organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4,5-Di­nitro-10-aza­tri­cyclo­[6.3.1.02,7]dodeca-2,4,6-trien-10-yl)-2,2,2-tri­fluoro­ethanone

aCollege of Science, Nanjing University of Technolgy, Xinmofan Road No.5, Nanjing 210009, People's Republic of China
*Correspondence e-mail: cnjyc@sohu.com

(Received 29 August 2008; accepted 3 September 2008; online 22 November 2008)

In the title compound, C13H10F3N3O5, a derivative of andrographolide, the five-membered ring adopts an envelope conformation, while the non-planar six-membered ring has a chair conformation. An intra­molecular C—H⋯F hydrogen bond results in the formation of a non-planar six-membered ring adopting a twisted conformation. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10F3N3O5

  • Mr = 345.24

  • Monoclinic, P 21 /c

  • a = 9.6400 (19) Å

  • b = 7.7430 (15) Å

  • c = 18.687 (4) Å

  • β = 96.98 (3)°

  • V = 1384.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.955, Tmax = 0.985

  • 2673 measured reflections

  • 2513 independent reflections

  • 1592 reflections with I > 2σ(I)

  • Rint = 0.052

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.183

  • S = 1.02

  • 2513 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯F2 0.97 2.34 3.002 (6) 124
C9—H9A⋯O1i 0.93 2.41 3.338 (5) 173
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some derivatives of andrographolide are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Ring A (C8–C13) is, of course, planar. Ring B (N1/C3–C7) is not planar, having total puckering amplitude, QT, of 0.626 (3) and chair conformation [ϕ = -175.64 (3)° and θ = 36.12 (3)°] (Cremer & Pople, 1975), while ring C (C4–C6/C8/C13) adopts envelope conformation, with C5 atom displaced by -0.707 (3) Å from the plane of the other ring atoms. The intramolecular C—H···F hydrogen bond (Table 1) results in the formation of a nonplanar six-membered ring D (F2/C1/C2/N1/C7/H7B), having total puckering amplitude, QT, of 0.651 (3) and twisted conformation [ϕ = 34.96 (3)° and θ = 76.80 (2)°] (Cremer & Pople, 1975)

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

For the preparation of the title compound, 1-(4,5-diamino-10-aza-tricyclo- [6.3.1.0]dodeca-2,4,6-trien-10-yl)-2,2,2-trifluoro-ethanone (3.0 g) was hydrogenated in methanol (30 ml, 95%) under hydrogen (45 psi) over Pd-carbon catalysts (300 mg of 20wt%/C,10%wt). After 2.5 h, the reaction was filtered through a celite pad and rinsed with methanol (30 ml, 95%). The solution was concentrated to a light brown oil that crystallized. An X-ray grade crystal of the title compound (500 mg) was grown from ethyl acetate (10 ml) at room temperature.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
1-(4,5-Dinitro-10-azatricyclo[6.3.1.02,7]dodeca-2,4,6-trien-10-yl)-2,2,2-trifluoroethanone top
Crystal data top
C13H10F3N3O5F(000) = 704
Mr = 345.24Dx = 1.656 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.6400 (19) Åθ = 10–13°
b = 7.7430 (15) ŵ = 0.15 mm1
c = 18.687 (4) ÅT = 294 K
β = 96.98 (3)°Red, colorless
V = 1384.5 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1592 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 25.3°, θmin = 2.1°
ω/2θ scansh = 1111
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.955, Tmax = 0.985l = 022
2673 measured reflections3 standard reflections every 120 min
2513 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.05P)2 + 4P]
where P = (Fo2 + 2Fc2)/3
2513 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C13H10F3N3O5V = 1384.5 (5) Å3
Mr = 345.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6400 (19) ŵ = 0.15 mm1
b = 7.7430 (15) ÅT = 294 K
c = 18.687 (4) Å0.30 × 0.20 × 0.10 mm
β = 96.98 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1592 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.052
Tmin = 0.955, Tmax = 0.9853 standard reflections every 120 min
2673 measured reflections intensity decay: none
2513 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
2513 reflectionsΔρmin = 0.35 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.3302 (4)0.7803 (5)0.23330 (19)0.1036 (13)
F20.1596 (3)0.6268 (5)0.25814 (17)0.0907 (12)
F30.3030 (3)0.5239 (4)0.19179 (13)0.0702 (9)
O10.4775 (4)0.6527 (5)0.34298 (19)0.0681 (10)
O20.1222 (4)0.4522 (5)0.6478 (2)0.0812 (12)
O30.0247 (4)0.2030 (5)0.65267 (18)0.0733 (11)
O40.2298 (3)0.1740 (6)0.4660 (2)0.0772 (12)
O50.1736 (4)0.3629 (5)0.5498 (2)0.0749 (11)
N10.3630 (3)0.3999 (5)0.34108 (16)0.0398 (8)
N20.0824 (4)0.3155 (6)0.6213 (2)0.0512 (10)
N30.1427 (4)0.2615 (5)0.5031 (2)0.0532 (10)
C10.2916 (5)0.6217 (7)0.2505 (2)0.0557 (12)
C20.3865 (4)0.5564 (6)0.3165 (2)0.0446 (10)
C30.4621 (4)0.3471 (7)0.4042 (2)0.0486 (11)
H3A0.47140.44060.43900.058*
H3B0.55320.32720.38870.058*
C40.4159 (4)0.1853 (6)0.4403 (2)0.0442 (10)
H4A0.48720.14430.47840.053*
C50.3737 (5)0.0456 (7)0.3846 (3)0.0569 (12)
H5A0.36000.06490.40720.068*
H5B0.44190.03310.35090.068*
C60.2364 (4)0.1203 (6)0.3485 (2)0.0476 (11)
H6A0.17990.03230.32080.057*
C70.2679 (5)0.2734 (7)0.3008 (2)0.0524 (12)
H7A0.31050.23100.25980.063*
H7B0.18110.33040.28270.063*
C80.2766 (4)0.2163 (5)0.4683 (2)0.0393 (9)
C90.2468 (4)0.2693 (5)0.5352 (2)0.0398 (10)
H9A0.31810.29680.57150.048*
C100.1095 (4)0.2805 (5)0.5470 (2)0.0391 (9)
C110.0006 (4)0.2439 (5)0.4922 (2)0.0381 (9)
C120.0337 (4)0.1944 (6)0.4239 (2)0.0417 (10)
H12A0.03650.17370.38610.050*
C130.1695 (4)0.1778 (5)0.4143 (2)0.0418 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.150 (3)0.070 (2)0.083 (2)0.000 (2)0.017 (2)0.0327 (19)
F20.0614 (19)0.134 (3)0.076 (2)0.042 (2)0.0060 (15)0.020 (2)
F30.0736 (19)0.102 (2)0.0356 (14)0.0003 (17)0.0089 (12)0.0006 (15)
O10.072 (2)0.053 (2)0.074 (2)0.0176 (19)0.0145 (18)0.0037 (18)
O20.100 (3)0.075 (3)0.068 (2)0.011 (2)0.005 (2)0.030 (2)
O30.095 (3)0.076 (3)0.056 (2)0.005 (2)0.0403 (19)0.009 (2)
O40.0338 (17)0.108 (3)0.087 (3)0.016 (2)0.0066 (17)0.001 (2)
O50.054 (2)0.078 (3)0.098 (3)0.0127 (19)0.029 (2)0.007 (2)
N10.0348 (17)0.053 (2)0.0291 (16)0.0060 (16)0.0073 (13)0.0019 (15)
N20.050 (2)0.056 (3)0.045 (2)0.007 (2)0.0007 (17)0.003 (2)
N30.043 (2)0.055 (3)0.060 (2)0.0015 (19)0.0023 (19)0.018 (2)
C10.054 (3)0.067 (3)0.046 (3)0.004 (3)0.008 (2)0.014 (2)
C20.045 (2)0.051 (3)0.039 (2)0.002 (2)0.0101 (18)0.007 (2)
C30.033 (2)0.069 (3)0.042 (2)0.007 (2)0.0008 (17)0.009 (2)
C40.033 (2)0.058 (3)0.042 (2)0.007 (2)0.0055 (17)0.010 (2)
C50.061 (3)0.052 (3)0.063 (3)0.004 (2)0.027 (2)0.003 (2)
C60.049 (2)0.053 (3)0.041 (2)0.013 (2)0.0063 (19)0.007 (2)
C70.053 (3)0.071 (3)0.033 (2)0.016 (2)0.0025 (19)0.009 (2)
C80.041 (2)0.038 (2)0.037 (2)0.0014 (18)0.0044 (17)0.0045 (18)
C90.036 (2)0.045 (2)0.034 (2)0.0047 (19)0.0095 (16)0.0003 (18)
C100.041 (2)0.039 (2)0.035 (2)0.0009 (18)0.0026 (17)0.0051 (18)
C110.0318 (19)0.038 (2)0.042 (2)0.0017 (17)0.0023 (16)0.0104 (18)
C120.038 (2)0.045 (3)0.039 (2)0.0061 (19)0.0050 (17)0.0008 (19)
C130.047 (2)0.039 (2)0.038 (2)0.0066 (19)0.0014 (18)0.0015 (19)
Geometric parameters (Å, º) top
F1—C11.334 (6)C4—C51.521 (6)
F2—C11.298 (5)C4—H4A0.9800
F3—C11.348 (6)C5—C61.525 (6)
O1—C21.210 (5)C5—H5A0.9700
O2—N21.211 (5)C5—H5B0.9700
O3—N21.221 (5)C6—C131.523 (6)
O4—N31.227 (5)C6—C71.535 (6)
O5—N31.236 (5)C6—H6A0.9800
N1—C21.325 (6)C7—H7A0.9700
N1—C31.482 (5)C7—H7B0.9700
N1—C71.483 (5)C8—C91.379 (6)
N2—C101.470 (5)C8—C131.385 (5)
N3—C111.427 (5)C9—C101.370 (5)
C1—C21.530 (6)C9—H9A0.9300
C3—C41.516 (6)C10—C111.403 (5)
C3—H3A0.9700C11—C121.407 (6)
C3—H3B0.9700C12—C131.349 (6)
C4—C81.519 (5)C12—H12A0.9300
C2—N1—C3114.0 (3)C4—C5—H5B111.7
C2—N1—C7123.4 (3)C6—C5—H5B111.7
C3—N1—C7121.4 (4)H5A—C5—H5B109.5
O2—N2—O3124.6 (4)C13—C6—C5100.5 (3)
O2—N2—C10117.6 (4)C13—C6—C7112.1 (4)
O3—N2—C10117.8 (4)C5—C6—C7109.1 (4)
O4—N3—O5122.9 (4)C13—C6—H6A111.5
O4—N3—C11118.3 (4)C5—C6—H6A111.5
O5—N3—C11118.8 (4)C7—C6—H6A111.5
F2—C1—F1107.7 (4)N1—C7—C6111.6 (3)
F2—C1—F3106.5 (4)N1—C7—H7A109.3
F1—C1—F3105.6 (4)C6—C7—H7A109.3
F2—C1—C2114.8 (4)N1—C7—H7B109.3
F1—C1—C2110.0 (4)C6—C7—H7B109.3
F3—C1—C2111.8 (4)H7A—C7—H7B108.0
O1—C2—N1124.6 (4)C9—C8—C13120.4 (4)
O1—C2—C1117.3 (4)C9—C8—C4130.6 (4)
N1—C2—C1118.1 (4)C13—C8—C4109.1 (4)
N1—C3—C4112.7 (3)C10—C9—C8118.4 (3)
N1—C3—H3A109.0C10—C9—H9A120.8
C4—C3—H3A109.0C8—C9—H9A120.8
N1—C3—H3B109.0C9—C10—C11121.5 (4)
C4—C3—H3B109.0C9—C10—N2116.7 (3)
H3A—C3—H3B107.8C11—C10—N2121.6 (4)
C3—C4—C8110.0 (4)C10—C11—C12119.0 (4)
C3—C4—C5110.6 (3)C10—C11—N3121.9 (4)
C8—C4—C5100.0 (3)C12—C11—N3119.0 (4)
C3—C4—H4A111.9C13—C12—C11118.4 (4)
C8—C4—H4A111.9C13—C12—H12A120.8
C5—C4—H4A111.9C11—C12—H12A120.8
C4—C5—C6100.3 (4)C12—C13—C8122.2 (4)
C4—C5—H5A111.7C12—C13—C6130.3 (4)
C6—C5—H5A111.7C8—C13—C6107.5 (4)
C3—N1—C2—O11.8 (6)C4—C8—C9—C10177.4 (4)
C7—N1—C2—O1169.0 (4)C8—C9—C10—C111.7 (6)
C3—N1—C2—C1178.8 (4)C8—C9—C10—N2172.3 (4)
C7—N1—C2—C111.6 (6)O2—N2—C10—C963.6 (5)
F2—C1—C2—O1121.0 (5)O3—N2—C10—C9114.5 (5)
F1—C1—C2—O10.6 (6)O2—N2—C10—C11122.3 (5)
F3—C1—C2—O1117.5 (5)O3—N2—C10—C1159.5 (6)
F2—C1—C2—N158.5 (6)C9—C10—C11—C120.1 (6)
F1—C1—C2—N1179.9 (4)N2—C10—C11—C12173.6 (4)
F3—C1—C2—N163.0 (5)C9—C10—C11—N3177.6 (4)
C2—N1—C3—C4168.3 (4)N2—C10—C11—N38.7 (6)
C7—N1—C3—C424.2 (5)O4—N3—C11—C10154.4 (4)
N1—C3—C4—C861.6 (5)O5—N3—C11—C1025.1 (6)
N1—C3—C4—C548.0 (5)O4—N3—C11—C1228.0 (6)
C3—C4—C5—C671.8 (4)O5—N3—C11—C12152.6 (4)
C8—C4—C5—C644.2 (4)C10—C11—C12—C132.4 (6)
C4—C5—C6—C1344.6 (4)N3—C11—C12—C13179.8 (4)
C4—C5—C6—C773.4 (4)C11—C12—C13—C83.4 (6)
C2—N1—C7—C6167.6 (4)C11—C12—C13—C6177.3 (4)
C3—N1—C7—C626.0 (5)C9—C8—C13—C121.8 (7)
C13—C6—C7—N158.8 (5)C4—C8—C13—C12179.6 (4)
C5—C6—C7—N151.7 (5)C9—C8—C13—C6178.8 (4)
C3—C4—C8—C993.2 (5)C4—C8—C13—C60.2 (5)
C5—C4—C8—C9150.4 (5)C5—C6—C13—C12152.3 (5)
C3—C4—C8—C1388.4 (4)C7—C6—C13—C1291.9 (5)
C5—C4—C8—C1328.0 (4)C5—C6—C13—C828.3 (5)
C13—C8—C9—C100.8 (6)C7—C6—C13—C887.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···F20.972.343.002 (6)124
C9—H9A···O1i0.932.413.338 (5)173
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H10F3N3O5
Mr345.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)9.6400 (19), 7.7430 (15), 18.687 (4)
β (°) 96.98 (3)
V3)1384.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.955, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
2673, 2513, 1592
Rint0.052
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.183, 1.02
No. of reflections2513
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.35

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···F20.972.343.002 (6)124.00
C9—H9A···O1i0.932.413.338 (5)173.00
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds