organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Phenyl-7,8-di­hydro-1,3-dioxano[4,5-g]iso­quinoline

aCollege of Chemistry, Inner Mongolia University for Nationalities, Tongliao 028043, People's Republic of China, and bQingdao DIC Finechemicals Co. Ltd, Qingdao 266101, People's Republic of China
*Correspondence e-mail: lijiuming10@yahoo.cn

(Received 22 October 2008; accepted 28 October 2008; online 8 November 2008)

In the title compound, C16H13NO2, the two benzene rings make a dihedral angle of 55.5 (2)°. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds and weak ππ stacking inter­actions [centroid–centroid distance = 3.595 (3)Å], linking the mol­ecules into ladders of inversion dimers.

Related literature

For details of the biological activities of isoquinolinone compounds, see: Bentley (2000[Bentley, K. B. (2000). Nat. Prod. Rep. 17, 247-268.]); Jayaraman et al. (2002[Jayaraman, M., Fox, B. M., Hollingshead, M., Kohlhagen, G., Pommier, Y. & Cushman, M. (2002). J. Med. Chem. 44, 242-249.]). For the Bischler–Napieralski reaction, see: Bischler & Napieralski (1893[Bischler, A. & Napieralski, B. (1893). Chem. Ber. 26, 1903.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO2

  • Mr = 251.27

  • Triclinic, [P \overline 1]

  • a = 8.5005 (17) Å

  • b = 8.5297 (17) Å

  • c = 10.143 (2) Å

  • α = 109.07 (3)°

  • β = 109.44 (2)°

  • γ = 99.70 (3)°

  • V = 622.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.28 × 0.10 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.976, Tmax = 0.993

  • 4801 measured reflections

  • 2145 independent reflections

  • 1275 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.143

  • S = 1.13

  • 2145 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.93 2.55 3.465 (4) 169
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Isoquinolinones are important compounds from both the synthetic and applied points of view. Their structures are incorporated in several alkaloids (Bentley, 20000 and other pharmacologically important compounds (Jayaraman et al., 2002). Of the variety of methods that have been developed for the synthesis of the isoquinoline ring system, the most commonly used procedure is the Bischler-Napieralski reaction (Bischler & Napieralski, 1893). We now wish to report an effective Bischler-Napieralski procedure for the synthesis of 1,2,3,4-tetrahydro-6,7-dimethoxy-1-phenylisoquinoline the title compound (I) and report its crystal structure here.

In compound (I), all bond lengths in the molecular are normal (Allen et al., 1987). The benzene ring C10–C15 and bonded atoms C7, C9, O1 and O2 are coplanar, the largest deviation from the mean plane being 0.039 (2)Å for atom O1. The other benzene ring, C1–C6, and bonded atoms C7 are also coplanar, the largest deviation from the mean plane being 0.032 (2)Å. The two benzene rings make a dihedral angle of 55.5 (2)°.

The relatively short distance of 3.595 (3) between the centroids of benzene ring C10—C15 and 1,3-dioxole ring C13/C14/C16/O1/O2 [at -x,1 - y,-z] indicates the presence of weak π-π interactions, The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds, linking the molecules into ladders of dimers.

Related literature top

For details of the biological activities of isoquinolinone compounds, see: Bentley (2000); Jayaraman et al. (2002). For the Bischler–Napieralski reaction, see: Bischler & Napieralski (1893). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by following Bischler-Napieralski procedures: 0.01 mol N-[2-(3, 4-methylenedioxy)phenyl]benzamide (synthesized by β-(3, 4-methylenedioxy)phenethylamine, Benzoyl chloride and Et3N) was dissolved in 20 ml CH3CN, 5 g POCl3 was added dropwise, the mixture was refluxed under N2 for 5 h, after cooled the volatiles were evaporated under vacuum, then water was added and adjusted the pH to 8, after extracted with CH2Cl2, the organic layers was washed with saturated NaCl and dried with Na2SO4, the product was isolated by evaporation of the solvent and recrystalization, 2.31 g, Yield: 92%. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethyl acetate at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å, with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
5-Phenyl-7,8-dihydro-1,3-dioxano[4,5-g]isoquinoline top
Crystal data top
C16H13NO2Z = 2
Mr = 251.27F(000) = 264
Triclinic, P1Dx = 1.340 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5005 (17) ÅCell parameters from 1451 reflections
b = 8.5297 (17) Åθ = 2.5–23.4°
c = 10.143 (2) ŵ = 0.09 mm1
α = 109.07 (3)°T = 293 K
β = 109.44 (2)°Block, colorless
γ = 99.70 (3)°0.28 × 0.10 × 0.08 mm
V = 622.9 (2) Å3
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2145 independent reflections
Radiation source: Rotating Anode1275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω oscillation scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.976, Tmax = 0.993k = 1010
4801 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.1397P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2145 reflectionsΔρmax = 0.20 e Å3
173 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.048 (8)
Crystal data top
C16H13NO2γ = 99.70 (3)°
Mr = 251.27V = 622.9 (2) Å3
Triclinic, P1Z = 2
a = 8.5005 (17) ÅMo Kα radiation
b = 8.5297 (17) ŵ = 0.09 mm1
c = 10.143 (2) ÅT = 293 K
α = 109.07 (3)°0.28 × 0.10 × 0.08 mm
β = 109.44 (2)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2145 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1275 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.993Rint = 0.037
4801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.13Δρmax = 0.20 e Å3
2145 reflectionsΔρmin = 0.20 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9151 (2)0.7157 (2)1.18121 (17)0.0688 (6)
O20.6920 (2)0.4574 (2)1.01260 (17)0.0656 (6)
N10.8054 (3)0.6182 (3)0.5069 (2)0.0638 (6)
C10.5553 (3)0.2889 (4)0.3031 (3)0.0614 (7)
H1B0.52960.38080.27950.074*
C20.4741 (4)0.1204 (4)0.1932 (3)0.0734 (8)
H2A0.39380.09960.09610.088*
C30.5097 (4)0.0172 (4)0.2247 (3)0.0772 (9)
H3A0.45500.13080.14960.093*
C40.6281 (4)0.0149 (4)0.3695 (3)0.0692 (8)
H4A0.65210.07790.39240.083*
C50.7107 (3)0.1825 (3)0.4798 (3)0.0579 (7)
H5A0.79140.20220.57650.069*
C60.6756 (3)0.3230 (3)0.4491 (2)0.0511 (6)
C70.7705 (3)0.5073 (3)0.5614 (2)0.0521 (6)
C80.9013 (4)0.7997 (3)0.6168 (3)0.0679 (8)
H8A0.81870.85700.64060.081*
H8B0.95730.86000.57020.081*
C91.0385 (4)0.8139 (3)0.7632 (3)0.0604 (7)
H9A1.12790.76640.74240.072*
H9B1.09430.93540.83510.072*
C100.9508 (3)0.7137 (3)0.8300 (2)0.0497 (6)
C110.8169 (3)0.5585 (3)0.7272 (2)0.0468 (6)
C120.7220 (3)0.4618 (3)0.7802 (2)0.0490 (6)
H12A0.63260.35750.71300.059*
C130.7659 (3)0.5266 (3)0.9336 (2)0.0492 (6)
C140.8994 (3)0.6795 (3)1.0347 (2)0.0510 (6)
C150.9955 (3)0.7752 (3)0.9871 (2)0.0525 (6)
H15A1.08710.87711.05660.063*
C160.7728 (4)0.5854 (4)1.1664 (3)0.0713 (8)
H16A0.81590.53181.23630.086*
H16B0.68820.63791.19180.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0833 (14)0.0751 (12)0.0399 (9)0.0155 (10)0.0240 (9)0.0202 (8)
O20.0861 (14)0.0677 (11)0.0470 (10)0.0158 (10)0.0377 (9)0.0221 (9)
N10.0805 (16)0.0671 (14)0.0497 (12)0.0199 (12)0.0329 (11)0.0267 (11)
C10.0513 (15)0.0779 (18)0.0514 (15)0.0196 (13)0.0185 (12)0.0255 (14)
C20.0562 (17)0.091 (2)0.0482 (15)0.0073 (15)0.0087 (12)0.0213 (15)
C30.080 (2)0.0689 (18)0.0552 (16)0.0037 (16)0.0187 (14)0.0116 (14)
C40.079 (2)0.0613 (16)0.0564 (16)0.0162 (14)0.0246 (14)0.0179 (13)
C50.0633 (16)0.0625 (15)0.0404 (13)0.0169 (13)0.0184 (11)0.0168 (12)
C60.0522 (15)0.0630 (15)0.0383 (12)0.0164 (12)0.0232 (10)0.0173 (11)
C70.0588 (16)0.0615 (15)0.0433 (12)0.0229 (12)0.0272 (11)0.0221 (12)
C80.087 (2)0.0622 (16)0.0626 (16)0.0183 (14)0.0396 (15)0.0296 (14)
C90.0646 (17)0.0594 (15)0.0592 (15)0.0142 (12)0.0327 (13)0.0223 (12)
C100.0498 (14)0.0533 (13)0.0471 (13)0.0170 (11)0.0226 (11)0.0190 (11)
C110.0517 (14)0.0525 (13)0.0393 (12)0.0180 (11)0.0220 (10)0.0186 (10)
C120.0533 (15)0.0522 (13)0.0427 (12)0.0180 (11)0.0221 (10)0.0178 (11)
C130.0587 (15)0.0553 (14)0.0405 (12)0.0199 (11)0.0273 (11)0.0202 (11)
C140.0596 (16)0.0587 (14)0.0359 (12)0.0255 (12)0.0197 (11)0.0178 (11)
C150.0507 (14)0.0560 (14)0.0458 (13)0.0150 (11)0.0187 (11)0.0171 (11)
C160.087 (2)0.0816 (19)0.0449 (14)0.0216 (16)0.0341 (14)0.0215 (14)
Geometric parameters (Å, º) top
O1—C141.370 (3)C7—C111.481 (3)
O1—C161.427 (3)C8—C91.504 (4)
O2—C131.381 (3)C8—H8A0.9700
O2—C161.421 (3)C8—H8B0.9700
N1—C71.283 (3)C9—C101.499 (3)
N1—C81.465 (3)C9—H9A0.9700
C1—C21.375 (4)C9—H9B0.9700
C1—C61.391 (3)C10—C111.391 (3)
C1—H1B0.9300C10—C151.394 (3)
C2—C31.368 (4)C11—C121.406 (3)
C2—H2A0.9300C12—C131.359 (3)
C3—C41.380 (4)C12—H12A0.9300
C3—H3A0.9300C13—C141.376 (3)
C4—C51.372 (3)C14—C151.364 (3)
C4—H4A0.9300C15—H15A0.9300
C5—C61.387 (3)C16—H16A0.9700
C5—H5A0.9300C16—H16B0.9700
C6—C71.487 (3)
C14—O1—C16105.44 (18)C10—C9—C8108.3 (2)
C13—O2—C16105.24 (18)C10—C9—H9A110.0
C7—N1—C8117.11 (19)C8—C9—H9A110.0
C2—C1—C6120.6 (3)C10—C9—H9B110.0
C2—C1—H1B119.7C8—C9—H9B110.0
C6—C1—H1B119.7H9A—C9—H9B108.4
C3—C2—C1120.9 (3)C11—C10—C15121.1 (2)
C3—C2—H2A119.6C11—C10—C9116.9 (2)
C1—C2—H2A119.6C15—C10—C9122.0 (2)
C2—C3—C4119.1 (3)C10—C11—C12120.3 (2)
C2—C3—H3A120.5C10—C11—C7117.7 (2)
C4—C3—H3A120.5C12—C11—C7121.8 (2)
C5—C4—C3120.5 (3)C13—C12—C11117.4 (2)
C5—C4—H4A119.7C13—C12—H12A121.3
C3—C4—H4A119.7C11—C12—H12A121.3
C4—C5—C6120.9 (2)C12—C13—C14121.9 (2)
C4—C5—H5A119.6C12—C13—O2128.3 (2)
C6—C5—H5A119.6C14—C13—O2109.77 (19)
C5—C6—C1118.0 (2)C15—C14—O1127.9 (2)
C5—C6—C7122.7 (2)C15—C14—C13122.1 (2)
C1—C6—C7119.0 (2)O1—C14—C13110.0 (2)
N1—C7—C11122.4 (2)C14—C15—C10117.2 (2)
N1—C7—C6116.7 (2)C14—C15—H15A121.4
C11—C7—C6120.8 (2)C10—C15—H15A121.4
N1—C8—C9112.5 (2)O2—C16—O1108.54 (19)
N1—C8—H8A109.1O2—C16—H16A110.0
C9—C8—H8A109.1O1—C16—H16A110.0
N1—C8—H8B109.1O2—C16—H16B110.0
C9—C8—H8B109.1O1—C16—H16B110.0
H8A—C8—H8B107.8H16A—C16—H16B108.4
C6—C1—C2—C30.1 (4)N1—C7—C11—C1022.2 (4)
C1—C2—C3—C40.5 (5)C6—C7—C11—C10159.5 (2)
C2—C3—C4—C50.8 (5)N1—C7—C11—C12153.3 (3)
C3—C4—C5—C60.9 (4)C6—C7—C11—C1225.0 (4)
C4—C5—C6—C10.5 (4)C10—C11—C12—C130.3 (4)
C4—C5—C6—C7175.7 (2)C7—C11—C12—C13175.0 (2)
C2—C1—C6—C50.1 (4)C11—C12—C13—C140.9 (4)
C2—C1—C6—C7175.6 (2)C11—C12—C13—O2179.4 (2)
C8—N1—C7—C112.5 (4)C16—O2—C13—C12173.7 (3)
C8—N1—C7—C6179.1 (2)C16—O2—C13—C146.5 (3)
C5—C6—C7—N1142.5 (3)C16—O1—C14—C15174.1 (3)
C1—C6—C7—N132.7 (3)C16—O1—C14—C135.3 (3)
C5—C6—C7—C1139.2 (3)C12—C13—C14—C150.0 (4)
C1—C6—C7—C11145.6 (2)O2—C13—C14—C15179.8 (2)
C7—N1—C8—C937.6 (3)C12—C13—C14—O1179.4 (2)
N1—C8—C9—C1056.4 (3)O2—C13—C14—O10.8 (3)
C8—C9—C10—C1137.8 (3)O1—C14—C15—C10178.0 (2)
C8—C9—C10—C15139.8 (3)C13—C14—C15—C101.3 (4)
C15—C10—C11—C121.0 (4)C11—C10—C15—C141.8 (4)
C9—C10—C11—C12176.6 (2)C9—C10—C15—C14175.7 (2)
C15—C10—C11—C7176.5 (2)C13—O2—C16—O19.7 (3)
C9—C10—C11—C71.1 (3)C14—O1—C16—O29.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.932.553.465 (4)169
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H13NO2
Mr251.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5005 (17), 8.5297 (17), 10.143 (2)
α, β, γ (°)109.07 (3), 109.44 (2), 99.70 (3)
V3)622.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.10 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.976, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
4801, 2145, 1275
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.144, 1.13
No. of reflections2145
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.932.553.465 (4)168.9
Symmetry code: (i) x+1, y, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBentley, K. B. (2000). Nat. Prod. Rep. 17, 247–268.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBischler, A. & Napieralski, B. (1893). Chem. Ber. 26, 1903.  CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJayaraman, M., Fox, B. M., Hollingshead, M., Kohlhagen, G., Pommier, Y. & Cushman, M. (2002). J. Med. Chem. 44, 242–249.  Web of Science CrossRef Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds