)C31—H310.9300
C16—C171.438 (3)C32—H320.9300
C18—C191.389 (4)C33—H330.9300
C18—C231.388 (4)C35—H350.9300
C19—C201.377 (4)C36—H360.9300
C20—C211.353 (6)C37—H370.9300
C21—C221.373 (6)C38—H380.9300
C22—C231.395 (5)C40—C411.468 (9)
C24—C251.405 (6)C40—C40i1.560 (7)
C24—C291.400 (5)C41—C421.475 (14)
C25—C261.324 (11)C40—H40A0.9700
C26—C271.392 (10)C40—H40B0.9700
C27—C281.400 (7)C41—H41A0.9700
C28—C291.384 (4)C41—H41B0.9700
C30—C311.360 (4)C42—H42A0.9600
C30—C391.436 (3)C42—H42B0.9600
C31—C321.409 (4)C42—H42C0.9600
C32—C331.344 (5)
O1···C283.352 (4)C33···H9iv2.9000
O1···C383.074 (3)C34···H9iv2.9100
O1···H382.4100C38···H62.7700
O1···H32ii2.7900C39···H62.7600
O1···H22iii2.7700C39···H9iv2.9600
O1···H11iv2.7600H3···C162.6100
O1···H13iv2.8100H3···H312.2300
N1···C62.919 (3)H3···H162.1400
N1···C283.435 (4)H3···C312.8200
N1···H62.2600H3···C282.8300
N1···H382.6600H6···C32.8400
C1···C383.249 (3)H6···C13.0100
C2···C163.388 (3)H6···C392.7600
C4···C193.243 (4)H6···C302.5300
C5···C303.592 (3)H6···C382.7700
C5···C193.460 (4)H6···N12.2600
C6···C393.486 (3)H6···H192.4800
C6···C303.150 (3)H6···H382.5100
C6···N12.919 (3)H7···H19vi2.3400
C6···C193.537 (4)H7···C19vi2.9800
C9···C42i3.558 (10)H9···H112.4100
C10···C41i3.567 (8)H9···C30vii2.9700
C11···C40i3.580 (6)H9···C31vii3.0100
C14···C26v3.574 (5)H9···C39vii2.9600
C16···C293.555 (4)H9···C34vii2.9100
C16···C23.388 (3)H9···C32vii2.9700
C17···C183.544 (3)H9···C33vii2.9000
C18···C22iii3.588 (5)H11···H92.4100
C18···C173.544 (3)H11···H132.4400
C19···C63.537 (4)H11···O1vii2.7600
C19···C53.460 (4)H13···H112.4400
C19···C43.243 (4)H13···H21viii2.5500
C20···C24iii3.544 (4)H13···O1vii2.8100
C21···C24iii3.438 (5)H14···C27v3.0300
C22···C18iii3.588 (5)H14···C26v3.0200
C24···C20iii3.544 (4)H14···H36ix2.5400
C24···C21iii3.438 (5)H16···C22.8100
C26···C14v3.574 (5)H16···C32.5000
C28···N13.435 (4)H16···H32.1400
C28···O13.352 (4)H16···C292.7100
C29···C163.555 (4)H16···C242.9000
C30···C63.150 (3)H19···C53.0600
C30···C53.592 (3)H19···C33.0900
C38···C13.249 (3)H19···H7vi2.3400
C38···O13.074 (3)H19···C62.8100
C39···C63.486 (3)H19···H62.4800
C40···C11i3.580 (6)H19···C12.7400
C41···C10i3.567 (8)H21···C13xi3.0900
C42···C9i3.558 (10)H21···H13xi2.5500
C1···H282.6100H22···H33ix2.5300
C1···H192.7400H22···O1iii2.7700
C1···H63.0100H26···C33xii2.8700
C1···H382.6400H28···C12.6100
C2···H162.8100H28···C33.0200
C3···H283.0200H28···C11iv3.0700
C3···H312.6500H31···H40B2.4900
C3···H62.8400H31···H32.2300
C3···H162.5000H31···C32.6500
C3···H193.0900H32···O1xiii2.7900
C4···H40B2.8000H33···H352.4700
C5···H41Ai2.9600H33···H22xiv2.5300
C5···H193.0600H35···H332.4700
C5···H40B3.0700H35···C15xiv3.0000
C6···H192.8100H36···H14xiv2.5400
C9···H42Ci2.9700H37···C9vi2.9800
C9···H37vi2.9800H38···O12.4100
C9···H41Ai3.0700H38···N12.6600
C10···H41Ai2.8500H38···C12.6400
C11···H40Ai2.8200H38···H62.5100
C11···H28vii3.0700H40A···H42C2.1100
C12···H41B2.9200H40A···C11i2.8200
C13···H21viii3.0900H40A···H41Bi2.1500
C13···H41B2.9600H40B···C42.8000
C15···H35ix3.0000H40B···C53.0700
C16···H32.6100H40B···C172.9400
C16···H42B2.8800H40B···C313.0900
C17···H40B2.9400H40B···H312.4900
C17···H42B3.0600H40B···H42B2.1500
C19···H7vi2.9800H40B···H41Ai2.1100
C24···H162.9000H41A···C5i2.9600
C26···H14v3.0200H41A···C9i3.0700
C27···H14v3.0300H41A···C10i2.8500
C28···H32.8300H41A···H40Bi2.1100
C29···H162.7100H41B···C122.9200
C30···H62.5300H41B···C132.9600
C30···H9iv2.9700H41B···H40Ai2.1500
C31···H40B3.0900H42B···C162.8800
C31···H9iv3.0100H42B···C173.0600
C31···H32.8200H42B···H40B2.1500
C32···H9iv2.9700H42C···H40A2.1100
C33···H26x2.8700H42C···C9i2.9700
C23—O2—C24118.1 (3)C30—C39—C34116.8 (2)
C1—N1—C395.37 (17)C30—C39—C38124.5 (2)
C1—N1—C30134.79 (19)C34—C39—C38118.6 (2)
C3—N1—C30126.70 (18)N1—C3—H3109.00
O1—C1—N1132.6 (2)C2—C3—H3109.00
O1—C1—C2134.2 (2)C4—C3—H3109.00
N1—C1—C293.15 (17)C5—C6—H6119.00
C1—C2—C384.34 (16)C7—C6—H6119.00
C1—C2—C18116.82 (18)C6—C7—H7119.00
C1—C2—C29111.03 (19)C8—C7—H7119.00
C3—C2—C18116.53 (19)C7—C8—H8120.00
C3—C2—C29113.94 (18)C9—C8—H8120.00
C18—C2—C29111.6 (2)C8—C9—H9119.00
N1—C3—C287.09 (15)C10—C9—H9119.00
N1—C3—C4120.35 (19)C10—C11—H11119.00
C2—C3—C4120.32 (18)C12—C11—H11119.00
C3—C4—C5125.94 (19)C12—C13—H13119.00
C3—C4—C17115.10 (19)C14—C13—H13120.00
C5—C4—C17118.9 (2)C13—C14—H14120.00
C4—C5—C6124.9 (2)C15—C14—H14120.00
C4—C5—C10119.4 (2)C14—C15—H15119.00
C6—C5—C10115.7 (2)C16—C15—H15119.00
C5—C6—C7122.0 (2)C15—C16—H16119.00
C6—C7—C8121.6 (3)C17—C16—H16120.00
C7—C8—C9119.2 (2)C18—C19—H19119.00
C8—C9—C10122.0 (2)C20—C19—H19119.00
C5—C10—C9119.4 (2)C19—C20—H20120.00
C5—C10—C11120.3 (2)C21—C20—H20120.00
C9—C10—C11120.4 (2)C20—C21—H21120.00
C10—C11—C12121.8 (2)C22—C21—H21120.00
C11—C12—C13121.0 (2)C21—C22—H22120.00
C11—C12—C17118.7 (2)C23—C22—H22120.00
C13—C12—C17120.3 (2)C24—C25—H25119.00
C12—C13—C14121.0 (2)C26—C25—H25119.00
C13—C14—C15119.9 (3)C25—C26—H26120.00
C14—C15—C16121.3 (2)C27—C26—H26120.00
C15—C16—C17121.0 (2)C26—C27—H27121.00
C4—C17—C12120.7 (2)C28—C27—H27121.00
C4—C17—C16122.8 (2)C27—C28—H28120.00
C12—C17—C16116.6 (2)C29—C28—H28120.00
C2—C18—C19122.1 (2)C30—C31—H31120.00
C2—C18—C23121.2 (2)C32—C31—H31120.00
C19—C18—C23116.7 (2)C31—C32—H32120.00
C18—C19—C20122.8 (3)C33—C32—H32120.00
C19—C20—C21119.3 (3)C32—C33—H33119.00
C20—C21—C22120.4 (3)C34—C33—H33119.00
C21—C22—C23120.3 (3)C34—C35—H35119.00
O2—C23—C18123.0 (3)C36—C35—H35119.00
O2—C23—C22116.6 (3)C35—C36—H36120.00
C18—C23—C22120.5 (3)C37—C36—H36120.00
O2—C24—C25117.6 (4)C36—C37—H37120.00
O2—C24—C29123.7 (3)C38—C37—H37120.00
C25—C24—C29118.8 (5)C37—C38—H38119.00
C24—C25—C26121.7 (5)C39—C38—H38119.00
C25—C26—C27120.9 (6)C40i—C40—C4190.7 (5)
C26—C27—C28118.8 (5)C40—C41—C4295.4 (6)
C27—C28—C29120.7 (4)C41—C40—H40A114.00
C2—C29—C24119.3 (3)C41—C40—H40B113.00
C2—C29—C28121.7 (3)H40A—C40—H40B111.00
C24—C29—C28119.0 (3)C40i—C40—H40A114.00
N1—C30—C31118.4 (2)C40i—C40—H40B114.00
N1—C30—C39120.6 (2)C40—C41—H41A113.00
C31—C30—C39120.9 (2)C40—C41—H41B113.00
C30—C31—C32120.7 (2)C42—C41—H41A113.00
C31—C32—C33119.9 (3)C42—C41—H41B113.00
C32—C33—C34121.5 (3)H41A—C41—H41B110.00
