organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2414-o2415

Methyl 5,7-dihydr­­oxy-2,2,9-tri­methyl-6,11-dioxo-6,11-di­hydro-2H-anthra[2,3-b]pyran-8-carboxyl­ate

aDepartment of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812 Yaoundé, Cameroon, bInstitut de Chimie de Strasbourg, Université Louis Pasteur, Service de Radiocristallographie, UMR 7177 CNRS, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France, cLaboratory of NMR, LC1 IFR85, University Louis Pasteur, Faculty of Pharmacy, Strasbourg, France, and dLaboratory of Pharmacognosy, LC1 UMR-CNRS 7175, University Louis Pasteur, Faculty of Pharmacy, Strasbourg, France
*Correspondence e-mail: didetchamo@yahoo.fr

(Received 30 September 2008; accepted 14 November 2008; online 22 November 2008)

The title compound, C22H18O7, also known as laurentiquinone B, is a new anthraquinone which was isolated from Vismia laurentii, a Cameroonian medicinal plant. The asymmetric unit contains two independent mol­ecules. Each of them contains four fused rings, three of which are coplanar and typical of anthracene, while the heterocyclic rings adopt envelope conformations. Intra­molecular O—H⋯O hydrogen bonds result in the formation of two planar rings, which are also almost coplanar with the adjacent rings. In the crystal structure, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules and a ππ contact is also present [centroid-centroid distance = 3.967 (3) Å].

Related literature

For the biosynthesis of anthraquinones, see: Birch et al. (1965[Birch, A. J., Ryan, A. J., Schofiel, J. & Smith, H. (1965). J. Chem. Soc. 39, 1231-1234.]); Shibata & Ikekawa (1963[Shibata, S. & Ikekawa, T. (1963). Pharm. Bull. Tokyo, 11, 368-372.]). For the bioactivity of anthraquinones, see: ; Adwankar & Chitnis (1982[Adwankar, M. K. & Chitnis, M. P. (1982). Chemotherapy, 28, 291-293.]); Sittie et al. (1999[Sittie, A. A., Lemmich, E., Olsen, C. E., Hviid, L., Harazmi, F. K., Nkrumah, F. K. & Christensen, S. B. (1999). Planta Med. 65, 259-261.]); Rath et al. (1995[Rath, G., Ndonzao, M. & Hostettmann, K. (1995). Col. Int. J. Pharmacogen. 69, 413-414.]); Ismail et al. (1997[Ismail, N. H., Ali, A. M., Aimi, N., Kitajima, M., Takayama, H. & Lajis, N. H. (1997). Phytochemistry, 45, 1723-1725.]); Nagem & de Oliveira (1997[Nagem, T. J. & de Oliveira, F. F. (1997). J. Braz. Chem. Soc. 8, 505-508.]); Nguemeving et al. (2006[Nguemeving, J. R., Azebaze, A. G. B., Kuete, V., Carly, N. N. E., Beng, V. P., Meyer, M., Blond, A., Bodo, B. & Nkengfack, A. E. (2006). Phytochemistry, 67, 1341-1346.]). For the pharmacology of Vismia laurentii, see: Kerharo (1974[Kerharo, J. O. (1974). Pharmacopé Sénégalaise Traditionnelle, p. 485. Paris: Vigot-Frère.]); Macfoy & Sama (1983[Macfoy, C. A. & Sama, A. M. (1983). J. Ethnopharmacol. 8, 215-223.]). For other classes of natural products isolated from Vismia species, see: Simmonds et al. (1985[Simmonds, M. S. J., Blaney, W. M., Delle Monache, F., Marquina Mac-Quhae, M. & Marini Bettolo, G. B. (1985). J. Chem. Ecol. 11, 1593-1599.]); Nagem & de Oliveira (1997[Nagem, T. J. & de Oliveira, F. F. (1997). J. Braz. Chem. Soc. 8, 505-508.]); Seo et al. (2000[Seo, E.-K., Wani, M. C., Wall, M. E., Navarro, H., Mukherjee, R., Farnsworth, N. R. & Kinghorn, A. D. (2000). Phytochemistry, 55, 35-42.]); Nguemeving et al. (2006[Nguemeving, J. R., Azebaze, A. G. B., Kuete, V., Carly, N. N. E., Beng, V. P., Meyer, M., Blond, A., Bodo, B. & Nkengfack, A. E. (2006). Phytochemistry, 67, 1341-1346.]). For related structures, see: Noungoue et al. (2008[Noungoue, T. D., Antheaume, C., Chaabi, M., Ndjakou, B. L., Ngouela, S., Lobstein, A. & Tsamo, E. (2008). Phytochemistry, 69, 1024-1028.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18O7

  • Mr = 394.36

  • Triclinic, [P \overline 1]

  • a = 6.9234 (4) Å

  • b = 16.0765 (9) Å

  • c = 17.5304 (9) Å

  • α = 108.746 (2)°

  • β = 98.725 (3)°

  • γ = 94.147 (2)°

  • V = 1810.97 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 (2) K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 17235 measured reflections

  • 8260 independent reflections

  • 4538 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.171

  • S = 1.02

  • 8260 reflections

  • 547 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O3 0.91 (3) 1.72 (3) 2.567 (2) 152 (3)
O11—H11O⋯O10 0.88 (3) 1.75 (4) 2.568 (2) 153 (3)
O9—H9O⋯O10 0.92 (3) 1.72 (3) 2.558 (2) 150 (3)
O2—H2O⋯O3 0.88 (3) 1.77 (3) 2.562 (2) 148 (3)
O2—H20⋯O9i 0.88 (3) 2.31 (3) 2.654 (2) 103 (2)
C34—H34⋯O7ii 0.95 2.59 3.441 (2) 150
C44—H44B⋯O7ii 0.98 2.51 3.423 (2) 155
C44—H44C⋯O8ii 0.98 2.58 3.419 (2) 144
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Anthraquinones are a class of natural products encompassing several hundreds of compounds. They are found in a large number of plant families particularly in Rubiaceae, Gesneriaceae, Polygonaceae, Guttiferae, fungi or lichen. Anthraquinones can be formed biosynthetically from shikimic acid, α-ketoglutarate and mevalonate or from acetate and malonate along the polyketide pathway (Birch et al., 1965; Shibata & Ikekawa, 1963). Those naturally occurring compounds exhibit some interesting in vivo biological activities such as antimalarial, antileukemic, antibacterial (Adwankar & Chitnis, 1982; Sittie et al., 1999; Rath et al., 1995; Ismail et al., 1997). Several Vismia species are known as sources of anthraquinones (Nagem & de Oliveira, 1997; Nguemeving et al., 2006). They are used in traditional medicine as purgative, tonic or febrifugal agents and also for the treatment of skin diseases (Kerharo, 1974; Macfoy & Sama, 1983). Previous phytochemical investigations of Vismia species have revealed the presence of benzophenones, xanthones, triterpenoids and also anthraquinones (Simmonds et al., 1985, Seo et al., 2000). In a continuation of our search for bioactive compounds from Vismia laurentii, we have isolated from the EtOAc extract of the fruits 5 compounds comprising emodin, isoxanthorin, and three new ones laurentiquinones A, B(1) and C (Noungoue et al., 2008). We reported herein the crystal structure of (1).

The asymmetric unit of the title compound contains two independent molecules, (Fig. 1). Rings B (C4-C6/C15-C17), C (C6-C8/C13-C15), D (C8-C13) and F (C26-C28/C37-C39), G (C28-C30/C35-C37), H (C30-C35) are, of course, planar and the dihedral angles between them are B/C = 1.11 (3)°, B/D = 2.86 (3)°, C/D = 1.75 (3)° and F/G = 1.43(39°, F/H = 1.59 (3)°, G/H = 1.57 (3)°. So, rings B, C, D and F, G, H are almost coplanar. Rings A (O1/C1-C4/C17) and E (O8/C23-C26/C39) adopt envelope conformations with C1 and C23 atoms displaced by 0.348 (3) Å and 0.192 (3) Å from the planes of the other rings atoms. The intramolecular O-H···O hydrogen bonds (Table 1) result in the formation of planar rings I (O3/O4/C7-C9/H4O), J (O2/O3/C5-C7/H2O) and K (O10/O11/C29-C31/H11O), L (O9/O10/C27-C29/H9O). They are also almost coplanar with the adjacent rings.

In the crystal structure, intermolecular O-H···O and C-H···O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure. There also exist a ππ contact between G and H rings, Cg8···Cg7i [symmetry code: (i) -x, 1 - y, -z, where Cg8 and Cg7 are the centroids of the rings H (C30-C35) and G (C28-C30/C35-C39) may further stabilize the structure, with centroid-centroid distance of 3.967 (3) Å.

Related literature top

For general background, see: Birch et al. (1965); Shibata & Ikekawa (1963); Adwankar & Chitnis (1982); Sittie et al. (1999); Rath et al. (1995); Ismail et al. (1997); Nagem & de Oliveira (1997); Nguemeving et al. (2006); Kerharo (1974); Macfoy & Sama (1983); Simmonds et al. (1985); Seo et al. (2000); Noungoue et al. (2008).

Experimental top

The fruits of Vismia laurentii were collected from the bank of the Nyong river near Nkolmaka Lake (Endome) in Center Province, Cameroon on 17t h October 2004 by Mr. Nana Victor. A voucher specimen (No. 1882/SRFK) has been deposited in the National Herbarium, Yaounde, Cameroon. Dried fruits (0.988 kg) of V. laurentii were grounded and exhaustively extracted by maceration successively with hexane, ethyl acetate and methanol at room temperature. In each extraction 3x5 L of solvent were used for a period of 3x24 h and the extracts obtained were concentrated to dryness to give green (62.3 g), brown (43.6 g) and brown (22.1 g) crude viscous residues from hexane, EtOAc and MeOH extracts, respectively. The EtOAc extract (40 g) was subjected to flash column chromatography on silica gel 60 (0.063-0.200 mm, Merck, 500 g) as a stationary phase eluting with cyclohexane-EtOAc-MeOH mixtures of increasing polarity. Twenty-four fractions of 200 ml each were collected and grouped on the basis of TLC analysis to afford two main fractions A (11.7 g) and B (17.3 g). Fractions A and B were chromatographed on a silica gel column, using as eluent gradient mixtures of cyclohexane and EtOAc to yield laurentiquinone B (16 mg) in addition to other compounds. Orange-red crystals of the title compound were grown from a hexane-chloroform solution of laurentiquinone B.

Refinement top

H2O, H4O, H9O and H11O (for OH) were located in difference syntheses and refined isotropically [O-H = 0.88 (3)-0.92 (3) Å and Uiso(H) = 0.069 (10)-0.092 (13) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.95 and 0.98 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Methyl 5,7-dihydroxy-2,2,9-trimethyl-6,11-dioxo-6,11-dihydro-2H-anthra [2,3-b]pyran-8-carboxylate top
Crystal data top
C22H18O7Z = 4
Mr = 394.36F(000) = 824
Triclinic, P1Dx = 1.446 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9234 (4) ÅCell parameters from 8986 reflections
b = 16.0765 (9) Åθ = 1.0–27.5°
c = 17.5304 (9) ŵ = 0.11 mm1
α = 108.746 (2)°T = 173 K
β = 98.725 (3)°Plate, orange
γ = 94.147 (2)°0.30 × 0.20 × 0.15 mm
V = 1810.97 (17) Å3
Data collection top
Nonius KappaCCD
diffractometer
4538 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 27.6°, θmin = 1.3°
ϕ and ω scansh = 86
17235 measured reflectionsk = 2020
8260 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.3328P]
where P = (Fo2 + 2Fc2)/3
8260 reflections(Δ/σ)max < 0.001
547 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C22H18O7γ = 94.147 (2)°
Mr = 394.36V = 1810.97 (17) Å3
Triclinic, P1Z = 4
a = 6.9234 (4) ÅMo Kα radiation
b = 16.0765 (9) ŵ = 0.11 mm1
c = 17.5304 (9) ÅT = 173 K
α = 108.746 (2)°0.30 × 0.20 × 0.15 mm
β = 98.725 (3)°
Data collection top
Nonius KappaCCD
diffractometer
4538 reflections with I > 2σ(I)
17235 measured reflectionsRint = 0.062
8260 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
8260 reflectionsΔρmin = 0.25 e Å3
547 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9256 (3)0.20606 (10)0.34068 (10)0.0353 (4)
O20.7679 (3)0.44308 (11)0.55456 (9)0.0297 (4)
H2O0.742 (4)0.498 (2)0.5634 (18)0.069 (10)*
O30.6830 (2)0.58232 (10)0.52267 (9)0.0284 (4)
O40.5973 (3)0.72378 (11)0.49464 (9)0.0311 (4)
H4O0.614 (5)0.682 (2)0.5196 (19)0.082 (11)*
O50.6860 (3)0.89104 (11)0.42063 (12)0.0494 (5)
O60.3755 (3)0.82417 (10)0.38316 (10)0.0371 (4)
O70.8008 (3)0.43662 (10)0.21238 (9)0.0335 (4)
O80.3921 (3)0.20125 (10)0.08818 (10)0.0375 (5)
O90.2613 (3)0.45070 (11)0.29753 (9)0.0310 (4)
H9O0.231 (5)0.507 (2)0.3026 (19)0.078 (11)*
O100.1911 (2)0.58838 (10)0.26044 (9)0.0298 (4)
O110.1139 (3)0.72764 (11)0.22628 (10)0.0327 (4)
H11O0.128 (5)0.689 (2)0.252 (2)0.092 (13)*
O120.1994 (3)0.88730 (12)0.15164 (14)0.0650 (7)
O130.1093 (3)0.81995 (10)0.10974 (10)0.0352 (4)
O140.2996 (2)0.42633 (10)0.04866 (9)0.0311 (4)
C10.9107 (4)0.14397 (15)0.38645 (15)0.0335 (6)
C20.9295 (4)0.19223 (15)0.47656 (14)0.0312 (6)
H20.97440.16330.51410.037*
C30.8851 (3)0.27426 (15)0.50542 (14)0.0284 (6)
H30.88300.30050.56210.034*
C40.8398 (3)0.32371 (14)0.44995 (13)0.0238 (5)
C50.7869 (3)0.40951 (14)0.47550 (13)0.0231 (5)
C60.7611 (3)0.45848 (14)0.42189 (13)0.0232 (5)
C70.7075 (3)0.54731 (14)0.44998 (13)0.0227 (5)
C80.6849 (3)0.59752 (14)0.39322 (13)0.0234 (5)
C90.6330 (3)0.68391 (14)0.41885 (13)0.0252 (5)
C100.6215 (3)0.73234 (14)0.36560 (14)0.0256 (5)
C110.6576 (3)0.69623 (15)0.28607 (14)0.0255 (5)
C120.7058 (3)0.61005 (15)0.26013 (14)0.0256 (5)
H120.72940.58470.20600.031*
C130.7199 (3)0.56095 (14)0.31249 (13)0.0236 (5)
C140.7733 (3)0.46976 (14)0.28247 (13)0.0245 (5)
C150.7928 (3)0.41905 (14)0.34075 (13)0.0235 (5)
C160.8462 (3)0.33469 (14)0.31475 (13)0.0255 (5)
H160.86860.30910.26040.031*
C170.8669 (3)0.28760 (14)0.36917 (14)0.0267 (5)
C180.7102 (4)0.08818 (18)0.35335 (17)0.0492 (8)
H18A0.60650.12650.36410.074*
H18B0.69840.04390.38050.074*
H18C0.69650.05820.29410.074*
C191.0782 (4)0.08948 (17)0.36805 (17)0.0479 (7)
H19A1.06750.06310.30860.072*
H19B1.07110.04240.39210.072*
H19C1.20430.12770.39160.072*
C200.5689 (4)0.82504 (16)0.39418 (14)0.0310 (6)
C210.3033 (4)0.90901 (17)0.39716 (18)0.0502 (8)
H21A0.34220.94490.45530.075*
H21B0.15920.89990.38180.075*
H21C0.35940.93970.36390.075*
C220.6469 (4)0.75002 (16)0.22934 (15)0.0346 (6)
H22A0.52820.77970.23220.052*
H22B0.64190.71070.17300.052*
H22C0.76370.79450.24600.052*
C230.3687 (4)0.14102 (15)0.13466 (15)0.0362 (6)
C240.3587 (4)0.18934 (17)0.22190 (16)0.0390 (7)
H240.37040.15740.25910.047*
C250.3347 (4)0.27396 (16)0.25069 (15)0.0354 (6)
H250.32590.30100.30660.042*
C260.3219 (3)0.32519 (15)0.19542 (13)0.0250 (5)
C270.2816 (3)0.41312 (15)0.21919 (13)0.0239 (5)
C280.2650 (3)0.46045 (14)0.16364 (13)0.0219 (5)
C290.2162 (3)0.54995 (14)0.18846 (13)0.0238 (5)
C300.1976 (3)0.59654 (14)0.12902 (13)0.0236 (5)
C310.1486 (3)0.68315 (15)0.15087 (13)0.0258 (5)
C320.1365 (3)0.72859 (14)0.09460 (14)0.0257 (5)
C330.1732 (3)0.68879 (15)0.01611 (14)0.0254 (5)
C340.2184 (3)0.60181 (15)0.00646 (13)0.0255 (5)
H340.24150.57370.06030.031*
C350.2301 (3)0.55620 (14)0.04830 (13)0.0229 (5)
C360.2777 (3)0.46361 (14)0.02161 (13)0.0234 (5)
C370.2963 (3)0.41710 (14)0.08309 (13)0.0223 (5)
C380.3410 (3)0.33106 (14)0.05955 (14)0.0249 (5)
H380.36510.30320.00580.030*
C390.3502 (3)0.28573 (14)0.11525 (14)0.0254 (5)
C400.1808 (5)0.0794 (2)0.0916 (2)0.0791 (12)
H40A0.06810.11300.09720.119*
H40B0.16660.03310.11620.119*
H40C0.18570.05220.03330.119*
C410.5481 (5)0.0925 (2)0.12807 (19)0.0678 (10)
H41A0.55940.06730.07030.102*
H41B0.53470.04480.15120.102*
H41C0.66650.13400.15850.102*
C420.0842 (4)0.82113 (16)0.12240 (14)0.0315 (6)
C430.1864 (4)0.90363 (17)0.13526 (18)0.0479 (8)
H43A0.13940.93380.19420.072*
H43B0.33080.89320.12390.072*
H43C0.14150.94070.10500.072*
C440.1659 (4)0.73895 (16)0.04345 (15)0.0332 (6)
H44A0.05850.77560.03700.050*
H44B0.14330.69690.09960.050*
H44C0.29130.77690.03250.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0528 (12)0.0233 (9)0.0364 (10)0.0154 (8)0.0186 (9)0.0120 (8)
O20.0440 (11)0.0264 (10)0.0218 (9)0.0105 (8)0.0097 (8)0.0092 (7)
O30.0379 (10)0.0267 (9)0.0224 (8)0.0108 (7)0.0100 (8)0.0071 (7)
O40.0419 (11)0.0255 (9)0.0272 (9)0.0099 (8)0.0115 (8)0.0071 (8)
O50.0432 (12)0.0245 (10)0.0737 (14)0.0003 (9)0.0003 (10)0.0132 (9)
O60.0349 (11)0.0276 (9)0.0510 (11)0.0134 (8)0.0081 (9)0.0140 (8)
O70.0500 (12)0.0301 (9)0.0241 (9)0.0116 (8)0.0146 (8)0.0091 (7)
O80.0563 (12)0.0222 (9)0.0423 (10)0.0125 (8)0.0219 (9)0.0147 (8)
O90.0422 (11)0.0325 (10)0.0221 (9)0.0114 (8)0.0089 (8)0.0116 (8)
O100.0404 (11)0.0280 (9)0.0232 (8)0.0100 (8)0.0106 (8)0.0084 (7)
O110.0472 (12)0.0268 (9)0.0256 (9)0.0156 (8)0.0108 (8)0.0067 (8)
O120.0509 (14)0.0246 (11)0.1069 (18)0.0017 (10)0.0025 (13)0.0118 (11)
O130.0359 (11)0.0254 (9)0.0455 (10)0.0130 (8)0.0104 (9)0.0103 (8)
O140.0425 (11)0.0295 (9)0.0234 (9)0.0103 (8)0.0106 (8)0.0084 (7)
C10.0412 (16)0.0256 (13)0.0380 (14)0.0107 (11)0.0058 (12)0.0159 (11)
C20.0339 (15)0.0311 (14)0.0340 (14)0.0103 (11)0.0055 (12)0.0174 (11)
C30.0268 (14)0.0310 (14)0.0315 (13)0.0065 (11)0.0060 (11)0.0150 (11)
C40.0233 (13)0.0229 (12)0.0270 (12)0.0034 (10)0.0065 (10)0.0099 (10)
C50.0238 (13)0.0239 (12)0.0212 (12)0.0032 (10)0.0056 (10)0.0065 (10)
C60.0236 (13)0.0227 (12)0.0237 (12)0.0030 (10)0.0061 (10)0.0074 (10)
C70.0208 (12)0.0227 (12)0.0245 (12)0.0018 (10)0.0050 (10)0.0076 (10)
C80.0232 (13)0.0221 (12)0.0264 (12)0.0045 (10)0.0063 (10)0.0091 (10)
C90.0238 (13)0.0222 (12)0.0284 (12)0.0005 (10)0.0061 (11)0.0067 (10)
C100.0231 (13)0.0207 (12)0.0321 (13)0.0025 (10)0.0046 (11)0.0083 (10)
C110.0237 (13)0.0261 (13)0.0301 (13)0.0030 (10)0.0057 (11)0.0139 (10)
C120.0243 (13)0.0279 (13)0.0266 (12)0.0041 (10)0.0067 (10)0.0108 (10)
C130.0206 (13)0.0259 (12)0.0260 (12)0.0037 (10)0.0072 (10)0.0096 (10)
C140.0246 (13)0.0245 (13)0.0233 (12)0.0024 (10)0.0065 (10)0.0059 (10)
C150.0243 (13)0.0226 (12)0.0248 (12)0.0023 (10)0.0071 (10)0.0088 (10)
C160.0299 (14)0.0240 (12)0.0241 (12)0.0046 (10)0.0095 (11)0.0080 (10)
C170.0281 (14)0.0218 (12)0.0310 (13)0.0053 (10)0.0080 (11)0.0084 (10)
C180.055 (2)0.0458 (17)0.0454 (17)0.0039 (15)0.0032 (15)0.0207 (14)
C190.063 (2)0.0366 (16)0.0481 (17)0.0264 (14)0.0138 (15)0.0131 (13)
C200.0345 (15)0.0311 (14)0.0287 (13)0.0050 (12)0.0037 (12)0.0129 (11)
C210.053 (2)0.0341 (16)0.071 (2)0.0217 (14)0.0164 (16)0.0229 (15)
C220.0397 (16)0.0339 (14)0.0365 (14)0.0070 (12)0.0093 (12)0.0188 (12)
C230.0480 (18)0.0236 (13)0.0411 (15)0.0041 (12)0.0049 (13)0.0180 (12)
C240.0464 (17)0.0383 (16)0.0457 (16)0.0127 (13)0.0159 (14)0.0275 (13)
C250.0425 (16)0.0369 (15)0.0356 (14)0.0122 (12)0.0154 (13)0.0190 (12)
C260.0218 (13)0.0284 (13)0.0284 (12)0.0043 (10)0.0054 (10)0.0137 (10)
C270.0236 (13)0.0281 (13)0.0205 (11)0.0045 (10)0.0050 (10)0.0084 (10)
C280.0212 (13)0.0223 (12)0.0217 (11)0.0024 (10)0.0024 (10)0.0073 (10)
C290.0208 (13)0.0262 (13)0.0232 (12)0.0024 (10)0.0043 (10)0.0067 (10)
C300.0230 (13)0.0228 (12)0.0242 (12)0.0017 (10)0.0039 (10)0.0075 (10)
C310.0249 (14)0.0269 (13)0.0240 (12)0.0034 (10)0.0039 (10)0.0067 (10)
C320.0245 (13)0.0209 (12)0.0317 (13)0.0031 (10)0.0038 (11)0.0095 (10)
C330.0222 (13)0.0268 (13)0.0285 (12)0.0017 (10)0.0031 (10)0.0121 (10)
C340.0243 (13)0.0293 (13)0.0251 (12)0.0041 (10)0.0069 (10)0.0112 (10)
C350.0186 (12)0.0249 (12)0.0246 (12)0.0024 (10)0.0041 (10)0.0075 (10)
C360.0199 (12)0.0273 (13)0.0233 (12)0.0022 (10)0.0051 (10)0.0087 (10)
C370.0211 (12)0.0231 (12)0.0235 (12)0.0014 (10)0.0064 (10)0.0081 (10)
C380.0241 (13)0.0238 (12)0.0254 (12)0.0016 (10)0.0049 (10)0.0067 (10)
C390.0229 (13)0.0209 (12)0.0326 (13)0.0039 (10)0.0067 (11)0.0084 (10)
C400.085 (3)0.073 (2)0.075 (2)0.041 (2)0.019 (2)0.045 (2)
C410.098 (3)0.070 (2)0.0523 (19)0.059 (2)0.0272 (19)0.0272 (17)
C420.0387 (16)0.0264 (14)0.0319 (14)0.0052 (12)0.0070 (12)0.0126 (11)
C430.061 (2)0.0297 (15)0.0617 (19)0.0253 (14)0.0266 (16)0.0164 (13)
C440.0368 (15)0.0319 (14)0.0375 (14)0.0086 (11)0.0103 (12)0.0185 (12)
Geometric parameters (Å, º) top
O2—H2O0.88 (3)C22—H22B0.9800
O4—H4O0.91 (3)C22—H22C0.9800
O9—H9O0.92 (3)C23—O81.467 (3)
O11—H11O0.88 (3)C23—C241.491 (3)
C1—O11.475 (3)C23—C401.509 (4)
C1—C21.500 (3)C23—C411.514 (4)
C1—C191.515 (3)C24—C251.323 (3)
C1—C181.520 (3)C24—H240.9500
C2—C31.329 (3)C25—C261.457 (3)
C2—H20.9500C25—H250.9500
C3—C41.455 (3)C26—C391.395 (3)
C3—H30.9500C26—C271.401 (3)
C4—C171.395 (3)C27—O91.345 (2)
C4—C51.401 (3)C27—C281.413 (3)
C5—O21.347 (2)C28—C371.417 (3)
C5—C61.407 (3)C28—C291.444 (3)
C6—C151.417 (3)C29—O101.259 (2)
C6—C71.449 (3)C29—C301.462 (3)
C7—O31.260 (2)C30—C311.402 (3)
C7—C81.467 (3)C30—C351.415 (3)
C8—C91.407 (3)C31—O111.353 (3)
C8—C131.413 (3)C31—C321.400 (3)
C9—O41.346 (3)C32—C331.390 (3)
C9—C101.392 (3)C32—C421.499 (3)
C10—C111.396 (3)C33—C341.398 (3)
C10—C201.503 (3)C33—C441.508 (3)
C11—C121.395 (3)C34—C351.380 (3)
C11—C221.511 (3)C34—H340.9500
C12—C131.387 (3)C35—C361.488 (3)
C12—H120.9500C36—O141.223 (2)
C13—C141.485 (3)C36—C371.492 (3)
C14—O71.223 (2)C37—C381.383 (3)
C14—C151.495 (3)C38—C391.391 (3)
C15—C161.382 (3)C38—H380.9500
C16—C171.394 (3)C39—O81.356 (3)
C16—H160.9500C40—H40A0.9800
C17—O11.360 (3)C40—H40B0.9800
C18—H18A0.9800C40—H40C0.9800
C18—H18B0.9800C41—H41A0.9800
C18—H18C0.9800C41—H41B0.9800
C19—H19A0.9800C41—H41C0.9800
C19—H19B0.9800C42—O121.197 (3)
C19—H19C0.9800C42—O131.322 (3)
C20—O51.201 (3)C43—O131.444 (3)
C20—O61.322 (3)C43—H43A0.9800
C21—O61.446 (3)C43—H43B0.9800
C21—H21A0.9800C43—H43C0.9800
C21—H21B0.9800C44—H44A0.9800
C21—H21C0.9800C44—H44B0.9800
C22—H22A0.9800C44—H44C0.9800
C17—O1—C1120.10 (17)H22A—C22—H22B109.5
C5—O2—H2O107.1 (19)C11—C22—H22C109.5
C9—O4—H4O104 (2)H22A—C22—H22C109.5
C20—O6—C21116.6 (2)H22B—C22—H22C109.5
C39—O8—C23121.75 (17)O8—C23—C24112.24 (19)
C27—O9—H9O106.2 (19)O8—C23—C40106.2 (2)
C31—O11—H11O103 (2)C24—C23—C40110.8 (2)
C42—O13—C43117.9 (2)O8—C23—C41104.3 (2)
O1—C1—C2111.49 (18)C24—C23—C41111.3 (2)
O1—C1—C19104.25 (18)C40—C23—C41111.8 (3)
C2—C1—C19111.7 (2)C25—C24—C23124.1 (2)
O1—C1—C18107.4 (2)C25—C24—H24118.0
C2—C1—C18109.5 (2)C23—C24—H24118.0
C19—C1—C18112.2 (2)C24—C25—C26119.1 (2)
C3—C2—C1122.0 (2)C24—C25—H25120.4
C3—C2—H2119.0C26—C25—H25120.4
C1—C2—H2119.0C39—C26—C27118.0 (2)
C2—C3—C4119.8 (2)C39—C26—C25119.2 (2)
C2—C3—H3120.1C27—C26—C25122.8 (2)
C4—C3—H3120.1O9—C27—C26116.96 (19)
C17—C4—C5118.0 (2)O9—C27—C28121.5 (2)
C17—C4—C3118.7 (2)C26—C27—C28121.56 (19)
C5—C4—C3123.07 (19)C27—C28—C37117.9 (2)
O2—C5—C4116.25 (19)C27—C28—C29120.72 (19)
O2—C5—C6122.1 (2)C37—C28—C29121.40 (19)
C4—C5—C6121.58 (19)O10—C29—C28121.0 (2)
C5—C6—C15118.1 (2)O10—C29—C30119.8 (2)
C5—C6—C7120.50 (19)C28—C29—C30119.24 (18)
C15—C6—C7121.4 (2)C31—C30—C35118.1 (2)
O3—C7—C6120.89 (19)C31—C30—C29120.71 (19)
O3—C7—C8119.7 (2)C35—C30—C29121.2 (2)
C6—C7—C8119.38 (19)O11—C31—C32116.6 (2)
C9—C8—C13118.7 (2)O11—C31—C30122.8 (2)
C9—C8—C7120.59 (19)C32—C31—C30120.61 (19)
C13—C8—C7120.6 (2)C33—C32—C31120.7 (2)
O4—C9—C10117.4 (2)C33—C32—C42121.7 (2)
O4—C9—C8122.6 (2)C31—C32—C42117.63 (19)
C10—C9—C8119.9 (2)C32—C33—C34118.9 (2)
C9—C10—C11121.2 (2)C32—C33—C44120.5 (2)
C9—C10—C20119.4 (2)C34—C33—C44120.6 (2)
C11—C10—C20119.4 (2)C35—C34—C33121.0 (2)
C12—C11—C10119.0 (2)C35—C34—H34119.5
C12—C11—C22120.5 (2)C33—C34—H34119.5
C10—C11—C22120.5 (2)C34—C35—C30120.7 (2)
C13—C12—C11120.8 (2)C34—C35—C36119.22 (19)
C13—C12—H12119.6C30—C35—C36120.04 (19)
C11—C12—H12119.6O14—C36—C35121.2 (2)
C12—C13—C8120.4 (2)O14—C36—C37120.8 (2)
C12—C13—C14118.95 (19)C35—C36—C37117.98 (18)
C8—C13—C14120.66 (19)C38—C37—C28121.0 (2)
O7—C14—C13121.5 (2)C38—C37—C36118.88 (19)
O7—C14—C15120.6 (2)C28—C37—C36120.08 (19)
C13—C14—C15117.95 (18)C37—C38—C39119.4 (2)
C16—C15—C6121.0 (2)C37—C38—H38120.3
C16—C15—C14119.04 (19)C39—C38—H38120.3
C6—C15—C14119.9 (2)O8—C39—C38116.58 (19)
C15—C16—C17119.2 (2)O8—C39—C26121.3 (2)
C15—C16—H16120.4C38—C39—C26122.1 (2)
C17—C16—H16120.4C23—C40—H40A109.5
O1—C17—C16116.38 (19)C23—C40—H40B109.5
O1—C17—C4121.5 (2)H40A—C40—H40B109.5
C16—C17—C4122.0 (2)C23—C40—H40C109.5
C1—C18—H18A109.5H40A—C40—H40C109.5
C1—C18—H18B109.5H40B—C40—H40C109.5
H18A—C18—H18B109.5C23—C41—H41A109.5
C1—C18—H18C109.5C23—C41—H41B109.5
H18A—C18—H18C109.5H41A—C41—H41B109.5
H18B—C18—H18C109.5C23—C41—H41C109.5
C1—C19—H19A109.5H41A—C41—H41C109.5
C1—C19—H19B109.5H41B—C41—H41C109.5
H19A—C19—H19B109.5O12—C42—O13124.1 (2)
C1—C19—H19C109.5O12—C42—C32125.5 (2)
H19A—C19—H19C109.5O13—C42—C32110.3 (2)
H19B—C19—H19C109.5O13—C43—H43A109.5
O5—C20—O6124.5 (2)O13—C43—H43B109.5
O5—C20—C10124.8 (2)H43A—C43—H43B109.5
O6—C20—C10110.6 (2)O13—C43—H43C109.5
O6—C21—H21A109.5H43A—C43—H43C109.5
O6—C21—H21B109.5H43B—C43—H43C109.5
H21A—C21—H21B109.5C33—C44—H44A109.5
O6—C21—H21C109.5C33—C44—H44B109.5
H21A—C21—H21C109.5H44A—C44—H44B109.5
H21B—C21—H21C109.5C33—C44—H44C109.5
C11—C22—H22A109.5H44A—C44—H44C109.5
C11—C22—H22B109.5H44B—C44—H44C109.5
O1—C1—C2—C324.9 (3)C25—C26—C27—O92.3 (3)
C19—C1—C2—C3141.1 (2)C39—C26—C27—C281.6 (3)
C18—C1—C2—C393.9 (3)C25—C26—C27—C28178.3 (2)
C1—C2—C3—C47.6 (4)O9—C27—C28—C37177.5 (2)
C2—C3—C4—C177.6 (3)C26—C27—C28—C371.9 (3)
C2—C3—C4—C5178.3 (2)O9—C27—C28—C292.9 (3)
C17—C4—C5—O2178.06 (19)C26—C27—C28—C29177.7 (2)
C3—C4—C5—O23.9 (3)C27—C28—C29—O101.4 (3)
C17—C4—C5—C60.1 (3)C37—C28—C29—O10179.1 (2)
C3—C4—C5—C6174.2 (2)C27—C28—C29—C30179.2 (2)
O2—C5—C6—C15177.2 (2)C37—C28—C29—C300.4 (3)
C4—C5—C6—C150.9 (3)O10—C29—C30—C311.2 (3)
O2—C5—C6—C71.6 (3)C28—C29—C30—C31179.4 (2)
C4—C5—C6—C7179.6 (2)O10—C29—C30—C35178.2 (2)
C5—C6—C7—O30.0 (3)C28—C29—C30—C351.2 (3)
C15—C6—C7—O3178.8 (2)C35—C30—C31—O11179.8 (2)
C5—C6—C7—C8178.9 (2)C29—C30—C31—O110.8 (3)
C15—C6—C7—C80.2 (3)C35—C30—C31—C321.3 (3)
O3—C7—C8—C91.1 (3)C29—C30—C31—C32178.1 (2)
C6—C7—C8—C9180.0 (2)O11—C31—C32—C33178.9 (2)
O3—C7—C8—C13177.3 (2)C30—C31—C32—C330.1 (3)
C6—C7—C8—C131.6 (3)O11—C31—C32—C420.8 (3)
C13—C8—C9—O4179.94 (19)C30—C31—C32—C42179.7 (2)
C7—C8—C9—O41.6 (3)C31—C32—C33—C341.3 (3)
C13—C8—C9—C101.5 (3)C42—C32—C33—C34179.1 (2)
C7—C8—C9—C10176.9 (2)C31—C32—C33—C44178.2 (2)
O4—C9—C10—C11179.6 (2)C42—C32—C33—C441.4 (3)
C8—C9—C10—C111.1 (3)C32—C33—C34—C351.1 (3)
O4—C9—C10—C200.5 (3)C44—C33—C34—C35178.4 (2)
C8—C9—C10—C20179.1 (2)C33—C34—C35—C300.3 (3)
C9—C10—C11—C120.0 (3)C33—C34—C35—C36179.7 (2)
C20—C10—C11—C12179.9 (2)C31—C30—C35—C341.5 (3)
C9—C10—C11—C22179.3 (2)C29—C30—C35—C34177.9 (2)
C20—C10—C11—C220.9 (3)C31—C30—C35—C36178.5 (2)
C10—C11—C12—C130.6 (3)C29—C30—C35—C362.1 (3)
C22—C11—C12—C13178.6 (2)C34—C35—C36—O142.6 (3)
C11—C12—C13—C80.2 (3)C30—C35—C36—O14177.4 (2)
C11—C12—C13—C14179.5 (2)C34—C35—C36—C37177.9 (2)
C9—C8—C13—C120.9 (3)C30—C35—C36—C372.1 (3)
C7—C8—C13—C12177.5 (2)C27—C28—C37—C380.3 (3)
C9—C8—C13—C14179.4 (2)C29—C28—C37—C38179.3 (2)
C7—C8—C13—C142.2 (3)C27—C28—C37—C36179.1 (2)
C12—C13—C14—O71.5 (3)C29—C28—C37—C360.5 (3)
C8—C13—C14—O7178.8 (2)O14—C36—C37—C380.6 (3)
C12—C13—C14—C15178.4 (2)C35—C36—C37—C38179.8 (2)
C8—C13—C14—C151.3 (3)O14—C36—C37—C28178.2 (2)
C5—C6—C15—C160.4 (3)C35—C36—C37—C281.3 (3)
C7—C6—C15—C16179.2 (2)C28—C37—C38—C391.6 (3)
C5—C6—C15—C14178.1 (2)C36—C37—C38—C39177.2 (2)
C7—C6—C15—C140.7 (3)C37—C38—C39—O8179.2 (2)
O7—C14—C15—C161.2 (3)C37—C38—C39—C262.0 (3)
C13—C14—C15—C16178.7 (2)C27—C26—C39—O8179.2 (2)
O7—C14—C15—C6179.8 (2)C25—C26—C39—O80.9 (3)
C13—C14—C15—C60.2 (3)C27—C26—C39—C380.5 (3)
C6—C15—C16—C170.7 (3)C25—C26—C39—C38179.7 (2)
C14—C15—C16—C17179.2 (2)C33—C32—C42—O1286.8 (3)
C15—C16—C17—O1178.1 (2)C31—C32—C42—O1292.8 (3)
C15—C16—C17—C41.5 (4)C33—C32—C42—O1392.9 (3)
C5—C4—C17—O1177.5 (2)C31—C32—C42—O1387.5 (3)
C3—C4—C17—O13.1 (3)C16—C17—O1—C1166.9 (2)
C5—C4—C17—C161.1 (3)C4—C17—O1—C116.5 (3)
C3—C4—C17—C16173.3 (2)C2—C1—O1—C1729.0 (3)
C9—C10—C20—O596.9 (3)C19—C1—O1—C17149.8 (2)
C11—C10—C20—O583.2 (3)C18—C1—O1—C1791.0 (3)
C9—C10—C20—O685.6 (3)O5—C20—O6—C215.9 (4)
C11—C10—C20—O694.3 (2)C10—C20—O6—C21171.6 (2)
O8—C23—C24—C2512.5 (4)C38—C39—O8—C23168.0 (2)
C40—C23—C24—C25106.0 (3)C26—C39—O8—C2313.3 (3)
C41—C23—C24—C25129.0 (3)C24—C23—O8—C3918.1 (3)
C23—C24—C25—C261.7 (4)C40—C23—O8—C39103.1 (3)
C24—C25—C26—C394.8 (4)C41—C23—O8—C39138.7 (2)
C24—C25—C26—C27175.0 (2)O12—C42—O13—C432.1 (4)
C39—C26—C27—O9177.88 (19)C32—C42—O13—C43178.22 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O30.91 (3)1.72 (3)2.567 (2)152 (3)
O11—H11O···O100.88 (3)1.75 (4)2.568 (2)153 (3)
O9—H9O···O100.92 (3)1.72 (3)2.558 (2)150 (3)
O2—H2O···O30.88 (3)1.77 (3)2.562 (2)148 (3)
O2—H20···O9i0.88 (3)2.31 (3)2.654 (2)103 (2)
C34—H34···O7ii0.952.593.441 (2)150
C44—H44B···O7ii0.982.513.423 (2)155
C44—H44C···O8ii0.982.583.419 (2)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H18O7
Mr394.36
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.9234 (4), 16.0765 (9), 17.5304 (9)
α, β, γ (°)108.746 (2), 98.725 (3), 94.147 (2)
V3)1810.97 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17235, 8260, 4538
Rint0.062
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.171, 1.02
No. of reflections8260
No. of parameters547
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.25

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O30.91 (3)1.72 (3)2.567 (2)152 (3)
O11—H11O···O100.88 (3)1.75 (4)2.568 (2)153 (3)
O9—H9O···O100.92 (3)1.72 (3)2.558 (2)150 (3)
O2—H2O···O30.88 (3)1.77 (3)2.562 (2)148 (3)
O2—H20···O9i0.88 (3)2.31 (3)2.654 (2)103 (2)
C34—H34···O7ii0.952.593.441 (2)150
C44—H44B···O7ii0.982.513.423 (2)155
C44—H44C···O8ii0.982.583.419 (2)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

The authors thank the `Service de Coopération et d'Action Culturelle de l'Ambassade de France au Cameroun' for a fellowship awarded to DNT at ULP Strasbourg and also J. Kister for his help to crystallize the compound.

References

First citationAdwankar, M. K. & Chitnis, M. P. (1982). Chemotherapy, 28, 291–293.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBirch, A. J., Ryan, A. J., Schofiel, J. & Smith, H. (1965). J. Chem. Soc. 39, 1231–1234.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationIsmail, N. H., Ali, A. M., Aimi, N., Kitajima, M., Takayama, H. & Lajis, N. H. (1997). Phytochemistry, 45, 1723–1725.  CrossRef CAS Web of Science Google Scholar
First citationKerharo, J. O. (1974). Pharmacopé Sénégalaise Traditionnelle, p. 485. Paris: Vigot-Frère.  Google Scholar
First citationMacfoy, C. A. & Sama, A. M. (1983). J. Ethnopharmacol. 8, 215–223.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNagem, T. J. & de Oliveira, F. F. (1997). J. Braz. Chem. Soc. 8, 505–508.  CrossRef CAS Google Scholar
First citationNguemeving, J. R., Azebaze, A. G. B., Kuete, V., Carly, N. N. E., Beng, V. P., Meyer, M., Blond, A., Bodo, B. & Nkengfack, A. E. (2006). Phytochemistry, 67, 1341–1346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNoungoue, T. D., Antheaume, C., Chaabi, M., Ndjakou, B. L., Ngouela, S., Lobstein, A. & Tsamo, E. (2008). Phytochemistry, 69, 1024–1028.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRath, G., Ndonzao, M. & Hostettmann, K. (1995). Col. Int. J. Pharmacogen. 69, 413–414.  CAS Google Scholar
First citationSeo, E.-K., Wani, M. C., Wall, M. E., Navarro, H., Mukherjee, R., Farnsworth, N. R. & Kinghorn, A. D. (2000). Phytochemistry, 55, 35–42.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibata, S. & Ikekawa, T. (1963). Pharm. Bull. Tokyo, 11, 368–372.  CrossRef CAS Google Scholar
First citationSimmonds, M. S. J., Blaney, W. M., Delle Monache, F., Marquina Mac-Quhae, M. & Marini Bettolo, G. B. (1985). J. Chem. Ecol. 11, 1593–1599.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSittie, A. A., Lemmich, E., Olsen, C. E., Hviid, L., Harazmi, F. K., Nkrumah, F. K. & Christensen, S. B. (1999). Planta Med. 65, 259–261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2414-o2415
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds