supplementary materials


Acta Cryst. (2008). E64, o2380    [ doi:10.1107/S1600536808037550 ]

Methyl (4-bromobenzenesulfonamido)acetate

M. N. Arshad, M. N. Tahir, I. U. Khan, E. Ahmad and M. Shafiq

Abstract top

The title compound, C9H10BrNO4S, is an intermediate for the formation of benzothiazines. In the crystal structure, intermolecular N-H...O hydrogen bonds link the molecules, forming R22(10) ring motifs, which are linked into a two-dimensional polymeric sheet through intermolecular C-H...O hydrogen bonds.

Comment top

The glycine methyl ester is the simplest among the amino acids and the p-bromobenzenesulfonyl chloride is also comercially available. We have synthesized the title compound, (I), from their condensation. It has been prepared as an intermediate for the formation of benzothiazines, which are of our research interest (Arshad et al., 2008; Tahir et al., 2008).

In the molecule of the title compound, (I), (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges, and are comparable with the corresponding values in N-(2-nitrophenylsulfonyl)glycine methyl ester, (II), (Bornaghi et al., 2005). Ring A (C4-C9) is, of course, planar, and the Br atom lies slightly out of the ring plane [0.069 (3) Å]. The S1-N1 bond is almost perpendicular to the ring plane, with N1-S1-C4-C5 [-83.4 (3)°] and/or N1/S1/C4/C9 [93.7 (3)°] torsion angles. The (O1/O2/C1-C3) moiety is planar, and it is oriented with respect to ring A at a dihedral angle of 87.74 (3)°.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules to form R22(10) ring motifs (Bernstein et al., 1995), in which they are linked to form a two dimensional polymeric sheet through intermolecular C-H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For general background, see: Arshad et al. (2008); Tahir et al. (2008). For a related structure, see: Bornaghi et al. (2005). For ring motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

Glycine methyl ester hydrochloride (0.246 g, 1.95 mmol) was dissolved in water (10 ml) in round bottom flask. The pH of the solution was adjusted to 8–9 using sodium carbonate (1 N), and then 4-bromo benzene sulfonyl chloride (0.5 g, 1.95 mmol) was added. The mixture was stirred for 2 h at room temperature. During the reaction, pH was strictly maintained at 8–9 as HCl produced, which lowers the pH. Colorless solid product obtained was washed, dried and recrystalized from methanol for X-ray analysis (m.p. 393-394 K).

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
Methyl (4-bromobenzenesulfonamido)acetate top
Crystal data top
C9H10BrNO4SZ = 2
Mr = 308.15F(000) = 308
Triclinic, P1Dx = 1.767 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0451 (2) ÅCell parameters from 2846 reflections
b = 7.0369 (2) Åθ = 1.5–28.3°
c = 13.8695 (5) ŵ = 3.73 mm1
α = 83.866 (2)°T = 296 K
β = 81.190 (1)°Prism, colorless
γ = 87.027 (2)°0.23 × 0.18 × 0.12 mm
V = 579.31 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2846 independent reflections
Radiation source: fine-focus sealed tube1893 reflections with I > 2σ(I)
graphiteRint = 0.038
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 1.5°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.449, Tmax = 0.639l = 1818
13148 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.5395P]
where P = (Fo2 + 2Fc2)/3
2846 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C9H10BrNO4Sγ = 87.027 (2)°
Mr = 308.15V = 579.31 (3) Å3
Triclinic, P1Z = 2
a = 6.0451 (2) ÅMo Kα radiation
b = 7.0369 (2) ŵ = 3.73 mm1
c = 13.8695 (5) ÅT = 296 K
α = 83.866 (2)°0.23 × 0.18 × 0.12 mm
β = 81.190 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2846 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1893 reflections with I > 2σ(I)
Tmin = 0.449, Tmax = 0.639Rint = 0.038
13148 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.53 e Å3
S = 1.04Δρmin = 0.59 e Å3
2846 reflectionsAbsolute structure: ?
145 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.31108 (8)0.18201 (7)0.47759 (3)0.0859 (2)
S10.15899 (12)0.80316 (11)0.19808 (6)0.0428 (2)
O10.4939 (4)0.7999 (3)0.06466 (17)0.0535 (6)
O20.2102 (5)0.6116 (4)0.06458 (19)0.0694 (8)
O30.3871 (3)0.7563 (4)0.20253 (19)0.0589 (6)
O40.1032 (4)0.9893 (3)0.21559 (19)0.0602 (6)
N10.0358 (4)0.7668 (4)0.08966 (18)0.0426 (6)
H10.10600.71680.04970.051*
C10.6104 (7)0.7313 (6)0.1532 (3)0.0720 (12)
H1A0.75050.79350.17140.108*
H1B0.52070.75890.20480.108*
H1C0.63790.59570.14250.108*
C20.2962 (5)0.7298 (4)0.0293 (2)0.0411 (7)
C30.1966 (5)0.8203 (5)0.0605 (2)0.0427 (7)
H3A0.28180.77910.11330.051*
H3B0.20320.95830.04770.051*
C40.0381 (5)0.6363 (4)0.2804 (2)0.0385 (6)
C50.1158 (6)0.4529 (5)0.2982 (2)0.0482 (8)
H50.23630.42060.26960.058*
C60.0151 (6)0.3180 (5)0.3582 (2)0.0534 (8)
H60.06720.19440.37090.064*
C70.1645 (6)0.3690 (6)0.3992 (2)0.0528 (9)
C80.2420 (6)0.5515 (6)0.3828 (3)0.0549 (9)
H80.36250.58340.41150.066*
C90.1398 (5)0.6868 (5)0.3233 (2)0.0484 (8)
H90.18980.81110.31210.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0822 (3)0.1005 (4)0.0689 (3)0.0267 (3)0.0172 (2)0.0133 (2)
S10.0313 (4)0.0443 (5)0.0512 (5)0.0016 (3)0.0027 (3)0.0019 (3)
O10.0403 (12)0.0621 (15)0.0588 (14)0.0191 (10)0.0057 (10)0.0201 (12)
O20.0744 (17)0.0703 (18)0.0649 (16)0.0429 (14)0.0103 (13)0.0240 (14)
O30.0288 (11)0.0740 (17)0.0704 (16)0.0032 (10)0.0048 (10)0.0059 (13)
O40.0603 (15)0.0420 (14)0.0770 (18)0.0016 (11)0.0034 (13)0.0112 (12)
N10.0335 (13)0.0531 (16)0.0423 (14)0.0158 (11)0.0078 (10)0.0004 (12)
C10.060 (2)0.078 (3)0.076 (3)0.016 (2)0.020 (2)0.031 (2)
C20.0409 (16)0.0361 (16)0.0465 (17)0.0116 (12)0.0062 (13)0.0003 (13)
C30.0363 (16)0.0476 (18)0.0453 (17)0.0140 (13)0.0052 (12)0.0053 (14)
C40.0320 (14)0.0470 (17)0.0359 (15)0.0035 (12)0.0008 (11)0.0067 (13)
C50.0478 (18)0.052 (2)0.0467 (18)0.0114 (15)0.0110 (14)0.0048 (15)
C60.061 (2)0.050 (2)0.0488 (19)0.0070 (16)0.0077 (16)0.0017 (15)
C70.0484 (19)0.071 (2)0.0348 (16)0.0117 (17)0.0007 (14)0.0016 (15)
C80.0398 (17)0.076 (3)0.050 (2)0.0057 (16)0.0110 (14)0.0062 (18)
C90.0386 (17)0.055 (2)0.0524 (19)0.0110 (14)0.0041 (14)0.0102 (16)
Geometric parameters (Å, °) top
Br1—C71.889 (3)C3—N11.458 (4)
S1—O41.424 (2)C3—H3A0.9700
S1—O31.425 (2)C3—H3B0.9700
S1—N11.613 (3)C4—C51.381 (4)
S1—C41.759 (3)C4—C91.385 (4)
O1—C21.320 (3)C5—C61.374 (5)
O1—C11.436 (4)C5—H50.9300
O2—C21.188 (4)C6—C71.381 (5)
N1—H10.8600C6—H60.9300
C1—H1A0.9600C7—C81.374 (5)
C1—H1B0.9600C8—C91.377 (5)
C1—H1C0.9600C8—H80.9300
C2—C31.489 (4)C9—H90.9300
O4—S1—O3120.49 (15)N1—C3—H3B109.6
O4—S1—N1106.96 (14)C2—C3—H3B109.6
O3—S1—N1106.53 (14)H3A—C3—H3B108.1
O4—S1—C4107.89 (15)C5—C4—C9120.5 (3)
O3—S1—C4107.66 (14)C5—C4—S1119.4 (2)
N1—S1—C4106.55 (14)C9—C4—S1120.1 (2)
C2—O1—C1117.5 (3)C6—C5—C4120.1 (3)
C3—N1—S1118.9 (2)C6—C5—H5120.0
C3—N1—H1120.6C4—C5—H5120.0
S1—N1—H1120.6C5—C6—C7118.9 (3)
O1—C1—H1A109.5C5—C6—H6120.6
O1—C1—H1B109.5C7—C6—H6120.6
H1A—C1—H1B109.5C8—C7—C6121.6 (3)
O1—C1—H1C109.5C8—C7—Br1119.2 (3)
H1A—C1—H1C109.5C6—C7—Br1119.2 (3)
H1B—C1—H1C109.5C7—C8—C9119.4 (3)
O2—C2—O1124.5 (3)C7—C8—H8120.3
O2—C2—C3125.0 (3)C9—C8—H8120.3
O1—C2—C3110.4 (2)C8—C9—C4119.5 (3)
N1—C3—C2110.1 (2)C8—C9—H9120.2
N1—C3—H3A109.6C4—C9—H9120.2
C2—C3—H3A109.6
C1—O1—C2—O21.4 (5)C4—C5—C6—C70.4 (5)
C1—O1—C2—C3178.3 (3)C5—C6—C7—C81.1 (5)
O2—C2—C3—N19.3 (5)C5—C6—C7—Br1177.6 (3)
O1—C2—C3—N1170.5 (3)C6—C7—C8—C90.5 (5)
O4—S1—C4—C5162.0 (2)Br1—C7—C8—C9178.1 (2)
O3—S1—C4—C530.5 (3)C7—C8—C9—C40.6 (5)
N1—S1—C4—C583.4 (3)C5—C4—C9—C81.2 (5)
O4—S1—C4—C920.8 (3)S1—C4—C9—C8175.9 (2)
O3—S1—C4—C9152.3 (3)C2—C3—N1—S1165.0 (2)
N1—S1—C4—C993.7 (3)O4—S1—N1—C344.2 (3)
C9—C4—C5—C60.7 (5)O3—S1—N1—C3174.3 (2)
S1—C4—C5—C6176.5 (3)C4—S1—N1—C371.0 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.412.987 (4)125
C3—H3A···O3ii0.972.503.410 (4)156
Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.412.987 (4)125
C3—H3A···O3ii0.972.503.410 (4)156
Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, y, z.
Acknowledgements top

MNA gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him a Scholaship under the Indigenous PhD Program (PIN 042–120607-PS2–183).

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 155–1573.

Bornaghi, L. F., Poulsen, S.-A., Healy, P. C. & White, A. R. (2005). Acta Cryst. E61, o323–o325.

Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.