C33—C34—C35121.8 (3)C41—C42—H42A110.00
C33—C34—C39120.2 (2)C41—C42—H42B109.00
C35—C34—C39118.0 (3)C41—C42—H42C109.00
C34—C35—C36121.4 (3)H42A—C42—H42B109.00
C35—C36—C37120.6 (3)H42A—C42—H42C110.00
C36—C37—C38119.8 (3)H42B—C42—H42C109.00
C37—C38—C39121.6 (2)
C24—O2—C23—C1813.2 (4)C8—C9—C10—C11179.0 (3)
C24—O2—C23—C22166.5 (3)C5—C10—C11—C121.6 (4)
C23—O2—C24—C25166.1 (3)C9—C10—C11—C12178.9 (2)
C23—O2—C24—C2913.7 (5)C10—C11—C12—C13177.8 (2)
C30—N1—C1—O114.4 (4)C10—C11—C12—C173.4 (4)
C3—N1—C1—C21.87 (17)C13—C12—C17—C4179.5 (2)
C3—N1—C1—O1174.3 (3)C13—C12—C17—C161.0 (3)
C30—N1—C3—C2164.1 (2)C11—C12—C13—C14179.1 (3)
C1—N1—C3—C4125.6 (2)C11—C12—C17—C16179.8 (2)
C30—N1—C3—C472.1 (3)C17—C12—C13—C140.3 (4)
C1—N1—C3—C21.79 (17)C11—C12—C17—C40.7 (3)
C30—N1—C1—C2161.8 (2)C12—C13—C14—C150.6 (4)
C1—N1—C30—C3948.7 (3)C13—C14—C15—C160.7 (4)
C1—N1—C30—C31134.7 (3)C14—C15—C16—C170.1 (4)
C3—N1—C30—C39156.6 (2)C15—C16—C17—C4179.6 (2)
C3—N1—C30—C3120.1 (3)C15—C16—C17—C120.9 (4)
N1—C1—C2—C29115.22 (19)C2—C18—C23—O22.0 (4)
N1—C1—C2—C31.72 (16)C23—C18—C19—C201.5 (4)
N1—C1—C2—C18115.2 (2)C2—C18—C23—C22178.3 (3)
O1—C1—C2—C1868.8 (3)C19—C18—C23—O2178.8 (3)
O1—C1—C2—C2960.8 (3)C19—C18—C23—C221.0 (4)
O1—C1—C2—C3174.3 (3)C2—C18—C19—C20177.8 (3)
C1—C2—C18—C23144.4 (2)C18—C19—C20—C210.8 (5)
C1—C2—C29—C2833.8 (3)C19—C20—C21—C220.4 (5)
C1—C2—C3—C4125.4 (2)C20—C21—C22—C230.9 (6)
C1—C2—C3—N11.60 (15)C21—C22—C23—C180.2 (5)
C18—C2—C3—N1115.6 (2)C21—C22—C23—O2179.9 (3)
C3—C2—C29—C24120.1 (3)C29—C24—C25—C260.0 (6)
C3—C2—C29—C2859.4 (3)O2—C24—C29—C20.8 (4)
C1—C2—C29—C24146.7 (2)O2—C24—C29—C28179.7 (3)
C29—C2—C3—C4124.1 (2)O2—C24—C25—C26179.8 (4)
C1—C2—C18—C1936.3 (3)C25—C24—C29—C2179.4 (3)
C18—C2—C3—C48.2 (3)C25—C24—C29—C280.1 (5)
C18—C2—C29—C2414.5 (3)C24—C25—C26—C270.8 (8)
C18—C2—C29—C28166.1 (2)C25—C26—C27—C281.3 (7)
C29—C2—C18—C2315.2 (3)C26—C27—C28—C291.2 (6)
C29—C2—C3—N1112.1 (2)C27—C28—C29—C2180.0 (3)
C29—C2—C18—C19165.6 (2)C27—C28—C29—C240.5 (5)
C3—C2—C18—C23118.2 (3)N1—C30—C31—C32179.8 (2)
C3—C2—C18—C1961.1 (3)C39—C30—C31—C323.2 (4)
C2—C3—C4—C1781.8 (2)N1—C30—C39—C34179.5 (2)
N1—C3—C4—C55.6 (3)N1—C30—C39—C382.5 (3)
N1—C3—C4—C17172.24 (19)C31—C30—C39—C342.9 (3)
C2—C3—C4—C5100.3 (3)C31—C30—C39—C38174.1 (2)
C3—C4—C17—C166.3 (3)C30—C31—C32—C330.6 (4)
C17—C4—C5—C105.5 (3)C31—C32—C33—C342.1 (5)
C3—C4—C17—C12174.3 (2)C32—C33—C34—C35176.8 (3)
C3—C4—C5—C67.7 (4)C32—C33—C34—C392.3 (4)
C5—C4—C17—C123.7 (3)C33—C34—C35—C36177.3 (3)
C17—C4—C5—C6174.5 (2)C39—C34—C35—C361.8 (4)
C5—C4—C17—C16175.7 (2)C33—C34—C39—C300.2 (3)
C3—C4—C5—C10172.3 (2)C33—C34—C39—C38177.0 (2)
C6—C5—C10—C93.5 (3)C35—C34—C39—C30179.3 (2)
C6—C5—C10—C11177.1 (2)C35—C34—C39—C382.1 (4)
C4—C5—C10—C112.9 (3)C34—C35—C36—C370.3 (5)
C4—C5—C6—C7176.8 (2)C35—C36—C37—C381.0 (5)
C10—C5—C6—C73.2 (4)C36—C37—C38—C390.6 (4)
C4—C5—C10—C9176.5 (2)C37—C38—C39—C30177.9 (3)
C5—C6—C7—C80.8 (4)C37—C38—C39—C341.0 (4)
C6—C7—C8—C91.4 (4)C40i—C40—C41—C42178.2 (6)
C7—C8—C9—C101.0 (4)C41—C40—C40i—C41i180.0 (5)
C8—C9—C10—C51.5 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z1/2; (v) x+1, y, z+1; (vi) x, y+1, z+1; (vii) x, y+1/2, z+1/2; (viii) x+1, y1/2, z+3/2; (ix) x+1, y+1/2, z+1/2; (x) x1, y, z; (xi) x+1, y+1/2, z+3/2; (xii) x+1, y, z; (xiii) x, y1/2, z+1/2; (xiv) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N10.932.262.919 (3)128
C38—H38···O10.932.413.074 (3)128
C9—H9···Cg3vii0.932.603.471 (3)156
C40—H40B···Cg10.972.823.572 (6)135
C41—H41A···Cg2i0.972.853.728 (7)150
Symmetry codes: (i) x, y, z+1; (vii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC39H25NO2·0.5C6H14
Mr582.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.0788 (5), 14.1379 (5), 18.6133 (8)
β (°) 107.216 (3)
V3)3036.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.55 × 0.38 × 0.26
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.959, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
18377, 6897, 3841
Rint0.077
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.191, 0.97
No. of reflections6897
No. of parameters406
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N10.932.262.919 (3)128
C38—H38···O10.932.413.074 (3)128
C9—H9···Cg3i0.932.603.471 (3)156
C40—H40B···Cg10.972.823.572 (6)135
C41—H41A···Cg2ii0.972.853.728 (7)150
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund). AJ and EE thank the Shiraz University Research Council for financial support (grant No. 87-GR—SC-23).

References

First citationAkkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008). Acta Cryst. E64, o902–o903.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o866–o868.  CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3729–o3730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBanik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551–6554.  Web of Science CrossRef CAS Google Scholar
First citationBanik, I., Becker, F. F. & Banik, B. K. (2003). J. Med. Chem. 46, 12–15.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBanik, B. K., Becker, F. F. & Banik, I. (2004). Bioorg. Med. Chem. 12, 2523–2528.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBose, A. K., Manhas, M. S., Banik, B. K. & Srirajan, V. (2000). The Amide Linkage: Selected Structural Aspects in Chemistry, Biochemistry, and Material Science, edited by A. Greenberg, C. M. Breneman & J. F. Liebman, ch. 7, p. 157. New York: Wiley-Interscience.  Google Scholar
First citationChincholkar, P. M., Puranik, V. G. & Deshmukh, A. R. A. S. (2007). Tetrahedron, 63, 9179–9187.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCremonesi, G., Croce, P. D. & Rosa, C. L. (2004). Tetrahedron, 60, 93–97.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJarrahpour, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140–7143.  Web of Science CrossRef CAS Google Scholar
First citationMacias, A., Alonso, E., del Pozo, C., Venturini, A. & Gonzalez, J. (2004). J. Org. Chem. 69, 7004–7012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804–o806.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2466-o2467
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds