supplementary materials


Acta Cryst. (2008). E64, o2259    [ doi:10.1107/S1600536808035459 ]

Redetermination of 4-nitrostilbene

R. Moreno-Fuquen, L. Aguirre and A. R. Kennedy

Abstract top

In the title compound, C14H11NO2, the benzene rings are inclined to each other with a dihedral angle between their mean planes of 8.42 (6)°. The nitro group is almost coplanar with the attached benzene ring but is rotated about the C-N bond by 5.84 (12)°. This redetermination results in a crystal structure with significantly higher precision than the original determination [Hertel & Romer (1931). Z. Kristallogr. 76, 467-469], and the intermolecular interactions have been established. In the crystal structure, molecules are linked by C-H...O hydrogen bonds to generate C(5), C(13) and edge-fused R33(28) rings.

Comment top

A great interest in the design of materials with potential applications in photonic technology has been developed in recent years (Luo et al., 2003; Vidal et al., 2008). Significant efforts have been focused on studying of design and the synthesis of organic molecules with potential nonlinear optical response (NLO), improved optical transparency and thermal stability (Park et al., 2004). A specific type of these molecules consists of electron donor and acceptor end groups interacting through a conjugating segment. In a first stage of work in our group, the synthesis of a stilbene molecule with nitro group with electron-withdrawing capacity as a substituent in para position, is considered. In order to obtain detailed structural information on the molecular conformation, its NLO responses, its hydrogen bonded interactions and its supramolecular arrangement, the crystal structure of p-nitrostilbene (I) was undertaken.

Perspective view of the title molecule, showing the atomic numbering scheme, is given in Fig. 1. The benzene rings are twisted out of the ethylene plane, as defined by the torsion angles C3—C4—C7—C8 and C7—C8—C9—C14 therefore the benzene rings are inclined to each other showing a dihedral angle between their mean planes of 8.42 (6)°. The nitro group is almost coplanar with the benzene ring but it is rotated about the C—N bond with an angle of rotation of 5.84 (12)°. If compared with the C7—C8 bond length to the expected value for a localized double bond [1.317 (13) Å, Allen et al., 1987], the title distance shows some lengthening that is indicative of some π conjugation of the two benzene rings through the central ethene bridge. The torsion angle between the benzene rings [C4—C7C8—C9 = 178.48 (12)°] indicates a trans geometry between them. The crystal structure of (I) is stabilized by weak C—H···O hydrogen-bonding interactions [Nardelli, 1995, Table 1]. The formation of the framework can be explained in terms of three-one substructures. In the first substructure atom C2 in the molecule at (x, y, z) acts as a hydrogen bond donor to nitro atom O1 in the molecule at (-1/2 + x, 1/2 - y, 2 - z) so generating, by 21 screw axes, C(5) chains which are running along [100] (Fig. 2). In the second substructure, atom C12 in the molecule at (x, y, z) acts as hydrogen bond donor to nitro atom O2 in the molecule at (x, 1/2 - y, -1/2 + z) so generating C(13) chains along [001] (Fig. 3). In the third-one dimensional substructure atom C12 in the molecule at (x, y, z) acts simultaneously as hydrogen bond donor to atoms O1 in the molecule at (x, 1/2 - y, -1/2 + z) and atom O1 in the molecule at (3/2 - x, -y, -1/2 + z) so generating a chain of edge-fused with graph motif R33(28) rings along [001] (Etter, 1990), [Fig. 4].

Related literature top

For a previous study of the title compound, see: Hertel & Romer (1931). For background information on photonics materials, see: Luo et al. (2003); Vidal et al. (2008); Park et al. (2004). For general background, see: Allen et al. (1987); Etter (1990); Nardelli (1995). [Please check rephrasing]

Experimental top

The synthesis of (I) was prepared by taking equimolar quantities of benzyltriphenylphosphonium bromide (0.9600 g, 2.20 mmol) and 4-nitrobenzaldehyde (0.3355 g, 2.20 mmol). The mixture was stirred and it was taken to reflux in dry THF in a nitrogen atmosphere at 273 K. 3.3 mmol of potassium tert-butoxide was dissolved in 5 ml of t-butanol and this solution was added drop to drop to the phosphonium mixture obtaining a change in the color of the reaction mixture and completion of the reaction after two hours. Single crystals suitable for X-ray analysis were obtained by evaporation at room temperature using ethyl acetate as solvent.

Refinement top

The space group Pbca for p-nitrostilbene was assigned from the systematic absences. All H-atoms were located from difference maps and then treated as riding atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the (I) compound, with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. (Part of the crystal structure of (I) showing the formation of C(5) chains which are running parallel to the [100] direction. [Symmetry codes: (i) 1/2 + x, 1/2 - y, 2 - z; (ii) 1 + x, y, z; (iii) -1/2 + x, 1/2 - y, 2 - z; (iv) -1 + x, y, z].
[Figure 3] Fig. 3. Part of the crystal structure of (I) showing the formation of C(13) chains along [001]. [Symmetry codes: (i) x, 1/2 - y, 1/2 + z; (ii) x, 1/2 - y, -1/2 + z;
[Figure 4] Fig. 4. Part of the crystal structure of (I) showing the formation of edge-fused R33(28) rings along [001]. [Symmetry codes: (i) 3/2 - x, -y, 1/2 + z; (ii) x, 1/2 - y, 1/2 + z; (iii) 3/2 - x, 1/2 + y, z; (iv) 3/2 - x, -y, -1/2 + z]; (v) x, 1/2 - y, -1/2 + z; (vi) x, y, -1 + z; (vii) 3/2 - x, y, -1 + z.
4-nitrostilbene top
Crystal data top
C14H11NO2Dx = 1.373 Mg m3
Mr = 225.24Melting point: 421(1) K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5152 reflections
a = 10.0839 (3) Åθ = 2.7–30.7°
b = 7.6849 (2) ŵ = 0.09 mm1
c = 28.1176 (8) ÅT = 123 K
V = 2178.94 (11) Å3Cut lathe, light yellow
Z = 80.40 × 0.40 × 0.18 mm
F(000) = 944
Data collection top
Oxford Xcalibur-S
diffractometer
3173 independent reflections
Radiation source: fine-focus sealed tube2202 reflections with I > 2σ(I)
graphiteRint = 0.027
ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1412
Tmin = 0.965, Tmax = 0.985k = 1010
13263 measured reflectionsl = 3739
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.491P]
where P = (Fo2 + 2Fc2)/3
3173 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H11NO2V = 2178.94 (11) Å3
Mr = 225.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.0839 (3) ŵ = 0.09 mm1
b = 7.6849 (2) ÅT = 123 K
c = 28.1176 (8) Å0.40 × 0.40 × 0.18 mm
Data collection top
Oxford Xcalibur-S
diffractometer
2202 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.027
Tmin = 0.965, Tmax = 0.985θmax = 30.0°
13263 measured reflectionsStandard reflections: 0
3173 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.135Δρmax = 0.32 e Å3
S = 1.09Δρmin = 0.18 e Å3
3173 reflectionsAbsolute structure: ?
154 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69853 (10)0.14689 (14)1.05469 (3)0.0360 (3)
O20.51679 (11)0.28695 (16)1.04197 (4)0.0453 (3)
N10.60967 (11)0.19752 (15)1.02843 (4)0.0267 (3)
C10.61582 (12)0.15108 (16)0.97771 (4)0.0209 (3)
C20.51199 (13)0.19912 (17)0.94826 (5)0.0232 (3)
H20.43640.25720.96070.028*
C30.52059 (13)0.16074 (16)0.90021 (5)0.0239 (3)
H30.44960.19100.87960.029*
C40.63344 (13)0.07749 (15)0.88166 (4)0.0227 (3)
C50.73329 (13)0.02692 (17)0.91315 (5)0.0247 (3)
H50.80830.03400.90130.030*
C60.72573 (13)0.06320 (16)0.96111 (5)0.0244 (3)
H60.79450.02850.98220.029*
C70.65267 (13)0.04480 (16)0.83078 (5)0.0245 (3)
H70.72310.03090.82210.029*
C80.58014 (13)0.11181 (16)0.79561 (4)0.0236 (3)
H80.50840.18510.80440.028*
C90.60077 (12)0.08280 (15)0.74429 (4)0.0218 (3)
C100.50863 (13)0.15248 (16)0.71267 (4)0.0229 (3)
H100.43420.21420.72470.027*
C110.52360 (13)0.13330 (17)0.66384 (5)0.0253 (3)
H110.45990.18190.64280.030*
C120.63151 (13)0.04317 (16)0.64595 (5)0.0261 (3)
H120.64220.03020.61260.031*
C130.72366 (13)0.02793 (17)0.67678 (5)0.0263 (3)
H130.79730.09040.66450.032*
C140.70911 (13)0.00852 (16)0.72570 (5)0.0246 (3)
H140.77300.05750.74660.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0325 (6)0.0503 (6)0.0254 (5)0.0005 (5)0.0072 (5)0.0044 (5)
O20.0382 (6)0.0687 (8)0.0291 (5)0.0153 (6)0.0009 (5)0.0153 (5)
N10.0250 (6)0.0335 (6)0.0217 (5)0.0050 (5)0.0026 (5)0.0008 (5)
C10.0213 (6)0.0227 (6)0.0188 (6)0.0036 (5)0.0003 (5)0.0011 (5)
C20.0191 (6)0.0269 (6)0.0236 (6)0.0000 (5)0.0005 (5)0.0002 (5)
C30.0225 (6)0.0264 (6)0.0226 (6)0.0018 (5)0.0041 (5)0.0024 (5)
C40.0263 (6)0.0196 (5)0.0220 (6)0.0040 (5)0.0010 (5)0.0004 (5)
C50.0232 (6)0.0242 (6)0.0267 (7)0.0028 (5)0.0023 (5)0.0001 (5)
C60.0231 (6)0.0231 (6)0.0271 (7)0.0013 (5)0.0022 (5)0.0039 (5)
C70.0244 (6)0.0237 (6)0.0253 (6)0.0008 (5)0.0014 (5)0.0023 (5)
C80.0243 (6)0.0223 (6)0.0242 (6)0.0003 (5)0.0012 (5)0.0004 (5)
C90.0254 (6)0.0177 (5)0.0222 (6)0.0030 (5)0.0010 (5)0.0002 (5)
C100.0222 (6)0.0218 (6)0.0247 (6)0.0007 (5)0.0017 (5)0.0005 (5)
C110.0282 (7)0.0238 (6)0.0240 (6)0.0002 (5)0.0028 (5)0.0013 (5)
C120.0343 (7)0.0225 (6)0.0215 (6)0.0026 (6)0.0027 (6)0.0023 (5)
C130.0257 (7)0.0222 (6)0.0309 (7)0.0017 (5)0.0057 (6)0.0039 (5)
C140.0240 (7)0.0213 (6)0.0285 (7)0.0000 (5)0.0038 (5)0.0012 (5)
Geometric parameters (Å, °) top
O1—N11.2246 (14)C7—H70.9500
O2—N11.2225 (15)C8—C91.4750 (17)
N1—C11.4712 (16)C8—H80.9500
C1—C61.3793 (17)C9—C101.3931 (17)
C1—C21.3851 (18)C9—C141.3998 (17)
C2—C31.3855 (17)C10—C111.3890 (18)
C2—H20.9500C10—H100.9500
C3—C41.4058 (18)C11—C121.3845 (18)
C3—H30.9500C11—H110.9500
C4—C51.3960 (18)C12—C131.3833 (19)
C4—C71.4653 (17)C12—H120.9500
C5—C61.3789 (18)C13—C141.3914 (18)
C5—H50.9500C13—H130.9500
C6—H60.9500C14—H140.9500
C7—C81.3334 (18)
O2—N1—O1123.46 (11)C4—C7—H7117.1
O2—N1—C1118.07 (11)C7—C8—C9126.15 (12)
O1—N1—C1118.46 (12)C7—C8—H8116.9
C6—C1—C2122.37 (12)C9—C8—H8116.9
C6—C1—N1118.74 (11)C10—C9—C14118.36 (12)
C2—C1—N1118.88 (11)C10—C9—C8118.19 (11)
C1—C2—C3118.62 (12)C14—C9—C8123.45 (12)
C1—C2—H2120.7C11—C10—C9121.17 (12)
C3—C2—H2120.7C11—C10—H10119.4
C2—C3—C4120.62 (12)C9—C10—H10119.4
C2—C3—H3119.7C12—C11—C10119.85 (12)
C4—C3—H3119.7C12—C11—H11120.1
C5—C4—C3118.37 (11)C10—C11—H11120.1
C5—C4—C7118.43 (12)C13—C12—C11119.86 (12)
C3—C4—C7123.18 (11)C13—C12—H12120.1
C6—C5—C4121.61 (12)C11—C12—H12120.1
C6—C5—H5119.2C12—C13—C14120.42 (12)
C4—C5—H5119.2C12—C13—H13119.8
C5—C6—C1118.32 (12)C14—C13—H13119.8
C5—C6—H6120.8C13—C14—C9120.34 (11)
C1—C6—H6120.8C13—C14—H14119.8
C8—C7—C4125.82 (12)C9—C14—H14119.8
C8—C7—H7117.1
O2—N1—C1—C6174.44 (12)C5—C4—C7—C8167.03 (12)
O1—N1—C1—C64.53 (17)C3—C4—C7—C811.53 (19)
O2—N1—C1—C24.71 (18)C4—C7—C8—C9178.48 (12)
O1—N1—C1—C2176.32 (11)C7—C8—C9—C10174.99 (12)
C6—C1—C2—C31.49 (19)C7—C8—C9—C146.1 (2)
N1—C1—C2—C3177.63 (11)C14—C9—C10—C110.39 (18)
C1—C2—C3—C41.10 (18)C8—C9—C10—C11178.59 (11)
C2—C3—C4—C53.13 (18)C9—C10—C11—C120.17 (18)
C2—C3—C4—C7175.43 (12)C10—C11—C12—C130.24 (19)
C3—C4—C5—C62.73 (18)C11—C12—C13—C140.42 (19)
C7—C4—C5—C6175.91 (11)C12—C13—C14—C90.19 (18)
C4—C5—C6—C10.27 (19)C10—C9—C14—C130.21 (17)
C2—C1—C6—C51.90 (19)C8—C9—C14—C13178.71 (11)
N1—C1—C6—C5177.22 (11)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.553.3762 (17)146
C12—H12···O1ii0.952.663.4139 (16)137
C12—H12···O2iii0.952.743.4046 (17)128
C11—H11···O2iii0.952.903.4820 (17)121
Symmetry codes: (i) x−1/2, −y+1/2, −z+2; (ii) −x+3/2, −y, z−1/2; (iii) x, −y+1/2, z−1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.553.3762 (17)146
C12—H12···O1ii0.952.663.4139 (16)137
C12—H12···O2iii0.952.743.4046 (17)128
C11—H11···O2iii0.952.903.4820 (17)121
Symmetry codes: (i) x−1/2, −y+1/2, −z+2; (ii) −x+3/2, −y, z−1/2; (iii) x, −y+1/2, z−1/2.
Acknowledgements top

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). RMF also thanks the Universidad del Valle, Colombia, for partial financial support.

references
References top

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Etter, M. (1990). Acc. Chem. Res. 23, 120–126.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hertel, E. & Romer, G. H. (1931). Z. Kristallogr. 76, 467–469.

Luo, J., Haller, M., Li, H., Kim, T.-D. & Jen, A. K.-Y. (2003). Adv. Mater. 15, 1635–1638.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.

Park, G., Jung, W. S. & Ra, C. S. (2004). Bull. Korean Chem. Soc. 25, 1427–1429.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Vidal, X., Fedyanin, A., Molinos-Gomez, A., Rao, S., Martorell, J. & Petrov, D. (2008). Opt. Lett. 33, 699–701.