organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[Nonane-1,9-diylbis(nitrilo­methyl­­idyne)]diphenol

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 24 November 2008; accepted 26 November 2008; online 29 November 2008)

In the title Schiff base compound, C23H30N2O2, the complete mol­ecule is generated by crystallographic twofold symmetry, with one C atom lying on the rotation axis. The nonane chain adopts a linear conformation and the hydr­oxy group forms an intra­molecular O—H⋯N hydrogen bond to the imine group.

Related literature

For the effect of alkyl length on the optical properties of 2,2′-[alkyl-1,9-diylbis(nitrilo­methyl­idyne)]diphenols, see: Kawasaki et al. (1996[Kawasaki, T., Kamata, T., Ushijima, H., Murata, S., Mizukami, F., Fujii, Y. & Usui, Y. (1996). Mol. Cryst. Liq. Cryst. 286, 579-584.], 1999[Kawasaki, T., Kamata, T., Ushijima, H., Kanakubo, M., Murata, S., Mizukami, F., Fujii, Y. & Usui, Y. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 193-198.]). For the reduction of the Schiff base to the secondary diamine, see: Csaszar (1984[Csaszar, J. (1984). Acta Phys. Chem. 30, 61.]). For the structure of 2,2′-[hexane-1,6-diylbis(nitrilo­methyl­idyne)]diphenol, see: Sheikhshoaie & Sharif (2006[Sheikhshoaie, I. & Sharif, M. A. (2006). Acta Cryst. E62, o3563-o3565.]).

[Scheme 1]

Experimental

Crystal data
  • C23H30N2O2

  • Mr = 366.49

  • Monoclinic, C 2/c

  • a = 43.6905 (10) Å

  • b = 4.7258 (1) Å

  • c = 9.8928 (2) Å

  • β = 96.935 (2)°

  • V = 2027.65 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 (2) K

  • 0.40 × 0.03 × 0.02 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: none

  • 8930 measured reflections

  • 2317 independent reflections

  • 1573 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.177

  • S = 1.10

  • 2317 reflections

  • 127 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.86 (1) 1.81 (2) 2.5755 (19) 148 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

For more details, see the Abstract. For the molecular structure, see Fig. 1. and for details of hydrogen bonding, see Table 1.

Related literature top

For the effect of alkyl length on the optical properties of 2,2'-[alkyl-1,9-diylbis(nitrilomethylidyne)]diphenols, see: Kawasaki et al. (1996, 1999). For the reduction of the Schiff base to the secondary diamine, see: Csaszar (1984). For the structure of 2,2'-[hexane-1,6-diylbis(nitrilomethylidyne)]diphenol, see: Sheikhshoaie & Sharif (2006).

Experimental top

Salicylaldehyde (0.050 mol, 6.1 g) and sodium hydroxide (0.05 mol, 2.0 g) in methanol (125 ml) was added to 1,9-diaminononane (0.025 mol, 3.9 g) in methanol (125 ml). The solution was heated for 1 h. The solvent was evaporated and the product recrystallized from ethanol to yield yellow plates of (I). The rod used for data collection was cut from a plate.

Refinement top

The C-bound hydrogen atoms were placed at calculated positions (C–H = 0.95—0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The hydroxy H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H = 0.84±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlabelled atoms are generated by the symmetry operation (1–x, y, 1/2–z).
2,2'-[Nonane-1,9-diylbis(nitrilomethylidyne)]diphenol top
Crystal data top
C23H30N2O2F(000) = 792
Mr = 366.49Dx = 1.201 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2058 reflections
a = 43.6905 (10) Åθ = 2.8–27.9°
b = 4.7258 (1) ŵ = 0.08 mm1
c = 9.8928 (2) ÅT = 100 K
β = 96.935 (2)°Rod, yellow
V = 2027.65 (8) Å30.40 × 0.03 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
1573 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 27.5°, θmin = 0.9°
ω scansh = 5656
8930 measured reflectionsk = 66
2317 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.1065P)2]
where P = (Fo2 + 2Fc2)/3
2317 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C23H30N2O2V = 2027.65 (8) Å3
Mr = 366.49Z = 4
Monoclinic, C2/cMo Kα radiation
a = 43.6905 (10) ŵ = 0.08 mm1
b = 4.7258 (1) ÅT = 100 K
c = 9.8928 (2) Å0.40 × 0.03 × 0.02 mm
β = 96.935 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1573 reflections with I > 2σ(I)
8930 measured reflectionsRint = 0.038
2317 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.25 e Å3
2317 reflectionsΔρmin = 0.23 e Å3
127 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.63065 (3)0.8920 (3)0.86876 (12)0.0364 (4)
H10.6186 (5)0.787 (5)0.816 (2)0.075 (8)*
N10.61425 (3)0.4953 (3)0.69663 (13)0.0283 (4)
C10.66008 (4)0.8348 (4)0.84965 (15)0.0300 (4)
C20.68388 (4)0.9845 (4)0.92417 (17)0.0382 (5)
H20.67931.12510.98740.046*
C30.71405 (4)0.9284 (4)0.90596 (19)0.0410 (5)
H30.73021.03030.95770.049*
C40.72134 (4)0.7262 (4)0.81367 (19)0.0388 (5)
H40.74220.69160.80090.047*
C50.69785 (4)0.5759 (4)0.74073 (18)0.0344 (4)
H50.70270.43580.67790.041*
C60.66712 (4)0.6252 (3)0.75711 (15)0.0281 (4)
C70.64264 (4)0.4541 (4)0.68374 (15)0.0282 (4)
H70.64800.30820.62490.034*
C80.59137 (4)0.3110 (4)0.62109 (16)0.0295 (4)
H8A0.57920.21400.68540.035*
H8B0.60200.16490.57200.035*
C90.56994 (4)0.4833 (4)0.51955 (16)0.0290 (4)
H9A0.55900.62500.56960.035*
H9B0.58240.58670.45840.035*
C100.54637 (4)0.2996 (4)0.43422 (16)0.0295 (4)
H10A0.53510.18450.49570.035*
H10B0.55730.16830.37860.035*
C110.52325 (3)0.4723 (4)0.34047 (16)0.0278 (4)
H11A0.53470.59290.28180.033*
H11B0.51190.59900.39680.033*
C120.50000.2941 (5)0.25000.0291 (5)
H12A0.48880.17070.30820.035*0.50
H12B0.51120.17070.19180.035*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0363 (8)0.0429 (8)0.0299 (7)0.0016 (6)0.0041 (5)0.0045 (5)
N10.0256 (8)0.0366 (8)0.0213 (7)0.0014 (6)0.0026 (5)0.0018 (6)
C10.0343 (10)0.0354 (9)0.0194 (7)0.0001 (7)0.0007 (7)0.0058 (7)
C20.0489 (12)0.0379 (10)0.0259 (8)0.0070 (8)0.0036 (8)0.0002 (8)
C30.0395 (11)0.0436 (11)0.0361 (10)0.0118 (8)0.0115 (8)0.0069 (8)
C40.0286 (10)0.0441 (11)0.0415 (10)0.0031 (8)0.0053 (8)0.0083 (8)
C50.0307 (10)0.0396 (10)0.0318 (9)0.0013 (7)0.0006 (7)0.0039 (7)
C60.0298 (9)0.0331 (9)0.0204 (7)0.0006 (7)0.0018 (6)0.0055 (6)
C70.0281 (9)0.0352 (9)0.0204 (7)0.0029 (7)0.0008 (6)0.0019 (6)
C80.0251 (9)0.0352 (9)0.0269 (8)0.0007 (7)0.0017 (7)0.0005 (7)
C90.0238 (9)0.0354 (9)0.0266 (8)0.0014 (7)0.0018 (7)0.0002 (7)
C100.0238 (9)0.0334 (9)0.0302 (8)0.0020 (6)0.0012 (7)0.0005 (7)
C110.0231 (8)0.0332 (9)0.0265 (8)0.0013 (6)0.0005 (6)0.0006 (6)
C120.0230 (12)0.0327 (12)0.0306 (11)0.0000.0010 (9)0.000
Geometric parameters (Å, º) top
O1—C11.349 (2)C8—C91.524 (2)
O1—H10.86 (1)C8—H8A0.9900
N1—C71.277 (2)C8—H8B0.9900
N1—C81.461 (2)C9—C101.522 (2)
C1—C21.393 (2)C9—H9A0.9900
C1—C61.408 (2)C9—H9B0.9900
C2—C31.377 (3)C10—C111.523 (2)
C2—H20.9500C10—H10A0.9900
C3—C41.385 (3)C10—H10B0.9900
C3—H30.9500C11—C121.524 (2)
C4—C51.378 (2)C11—H11A0.9900
C4—H40.9500C11—H11B0.9900
C5—C61.391 (2)C12—C11i1.524 (2)
C5—H50.9500C12—H12A0.9900
C6—C71.462 (2)C12—H12B0.9900
C7—H70.9500
C1—O1—H1109.1 (19)C9—C8—H8B109.6
C7—N1—C8118.06 (14)H8A—C8—H8B108.1
O1—C1—C2119.15 (16)C10—C9—C8112.43 (14)
O1—C1—C6121.25 (15)C10—C9—H9A109.1
C2—C1—C6119.60 (16)C8—C9—H9A109.1
C3—C2—C1119.86 (17)C10—C9—H9B109.1
C3—C2—H2120.1C8—C9—H9B109.1
C1—C2—H2120.1H9A—C9—H9B107.9
C2—C3—C4121.26 (17)C9—C10—C11112.75 (14)
C2—C3—H3119.4C9—C10—H10A109.0
C4—C3—H3119.4C11—C10—H10A109.0
C5—C4—C3118.99 (18)C9—C10—H10B109.0
C5—C4—H4120.5C11—C10—H10B109.0
C3—C4—H4120.5H10A—C10—H10B107.8
C4—C5—C6121.38 (17)C10—C11—C12114.05 (15)
C4—C5—H5119.3C10—C11—H11A108.7
C6—C5—H5119.3C12—C11—H11A108.7
C5—C6—C1118.89 (15)C10—C11—H11B108.7
C5—C6—C7120.52 (15)C12—C11—H11B108.7
C1—C6—C7120.54 (15)H11A—C11—H11B107.6
N1—C7—C6121.81 (15)C11—C12—C11i112.9 (2)
N1—C7—H7119.1C11—C12—H12A109.0
C6—C7—H7119.1C11i—C12—H12A109.0
N1—C8—C9110.26 (14)C11—C12—H12B109.0
N1—C8—H8A109.6C11i—C12—H12B109.0
C9—C8—H8A109.6H12A—C12—H12B107.8
N1—C8—H8B109.6
O1—C1—C2—C3179.92 (15)C2—C1—C6—C7176.40 (14)
C6—C1—C2—C30.6 (2)C8—N1—C7—C6179.01 (14)
C1—C2—C3—C40.5 (3)C5—C6—C7—N1179.81 (16)
C2—C3—C4—C51.1 (3)C1—C6—C7—N12.8 (2)
C3—C4—C5—C60.6 (3)C7—N1—C8—C9117.30 (16)
C4—C5—C6—C10.5 (2)N1—C8—C9—C10177.84 (13)
C4—C5—C6—C7176.97 (15)C8—C9—C10—C11175.42 (14)
O1—C1—C6—C5179.62 (14)C9—C10—C11—C12177.98 (12)
C2—C1—C6—C51.0 (2)C10—C11—C12—C11i178.76 (15)
O1—C1—C6—C73.0 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (1)1.81 (2)2.5755 (19)148 (3)

Experimental details

Crystal data
Chemical formulaC23H30N2O2
Mr366.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)43.6905 (10), 4.7258 (1), 9.8928 (2)
β (°) 96.935 (2)
V3)2027.65 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.03 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8930, 2317, 1573
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.177, 1.10
No. of reflections2317
No. of parameters127
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (1)1.81 (2)2.5755 (19)148 (3)
 

Acknowledgements

We thank the Fundamental Research Grant Scheme of the Ministry of Higher Education for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCsaszar, J. (1984). Acta Phys. Chem. 30, 61.  Google Scholar
First citationKawasaki, T., Kamata, T., Ushijima, H., Kanakubo, M., Murata, S., Mizukami, F., Fujii, Y. & Usui, Y. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 193–198.  CrossRef Google Scholar
First citationKawasaki, T., Kamata, T., Ushijima, H., Murata, S., Mizukami, F., Fujii, Y. & Usui, Y. (1996). Mol. Cryst. Liq. Cryst. 286, 579–584.  CrossRef CAS Google Scholar
First citationSheikhshoaie, I. & Sharif, M. A. (2006). Acta Cryst. E62, o3563–o3565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds