organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(4-chloro­phenyl)-3-(3,5-di­fluoro­phen­oxy)acrylate

aXuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou 221009, People's Republic of China
*Correspondence e-mail: adler_20008@yahoo.com.cn

(Received 31 October 2008; accepted 10 November 2008; online 20 November 2008)

In the title compound, C17H13ClF2O3, a multifunctional aromatic compound, the dihedral angle between the two benzene rings is 51.8 (3)°.

Related literature

For the biological activities of phenyl­acetate and styrene derivatives, see: Fang et al. (2007[Fang, R.-Q., Li, H.-Q., Shi, L., Xiao, Z.-P. & Zhu, H.-L. (2007). Acta Cryst. E63, o3975.]); Liu et al. (2008[Liu, X.-H., Lv, P.-C., Li, B. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 223-230.]); Shi et al. (2007[Shi, L., Fang, R.-Q., Li, H.-Q. & Zhu, H.-L. (2007). Acta Cryst. E63, o4041.], 2008[Shi, L., Huang, X.-F., Zhu, Z.-W., Li, H.-Q., Xue, J.-Y. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 472-475.]); Zhang, et al. (2008[Zhang, L.-N., Cao, P., Tan, S.-H., Gu, W., Shi, L. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1543-1551.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13ClF2O3

  • Mr = 338.72

  • Monoclinic, P 21 /c

  • a = 9.4999 (17) Å

  • b = 7.6771 (14) Å

  • c = 21.564 (4) Å

  • β = 91.40 (3)°

  • V = 1572.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.947

  • 3284 measured reflections

  • 3090 independent reflections

  • 2000 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.283

  • S = 1.08

  • 3090 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, a few phenylacetate and styrene derivatives have been reported with versatile biological activities (Fang et al., 2007; Liu et al., 2008; Shi et al., 2007, 2008; Zhang, et al., 2008). We report herein the title new compound, (I), (Fig. 1).

In compound (I), the dihedral angle between the C1—C6 and C7—C12 phenyl rings is 51.8 (3)°, indicating the molecule is not coplanar. The O3/C13—C15/O1/O2 plane forms dihedral angles of 20.7 (3)° and 47.6 (3)°, respectively, with C1—C6 and C7—C12 phenyl rings. All the bond lengths of the molecule are in normal ranges (Allen et al., 1987).

Related literature top

For the biological activities of phenylacetate and styrene derivatives, see: Fang et al. (2007); Liu et al. (2008); Shi et al. (2007, 2008); Zhang, et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

Equimolar ethyl 3-bromo-2-(4-chlorophenyl)acrylate and 3,5-difluorophenol reacted in chloroform overnight, giving a colorless solution. Block crystals of the compound were formed by gradual evaporation of the solution in air for a week.

Refinement top

H atoms were included in the riding model approximation with C–H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Ethyl 2-(4-chlorophenyl)-3-(3,5-difluorophenoxy)acrylate top
Crystal data top
C17H13ClF2O3F(000) = 696
Mr = 338.72Dx = 1.431 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1213 reflections
a = 9.4999 (17) Åθ = 2.5–25.3°
b = 7.6771 (14) ŵ = 0.28 mm1
c = 21.564 (4) ÅT = 298 K
β = 91.40 (3)°Block, colorless
V = 1572.2 (5) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3090 independent reflections
Radiation source: fine-focus sealed tube2000 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 011
Tmin = 0.939, Tmax = 0.947k = 09
3284 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.283H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.171P)2 + 0.5784P]
where P = (Fo2 + 2Fc2)/3
3090 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C17H13ClF2O3V = 1572.2 (5) Å3
Mr = 338.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4999 (17) ŵ = 0.28 mm1
b = 7.6771 (14) ÅT = 298 K
c = 21.564 (4) Å0.23 × 0.20 × 0.20 mm
β = 91.40 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3090 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2000 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.947Rint = 0.041
3284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.283H-atom parameters constrained
S = 1.08Δρmax = 0.48 e Å3
3090 reflectionsΔρmin = 0.53 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C141.0156 (4)0.6558 (5)0.20983 (16)0.0391 (9)
C71.0360 (4)0.6643 (5)0.27791 (16)0.0362 (8)
C151.1233 (4)0.5884 (5)0.16872 (17)0.0428 (9)
C130.8915 (4)0.7118 (5)0.18452 (17)0.0394 (9)
H130.82610.75650.21170.047*
C81.1571 (4)0.7361 (5)0.30569 (18)0.0424 (9)
H81.22980.77280.28070.051*
C110.9438 (4)0.6248 (6)0.38096 (19)0.0509 (10)
H110.87260.58640.40640.061*
C20.6293 (4)0.8598 (6)0.13280 (19)0.0486 (10)
H20.65530.90360.17160.058*
C10.7207 (4)0.7578 (5)0.09956 (18)0.0417 (9)
C60.6816 (5)0.6998 (6)0.04035 (19)0.0510 (11)
H60.74310.63440.01680.061*
C101.0635 (4)0.6998 (6)0.40610 (18)0.0486 (10)
C120.9308 (4)0.6072 (5)0.31709 (18)0.0430 (9)
H120.85000.55620.30000.052*
C91.1716 (4)0.7540 (5)0.36912 (19)0.0470 (10)
H91.25310.80200.38670.056*
C50.5495 (5)0.7422 (6)0.0178 (2)0.0524 (11)
C40.4541 (5)0.8378 (7)0.0493 (2)0.0585 (12)
H40.36500.86290.03290.070*
C30.4983 (4)0.8946 (6)0.1066 (2)0.0542 (11)
O11.1121 (3)0.5871 (5)0.11246 (13)0.0641 (9)
O21.2379 (3)0.5253 (4)0.19845 (12)0.0461 (7)
O30.8532 (4)0.7092 (5)0.12313 (16)0.0664 (9)
C161.3459 (4)0.4580 (7)0.1585 (2)0.0563 (12)
H16A1.37030.54520.12800.068*
H16B1.31130.35550.13670.068*
F10.5110 (3)0.6844 (5)0.03974 (14)0.0852 (10)
C171.4696 (5)0.4135 (9)0.1967 (2)0.0833 (18)
H17A1.49930.51360.22020.125*
H17B1.54430.37690.17040.125*
H17C1.44660.32060.22440.125*
F20.4078 (3)0.9913 (5)0.14082 (16)0.0970 (12)
Cl11.07938 (14)0.7341 (2)0.48566 (5)0.0805 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C140.0362 (19)0.043 (2)0.0375 (19)0.0008 (16)0.0035 (15)0.0011 (16)
C70.0356 (18)0.0357 (19)0.0374 (19)0.0084 (15)0.0012 (14)0.0008 (15)
C150.040 (2)0.048 (2)0.040 (2)0.0021 (17)0.0007 (16)0.0006 (17)
C130.0382 (19)0.041 (2)0.0386 (19)0.0015 (16)0.0023 (15)0.0047 (16)
C80.0340 (18)0.050 (2)0.043 (2)0.0018 (17)0.0016 (15)0.0006 (17)
C110.044 (2)0.065 (3)0.044 (2)0.003 (2)0.0058 (17)0.005 (2)
C20.050 (2)0.049 (2)0.047 (2)0.0039 (19)0.0064 (18)0.0056 (19)
C10.0375 (19)0.045 (2)0.042 (2)0.0017 (17)0.0041 (16)0.0047 (17)
C60.050 (2)0.060 (3)0.043 (2)0.010 (2)0.0033 (18)0.0019 (19)
C100.045 (2)0.065 (3)0.0356 (19)0.010 (2)0.0018 (16)0.0038 (19)
C120.0374 (19)0.047 (2)0.045 (2)0.0024 (17)0.0015 (16)0.0012 (17)
C90.038 (2)0.056 (3)0.047 (2)0.0011 (18)0.0059 (17)0.0103 (19)
C50.052 (2)0.059 (3)0.045 (2)0.002 (2)0.0103 (19)0.001 (2)
C40.044 (2)0.072 (3)0.059 (3)0.006 (2)0.013 (2)0.006 (2)
C30.048 (2)0.054 (3)0.060 (3)0.011 (2)0.0001 (19)0.003 (2)
O10.0592 (19)0.095 (3)0.0375 (16)0.0233 (18)0.0006 (13)0.0027 (16)
O20.0393 (14)0.0551 (17)0.0442 (15)0.0111 (13)0.0049 (11)0.0029 (12)
O30.060 (2)0.080 (2)0.058 (2)0.0072 (17)0.0116 (15)0.0001 (17)
C160.050 (2)0.068 (3)0.051 (2)0.010 (2)0.011 (2)0.007 (2)
F10.076 (2)0.124 (3)0.0538 (16)0.0185 (19)0.0268 (14)0.0219 (17)
C170.058 (3)0.126 (5)0.066 (3)0.038 (3)0.004 (2)0.009 (3)
F20.070 (2)0.134 (3)0.087 (2)0.053 (2)0.0065 (16)0.029 (2)
Cl10.0637 (8)0.1398 (14)0.0378 (6)0.0078 (8)0.0051 (5)0.0114 (7)
Geometric parameters (Å, º) top
C14—C131.357 (5)C6—C51.374 (6)
C14—C151.465 (5)C6—H60.9300
C14—C71.478 (5)C10—C91.380 (6)
C7—C121.395 (5)C10—Cl11.739 (4)
C7—C81.397 (5)C12—H120.9300
C15—O11.215 (5)C9—H90.9300
C15—O21.340 (5)C5—F11.359 (5)
C13—O31.364 (5)C5—C41.361 (7)
C13—H130.9300C4—C31.368 (6)
C8—C91.378 (5)C4—H40.9300
C8—H80.9300C3—F21.365 (5)
C11—C101.374 (6)O2—C161.450 (5)
C11—C121.386 (5)C16—C171.459 (6)
C11—H110.9300C16—H16A0.9700
C2—C31.380 (6)C16—H16B0.9700
C2—C11.382 (6)C17—H17A0.9600
C2—H20.9300C17—H17B0.9600
C1—C61.394 (6)C17—H17C0.9600
C1—O31.397 (5)
C13—C14—C15118.8 (3)C11—C12—C7121.5 (4)
C13—C14—C7118.5 (3)C11—C12—H12119.2
C15—C14—C7122.7 (3)C7—C12—H12119.2
C12—C7—C8117.3 (3)C8—C9—C10119.0 (4)
C12—C7—C14120.6 (3)C8—C9—H9120.5
C8—C7—C14122.0 (3)C10—C9—H9120.5
O1—C15—O2121.7 (3)F1—C5—C4117.6 (4)
O1—C15—C14124.1 (3)F1—C5—C6118.0 (4)
O2—C15—C14114.2 (3)C4—C5—C6124.4 (4)
C14—C13—O3126.4 (4)C5—C4—C3115.5 (4)
C14—C13—H13116.8C5—C4—H4122.3
O3—C13—H13116.8C3—C4—H4122.3
C9—C8—C7121.8 (4)F2—C3—C4118.5 (4)
C9—C8—H8119.1F2—C3—C2117.3 (4)
C7—C8—H8119.1C4—C3—C2124.2 (4)
C10—C11—C12119.1 (4)C15—O2—C16115.0 (3)
C10—C11—H11120.5C13—O3—C1124.4 (3)
C12—C11—H11120.5O2—C16—C17108.7 (4)
C3—C2—C1118.0 (4)O2—C16—H16A110.0
C3—C2—H2121.0C17—C16—H16A110.0
C1—C2—H2121.0O2—C16—H16B110.0
C2—C1—C6119.9 (4)C17—C16—H16B110.0
C2—C1—O3122.3 (4)H16A—C16—H16B108.3
C6—C1—O3117.7 (4)C16—C17—H17A109.5
C5—C6—C1118.0 (4)C16—C17—H17B109.5
C5—C6—H6121.0H17A—C17—H17B109.5
C1—C6—H6121.0C16—C17—H17C109.5
C11—C10—C9121.3 (4)H17A—C17—H17C109.5
C11—C10—Cl1120.3 (3)H17B—C17—H17C109.5
C9—C10—Cl1118.4 (3)
C13—C14—C7—C1245.7 (5)C8—C7—C12—C111.6 (6)
C15—C14—C7—C12133.9 (4)C14—C7—C12—C11175.6 (4)
C13—C14—C7—C8131.3 (4)C7—C8—C9—C100.1 (6)
C15—C14—C7—C849.1 (5)C11—C10—C9—C81.6 (7)
C13—C14—C15—O13.9 (6)Cl1—C10—C9—C8176.6 (3)
C7—C14—C15—O1176.5 (4)C1—C6—C5—F1179.5 (4)
C13—C14—C15—O2175.6 (4)C1—C6—C5—C40.3 (7)
C7—C14—C15—O23.9 (6)F1—C5—C4—C3179.3 (4)
C15—C14—C13—O31.5 (6)C6—C5—C4—C30.9 (7)
C7—C14—C13—O3178.1 (4)C5—C4—C3—F2179.9 (4)
C12—C7—C8—C91.4 (6)C5—C4—C3—C20.3 (7)
C14—C7—C8—C9175.7 (4)C1—C2—C3—F2178.1 (4)
C3—C2—C1—C62.7 (6)C1—C2—C3—C41.5 (7)
C3—C2—C1—O3177.2 (4)O1—C15—O2—C160.5 (6)
C2—C1—C6—C52.2 (7)C14—C15—O2—C16179.9 (4)
O3—C1—C6—C5177.8 (4)C14—C13—O3—C1175.6 (4)
C12—C11—C10—C91.4 (7)C2—C1—O3—C1319.2 (6)
C12—C11—C10—Cl1176.7 (3)C6—C1—O3—C13160.7 (4)
C10—C11—C12—C70.2 (6)C15—O2—C16—C17173.4 (4)

Experimental details

Crystal data
Chemical formulaC17H13ClF2O3
Mr338.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.4999 (17), 7.6771 (14), 21.564 (4)
β (°) 91.40 (3)
V3)1572.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.939, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
3284, 3090, 2000
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.283, 1.08
No. of reflections3090
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.53

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 30572073), the Natural Science Foundation of Jiangsu Province of China (No. DK2005428), the Medical Science and Technology Development Foundation, Jiangsu Province Department of Health (No. K200402), and the Social Development Foundation of Xuzhou (No. X2003025).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, R.-Q., Li, H.-Q., Shi, L., Xiao, Z.-P. & Zhu, H.-L. (2007). Acta Cryst. E63, o3975.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X.-H., Lv, P.-C., Li, B. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 223–230.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Fang, R.-Q., Li, H.-Q. & Zhu, H.-L. (2007). Acta Cryst. E63, o4041.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShi, L., Huang, X.-F., Zhu, Z.-W., Li, H.-Q., Xue, J.-Y. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 472–475.  Web of Science CrossRef CAS Google Scholar
First citationZhang, L.-N., Cao, P., Tan, S.-H., Gu, W., Shi, L. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1543–1551.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds