metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1580-m1581

Dicarbon­yl[2-hydr­­oxy-3,5,7-tris­­(mor­pho­lino­methyl)cyclo­hepta-2,4,6-trien­onato(1–)-κ2O1,O2]rhodium(I)

aDepartment of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
*Correspondence e-mail: tania.hill@gmail.com

(Received 23 October 2008; accepted 14 November 2008; online 20 November 2008)

In the title compound, [Rh(C22H32N3O5)(CO)2], the RhI atom is coordinated by two carbonyl ligands and two tropolonate O atoms in a distorted square-planar geometry. It is an example of a new type of tropolone derivative that has not been characterized via solid-state methods. Weak intra­molecular C—H⋯N and inter­molecular C—H⋯O hydrogen bonds, and ππ stacking inter­actions between the tropolone rings [centroid–centroid distance = 3.590 (8) Å] are observed in the crystal structure.

Related literature

For general background, see: Banwell et al. (1992[Banwell, M. G., Corbett, M., Makay, M. F. & Richards, S. L. (1992). J. Chem. Soc. Perkin Trans. pp. 1329-1335.]); Boguszewska-Chachulska et al. (2006[Boguszewska-Chachulska, A. M., Krawczyk, M., Najda, A., Kopanska, K., Stankiewicz-Drogon, A., Zagorski-Ostoja, W. & Bretner, M. (2006). Biochem. Biophys. Res. Commun. 341, 641-645.]); Burgstein et al. (1998[Burgstein, M. R., Berberich, H. & Roesky, P. W. (1998). Organometallics, 12, 1452-1458.]); Crous et al. (2005[Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108-1115.]); Dewar (1945[Dewar, M. J. S. (1945). Nature (London), 155, 141-145.]); Kierst et al. (1982[Kierst, H. A., Markoni, G. G., Counter, F. T., Ensminger, P. W., Jones, N. D., Chaney, M. O., Toth, J. E. & Allen, N. E. (1982). J. Antibiot. 12, 1651-1659.]). For a related structure, see: Steyl et al. (2004[Steyl, G., Kruger, G. J. & Roodt, A. (2004). Acta Cryst. C60, m473-m475.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C22H32N3O5)(CO)2]

  • Mr = 577.44

  • Monoclinic, C 2/c

  • a = 17.7889 (6) Å

  • b = 16.6106 (5) Å

  • c = 17.7279 (4) Å

  • β = 105.772 (1)°

  • V = 5041.1 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 100 (2) K

  • 0.15 × 0.06 × 0.05 mm

Data collection
  • Bruker X8 APEXII Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.901, Tmax = 0.966

  • 36747 measured reflections

  • 5450 independent reflections

  • 4616 reflections with I > 2σ(I)

  • Rint = 0.06

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.070

  • S = 1.01

  • 5450 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Rh1—C01 1.835 (3)
Rh1—C02 1.840 (2)
Rh1—O1 2.0209 (16)
Rh1—O2 2.0212 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N32 0.95 2.28 2.760 (3) 110
C6—H6⋯N72 0.95 2.31 2.785 (3) 110
C36—H36A⋯O01i 0.99 2.59 3.497 (3) 153
C53—H53A⋯O55ii 0.99 2.56 3.509 (4) 161
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Tropolone type compounds have been of interest since its first discovery in the early 1940's (Dewar, 1945), with applications in pharmacology (Banwell et al., 1992; Kierst et al., 1982) and catalysis (Burgstein et al., 1998; Crous et al., 2005). A recent report on the anti-viral activity of morpholine derivatives of tropolone (Doering Knox) indicated moderate to strong activity against the hepatitis C virus strain (Boguszewska-Chachulska et al., 2006). The addition of morpholine groups to a compound increases its water solubilty properties and thus simplifying the method of dosage, i.e., pallative. Although this compound has been extensively studied, the preferred orientation of the morpholine groups are unknown, as well as the geometrical properties of the tropolone ring system. In this regard, we present a dicarbonyl rhodium(I) complex of a 3,5,7-tris(methylmorpholine)tropolonate ligand (Fig. 1; Table 1).

The molecular packing of the title compound is strongly influenced by the morpholine moieties as these form extensive hydrogen bonding networks (Table 2). A close Rh1···Rh1i contact [3.2826 (3)Å; symmetry code: (i) 1-x, y, 0.5-z] exists between associated metal centres. This short contact is stabilized by ππ stacking between the corresponding cycloheptatriene rings, with a centroid–centroid distance of 3.590 (8)Å and an interplanar angle of 3.99 (5)°. The slight twist of the two cycloheptatriene ring systems can be attributed to the methylmorpholine functional groups creating a sterically crowded environment.

The crystal packing of diketonate dicarbonyl rhodium(I) complexes tends to favour a head-to-tail packing mode. The [Rh(tropolonate)(CO)2] complex (Steyl et al., 2004) was deemed to be a singular occurance of the head-to-head packing mode of these molecular systems. The title compound exhibits a slightly distorted orientation as defined by the O1—Rh1—Rh1i—O2i torsion angle of 37.09 (3)°. This observation is surprising since the addition of bulky groups on the 3,7-positions was expected to force the molecular system in the head-to-tail packing mode. The ππ stacking and hydrogen bonding interactions stabilize the crystal structure.

Related literature top

For general background, see: Banwell et al. (1992); Boguszewska-Chachulska et al. (2006); Burgstein et al. (1998); Crous et al. (2005); Dewar (1945); Kierst et al. (1982). For a related structure, see: Steyl et al. (2004).

Experimental top

The title compound was synthesized by the addition of 3,5,7-tris(methylmorpholine)tropolone (0.083 g, 0.32 mmol) to an acetone solution of [Rh(µ-Cl)(CO)2]2 (0.100 g, 0.29 mmol). On slow evaporation of the solvent, crystals suitable for X-ray analysis was obtained (yield 30%, 0.045 g).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (CH) and 0.99 (CH2) Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
Dicarbonyl[2-hydroxy-3,5,7-tris(morpholinomethyl)cyclohepta-2,4,6- trienonato(1-)-κ2O1,O2]rhodium(I) top
Crystal data top
[Rh(C22H32N3O5)(CO)2]F(000) = 2384
Mr = 577.44Dx = 1.522 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7078 reflections
a = 17.7889 (6) Åθ = 2.4–26.3°
b = 16.6106 (5) ŵ = 0.73 mm1
c = 17.7279 (4) ÅT = 100 K
β = 105.772 (1)°Needle, yellow
V = 5041.1 (3) Å30.15 × 0.06 × 0.05 mm
Z = 8
Data collection top
Bruker X8 APEXII Kappa CCD
diffractometer
5450 independent reflections
Radiation source: sealed tube4616 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.06
ω and ϕ scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2322
Tmin = 0.901, Tmax = 0.966k = 2222
36747 measured reflectionsl = 2321
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0228P)2 + 6.7535P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.58 e Å3
5450 reflectionsΔρmin = 0.55 e Å3
316 parameters
Crystal data top
[Rh(C22H32N3O5)(CO)2]V = 5041.1 (3) Å3
Mr = 577.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.7889 (6) ŵ = 0.73 mm1
b = 16.6106 (5) ÅT = 100 K
c = 17.7279 (4) Å0.15 × 0.06 × 0.05 mm
β = 105.772 (1)°
Data collection top
Bruker X8 APEXII Kappa CCD
diffractometer
5450 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4616 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.966Rint = 0.06
36747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.01Δρmax = 0.58 e Å3
5450 reflectionsΔρmin = 0.55 e Å3
316 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.005201 (12)0.212518 (10)0.158973 (11)0.01523 (6)
N320.29013 (12)0.40449 (12)0.14152 (12)0.0184 (4)
N520.09972 (13)0.68641 (11)0.11782 (12)0.0193 (5)
N720.12652 (12)0.55064 (11)0.12939 (11)0.0161 (4)
O10.09251 (10)0.27724 (9)0.15271 (9)0.0164 (4)
O20.04571 (10)0.32572 (9)0.15522 (9)0.0168 (4)
O350.44856 (11)0.45215 (11)0.09597 (11)0.0291 (4)
O550.14421 (12)0.81072 (10)0.00353 (12)0.0338 (5)
O750.19657 (11)0.67733 (10)0.06510 (10)0.0272 (4)
C010.10082 (16)0.16569 (13)0.16882 (14)0.0186 (5)
C020.04121 (15)0.11321 (14)0.15654 (14)0.0191 (5)
O010.16289 (11)0.14149 (10)0.17892 (10)0.0266 (4)
O020.07249 (11)0.05334 (10)0.15587 (11)0.0271 (4)
C10.00561 (14)0.38233 (13)0.15364 (13)0.0139 (5)
C20.08253 (15)0.35538 (13)0.15345 (13)0.0153 (5)
C30.14821 (14)0.40295 (13)0.15290 (13)0.0148 (5)
C40.15152 (15)0.48618 (13)0.15770 (13)0.0164 (5)
H40.20130.50660.1580.02*
C50.09482 (14)0.54493 (13)0.16221 (13)0.0153 (5)
C60.01989 (14)0.53233 (14)0.15582 (13)0.0154 (5)
H60.00940.58030.15650.018*
C70.02014 (14)0.46255 (13)0.14867 (13)0.0144 (5)
C310.22148 (14)0.35437 (14)0.15082 (15)0.0201 (5)
H31A0.2310.31550.10690.024*
H31B0.21270.32320.20010.024*
C330.34489 (15)0.37470 (14)0.18290 (15)0.0212 (6)
H33A0.31750.36570.23880.025*
H33B0.36750.32280.160.025*
C340.40884 (16)0.43614 (16)0.17571 (16)0.0263 (6)
H34A0.44680.41610.20310.032*
H34B0.3860.48680.20150.032*
C360.39560 (15)0.47768 (15)0.05269 (15)0.0236 (6)
H36A0.37270.53030.0730.028*
H36B0.42450.48480.00310.028*
C370.33140 (15)0.41744 (15)0.05905 (14)0.0222 (6)
H37A0.35370.36590.0350.027*
H37B0.29440.43740.03050.027*
C510.11655 (15)0.63133 (13)0.17494 (14)0.0184 (5)
H51A0.1730.63390.17160.022*
H51B0.08730.64860.22830.022*
C530.15194 (17)0.67127 (14)0.04011 (14)0.0239 (6)
H53A0.20690.67740.04160.029*
H53B0.14470.61550.02380.029*
C540.1347 (2)0.72976 (16)0.01803 (17)0.0348 (7)
H54A0.08040.72170.0210.042*
H54B0.17030.7190.07060.042*
C560.09308 (18)0.82638 (16)0.07909 (17)0.0344 (7)
H56A0.10010.88270.09430.041*
H56B0.03830.81980.07730.041*
C570.10926 (17)0.76990 (14)0.13928 (16)0.0267 (6)
H57A0.07290.78150.19120.032*
H57B0.16320.77830.1430.032*
C710.10184 (14)0.46875 (13)0.13924 (14)0.0159 (5)
H71A0.13880.44490.1860.019*
H71B0.10470.43650.09310.019*
C730.09197 (15)0.58095 (14)0.04982 (14)0.0186 (5)
H73A0.03440.57560.03610.022*
H73B0.11150.54930.01170.022*
C740.11413 (16)0.66843 (14)0.04648 (15)0.0226 (6)
H74A0.09020.68980.00680.027*
H74B0.09370.69990.0840.027*
C760.23202 (16)0.64617 (15)0.14098 (15)0.0254 (6)
H76A0.21480.67820.18040.031*
H76B0.28950.65140.15240.031*
C770.21100 (15)0.55855 (14)0.14762 (15)0.0214 (6)
H77A0.2310.52560.11070.026*
H77B0.23530.53890.20150.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01874 (11)0.01015 (9)0.01714 (10)0.00082 (8)0.00544 (7)0.00046 (8)
N320.0151 (12)0.0180 (10)0.0232 (11)0.0017 (8)0.0071 (9)0.0042 (8)
N520.0243 (13)0.0108 (9)0.0241 (12)0.0005 (8)0.0087 (9)0.0007 (8)
N720.0160 (12)0.0147 (10)0.0173 (11)0.0031 (8)0.0044 (9)0.0002 (8)
O10.0176 (9)0.0104 (8)0.0215 (9)0.0011 (7)0.0059 (7)0.0009 (6)
O20.0169 (10)0.0116 (8)0.0234 (9)0.0009 (7)0.0082 (7)0.0007 (7)
O350.0178 (11)0.0348 (11)0.0350 (11)0.0033 (8)0.0075 (9)0.0029 (8)
O550.0412 (14)0.0205 (10)0.0409 (12)0.0053 (9)0.0134 (10)0.0108 (8)
O750.0316 (12)0.0229 (9)0.0280 (11)0.0096 (8)0.0094 (9)0.0049 (8)
C010.0276 (16)0.0111 (11)0.0180 (13)0.0013 (11)0.0075 (11)0.0012 (9)
C020.0227 (15)0.0181 (13)0.0178 (13)0.0044 (11)0.0074 (11)0.0012 (10)
O010.0241 (12)0.0217 (9)0.0331 (11)0.0048 (8)0.0065 (9)0.0003 (8)
O020.0307 (12)0.0167 (9)0.0368 (11)0.0040 (8)0.0141 (9)0.0027 (8)
C10.0171 (14)0.0143 (11)0.0112 (11)0.0002 (10)0.0055 (10)0.0017 (9)
C20.0229 (14)0.0124 (11)0.0102 (11)0.0016 (10)0.0036 (10)0.0013 (9)
C30.0163 (13)0.0152 (11)0.0136 (12)0.0015 (10)0.0053 (10)0.0029 (9)
C40.0174 (14)0.0169 (12)0.0150 (12)0.0032 (10)0.0047 (10)0.0014 (9)
C50.0191 (14)0.0134 (11)0.0134 (12)0.0003 (10)0.0042 (10)0.0002 (9)
C60.0195 (14)0.0147 (11)0.0124 (12)0.0032 (10)0.0052 (10)0.0004 (9)
C70.0150 (14)0.0167 (11)0.0112 (12)0.0031 (9)0.0028 (9)0.0020 (9)
C310.0186 (14)0.0156 (12)0.0266 (14)0.0001 (10)0.0069 (11)0.0029 (10)
C330.0209 (15)0.0174 (12)0.0274 (14)0.0023 (10)0.0102 (11)0.0027 (10)
C340.0248 (16)0.0270 (14)0.0319 (16)0.0018 (12)0.0160 (13)0.0032 (11)
C360.0230 (16)0.0245 (14)0.0227 (14)0.0035 (11)0.0051 (11)0.0013 (11)
C370.0216 (15)0.0230 (13)0.0224 (14)0.0026 (11)0.0068 (11)0.0003 (10)
C510.0223 (15)0.0149 (11)0.0196 (13)0.0022 (10)0.0083 (11)0.0022 (10)
C530.0314 (17)0.0162 (12)0.0242 (14)0.0038 (11)0.0075 (12)0.0005 (10)
C540.049 (2)0.0275 (15)0.0313 (16)0.0108 (13)0.0167 (14)0.0063 (12)
C560.0318 (18)0.0175 (13)0.052 (2)0.0038 (12)0.0075 (15)0.0067 (12)
C570.0326 (17)0.0140 (12)0.0319 (15)0.0007 (11)0.0060 (12)0.0026 (10)
C710.0185 (14)0.0131 (11)0.0163 (12)0.0027 (10)0.0054 (10)0.0018 (9)
C730.0207 (15)0.0176 (12)0.0172 (13)0.0026 (10)0.0045 (10)0.0004 (9)
C740.0294 (17)0.0188 (13)0.0188 (13)0.0043 (11)0.0050 (11)0.0003 (10)
C760.0214 (15)0.0232 (13)0.0309 (15)0.0067 (11)0.0057 (12)0.0027 (11)
C770.0193 (15)0.0186 (12)0.0261 (14)0.0026 (10)0.0060 (11)0.0000 (10)
Geometric parameters (Å, º) top
Rh1—C011.835 (3)C31—H31B0.99
Rh1—C021.840 (2)C33—C341.508 (3)
Rh1—O12.0209 (16)C33—H33A0.99
Rh1—O22.0212 (15)C33—H33B0.99
N32—C311.450 (3)C34—H34A0.99
N32—C331.456 (3)C34—H34B0.99
N32—C371.463 (3)C36—C371.499 (3)
N52—C511.455 (3)C36—H36A0.99
N52—C531.459 (3)C36—H36B0.99
N52—C571.460 (3)C37—H37A0.99
N72—C711.454 (3)C37—H37B0.99
N72—C771.455 (3)C51—H51A0.99
N72—C731.466 (3)C51—H51B0.99
O1—C21.310 (3)C53—C541.507 (4)
O2—C11.306 (3)C53—H53A0.99
O35—C341.423 (3)C53—H53B0.99
O35—C361.431 (3)C54—H54A0.99
O55—C541.421 (3)C54—H54B0.99
O55—C561.424 (3)C56—C571.506 (4)
O75—C761.419 (3)C56—H56A0.99
O75—C741.421 (3)C56—H56B0.99
C01—O011.143 (3)C57—H57A0.99
C02—O021.138 (3)C57—H57B0.99
C1—C71.419 (3)C71—H71A0.99
C1—C21.439 (3)C71—H71B0.99
C2—C31.408 (3)C73—C741.511 (3)
C3—C41.387 (3)C73—H73A0.99
C3—C311.525 (3)C73—H73B0.99
C4—C51.390 (3)C74—H74A0.99
C4—H40.95C74—H74B0.99
C5—C61.384 (3)C76—C771.515 (3)
C5—C511.519 (3)C76—H76A0.99
C6—C71.384 (3)C76—H76B0.99
C6—H60.95C77—H77A0.99
C7—C711.511 (3)C77—H77B0.99
C31—H31A0.99
C01—Rh1—C0291.18 (11)N32—C37—C36109.8 (2)
C01—Rh1—O1172.67 (8)N32—C37—H37A109.7
C02—Rh1—O195.85 (9)C36—C37—H37A109.7
C01—Rh1—O293.89 (9)N32—C37—H37B109.7
C02—Rh1—O2174.27 (9)C36—C37—H37B109.7
O1—Rh1—O279.18 (6)H37A—C37—H37B108.2
C31—N32—C33113.94 (19)N52—C51—C5112.45 (19)
C31—N32—C37112.11 (19)N52—C51—H51A109.1
C33—N32—C37109.3 (2)C5—C51—H51A109.1
C51—N52—C53110.49 (19)N52—C51—H51B109.1
C51—N52—C57110.82 (19)C5—C51—H51B109.1
C53—N52—C57108.7 (2)H51A—C51—H51B107.8
C71—N72—C77112.65 (19)N52—C53—C54109.8 (2)
C71—N72—C73112.05 (18)N52—C53—H53A109.7
C77—N72—C73108.68 (19)C54—C53—H53A109.7
C2—O1—Rh1114.49 (15)N52—C53—H53B109.7
C1—O2—Rh1114.66 (14)C54—C53—H53B109.7
C34—O35—C36111.5 (2)H53A—C53—H53B108.2
C54—O55—C56109.5 (2)O55—C54—C53111.4 (2)
C76—O75—C74110.30 (19)O55—C54—H54A109.3
O01—C01—Rh1174.5 (2)C53—C54—H54A109.3
O02—C02—Rh1177.1 (2)O55—C54—H54B109.3
O2—C1—C7116.2 (2)C53—C54—H54B109.3
O2—C1—C2115.77 (19)H54A—C54—H54B108
C7—C1—C2127.9 (2)O55—C56—C57110.9 (2)
O1—C2—C3116.5 (2)O55—C56—H56A109.5
O1—C2—C1115.8 (2)C57—C56—H56A109.5
C3—C2—C1127.7 (2)O55—C56—H56B109.5
C4—C3—C2127.4 (2)C57—C56—H56B109.5
C4—C3—C31118.6 (2)H56A—C56—H56B108
C2—C3—C31113.90 (19)N52—C57—C56110.4 (2)
C3—C4—C5131.4 (2)N52—C57—H57A109.6
C3—C4—H4114.3C56—C57—H57A109.6
C5—C4—H4114.3N52—C57—H57B109.6
C6—C5—C4126.1 (2)C56—C57—H57B109.6
C6—C5—C51116.4 (2)H57A—C57—H57B108.1
C4—C5—C51117.5 (2)N72—C71—C7114.07 (19)
C7—C6—C5131.7 (2)N72—C71—H71A108.7
C7—C6—H6114.2C7—C71—H71A108.7
C5—C6—H6114.2N72—C71—H71B108.7
C6—C7—C1126.7 (2)C7—C71—H71B108.7
C6—C7—C71119.2 (2)H71A—C71—H71B107.6
C1—C7—C71114.0 (2)N72—C73—C74108.80 (19)
N32—C31—C3112.75 (19)N72—C73—H73A109.9
N32—C31—H31A109C74—C73—H73A109.9
C3—C31—H31A109N72—C73—H73B109.9
N32—C31—H31B109C74—C73—H73B109.9
C3—C31—H31B109H73A—C73—H73B108.3
H31A—C31—H31B107.8O75—C74—C73110.8 (2)
N32—C33—C34108.66 (19)O75—C74—H74A109.5
N32—C33—H33A110C73—C74—H74A109.5
C34—C33—H33A110O75—C74—H74B109.5
N32—C33—H33B110C73—C74—H74B109.5
C34—C33—H33B110H74A—C74—H74B108.1
H33A—C33—H33B108.3O75—C76—C77111.6 (2)
O35—C34—C33111.7 (2)O75—C76—H76A109.3
O35—C34—H34A109.3C77—C76—H76A109.3
C33—C34—H34A109.3O75—C76—H76B109.3
O35—C34—H34B109.3C77—C76—H76B109.3
C33—C34—H34B109.3H76A—C76—H76B108
H34A—C34—H34B107.9N72—C77—C76109.4 (2)
O35—C36—C37111.1 (2)N72—C77—H77A109.8
O35—C36—H36A109.4C76—C77—H77A109.8
C37—C36—H36A109.4N72—C77—H77B109.8
O35—C36—H36B109.4C76—C77—H77B109.8
C37—C36—H36B109.4H77A—C77—H77B108.3
H36A—C36—H36B108
C02—Rh1—O1—C2179.63 (15)C31—N32—C33—C34174.1 (2)
O2—Rh1—O1—C23.26 (14)C37—N32—C33—C3459.6 (3)
C01—Rh1—O2—C1175.31 (16)C36—O35—C34—C3356.2 (3)
O1—Rh1—O2—C12.28 (15)N32—C33—C34—O3558.3 (3)
Rh1—O2—C1—C7178.22 (15)C34—O35—C36—C3755.3 (3)
Rh1—O2—C1—C21.0 (2)C31—N32—C37—C36172.9 (2)
Rh1—O1—C2—C3177.12 (15)C33—N32—C37—C3659.7 (3)
Rh1—O1—C2—C13.7 (2)O35—C36—C37—N3257.1 (3)
O2—C1—C2—O11.8 (3)C53—N52—C51—C568.7 (3)
C7—C1—C2—O1175.0 (2)C57—N52—C51—C5170.8 (2)
O2—C1—C2—C3179.1 (2)C6—C5—C51—N5251.4 (3)
C7—C1—C2—C34.1 (4)C4—C5—C51—N52128.3 (2)
O1—C2—C3—C4176.3 (2)C51—N52—C53—C54179.0 (2)
C1—C2—C3—C44.7 (4)C57—N52—C53—C5457.2 (3)
O1—C2—C3—C310.5 (3)C56—O55—C54—C5359.1 (3)
C1—C2—C3—C31178.6 (2)N52—C53—C54—O5559.1 (3)
C2—C3—C4—C51.8 (4)C54—O55—C56—C5758.6 (3)
C31—C3—C4—C5178.4 (2)C51—N52—C57—C56179.0 (2)
C3—C4—C5—C66.2 (4)C53—N52—C57—C5657.4 (3)
C3—C4—C5—C51174.1 (2)O55—C56—C57—N5258.8 (3)
C4—C5—C6—C74.5 (4)C77—N72—C71—C7159.88 (19)
C51—C5—C6—C7175.8 (2)C73—N72—C71—C777.2 (2)
C5—C6—C7—C16.5 (4)C6—C7—C71—N726.9 (3)
C5—C6—C7—C71177.4 (2)C1—C7—C71—N72176.48 (19)
O2—C1—C7—C6171.5 (2)C71—N72—C73—C74174.7 (2)
C2—C1—C7—C611.7 (4)C77—N72—C73—C7460.2 (2)
O2—C1—C7—C714.8 (3)C76—O75—C74—C7358.6 (3)
C2—C1—C7—C71172.0 (2)N72—C73—C74—O7560.3 (3)
C33—N32—C31—C3145.6 (2)C74—O75—C76—C7757.3 (3)
C37—N32—C31—C389.6 (2)C71—N72—C77—C76176.41 (19)
C4—C3—C31—N329.4 (3)C73—N72—C77—C7658.8 (2)
C2—C3—C31—N32173.6 (2)O75—C76—C77—N7257.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N320.952.282.760 (3)110
C6—H6···N720.952.312.785 (3)110
C36—H36A···O01i0.992.593.497 (3)153
C53—H53A···O55ii0.992.563.509 (4)161
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Rh(C22H32N3O5)(CO)2]
Mr577.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)17.7889 (6), 16.6106 (5), 17.7279 (4)
β (°) 105.772 (1)
V3)5041.1 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.15 × 0.06 × 0.05
Data collection
DiffractometerBruker X8 APEXII Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.901, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
36747, 5450, 4616
Rint0.06
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.070, 1.01
No. of reflections5450
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.55

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Rh1—C011.835 (3)Rh1—O12.0209 (16)
Rh1—C021.840 (2)Rh1—O22.0212 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N320.952.282.760 (3)110
C6—H6···N720.952.312.785 (3)110
C36—H36A···O01i0.992.593.497 (3)153
C53—H53A···O55ii0.992.563.509 (4)161
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y+3/2, z.
 

Acknowledgements

Financial assistance from the University of the Free State and Professor A. Roodt is gratefully acknowledged. Mr L. Kirsten is acknowledged for the data collection. Part of this research is based on work supported by the South African National Research Foundation (NRF) (grant No. GUN 2068915). Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

References

First citationBanwell, M. G., Corbett, M., Makay, M. F. & Richards, S. L. (1992). J. Chem. Soc. Perkin Trans. pp. 1329–1335.  CSD CrossRef Web of Science Google Scholar
First citationBoguszewska-Chachulska, A. M., Krawczyk, M., Najda, A., Kopanska, K., Stankiewicz-Drogon, A., Zagorski-Ostoja, W. & Bretner, M. (2006). Biochem. Biophys. Res. Commun. 341, 641–645.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurgstein, M. R., Berberich, H. & Roesky, P. W. (1998). Organometallics, 12, 1452–1458.  Web of Science CSD CrossRef Google Scholar
First citationCrous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108–1115.  Web of Science CSD CrossRef Google Scholar
First citationDewar, M. J. S. (1945). Nature (London), 155, 141–145.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKierst, H. A., Markoni, G. G., Counter, F. T., Ensminger, P. W., Jones, N. D., Chaney, M. O., Toth, J. E. & Allen, N. E. (1982). J. Antibiot. 12, 1651–1659.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyl, G., Kruger, G. J. & Roodt, A. (2004). Acta Cryst. C60, m473–m475.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1580-m1581
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds