organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl naphthalene-2-sulfonate

aDepartment of Physics, Panimalar Institute of Technology, Chennai 600 095, India, bDepartment of Chemistry, SRM University, Ramapuram, Chennai 600 089, India, cDepartment of Physics, SRM University, Kattankulathur Campus, Chennai 603 203, India, and dDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 24 October 2008; accepted 31 October 2008; online 8 November 2008)

In the crystal structure of the title compound, C16H12O3S, the dihedral angle between the naphthalene ring system and the phenyl ring is 65.21 (3)°. The mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds, forming a chain along the a axis. The chains are connected through weak C—H⋯π inter­actions.

Related literature

For general background, see: Spungin et al. (1984[Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1984). Biochim. Biophys. Acta, 769, 531-542.]); Yachi et al. (1989[Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hananon, M. (1989). Biochim. Biophys. Acta, 978, 1-7.]). For related structures, see: Manivannan et al. (2005[Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005). Acta Cryst. E61, o239-o241.]); Ramachandran et al. (2007[Ramachandran, G., Kanakam, C. C., Manivannan, V., Thiruvenkatam, V. & Row, T. N. G. (2007). Acta Cryst. E63, o4638.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O3S

  • Mr = 284.32

  • Orthorhombic, P 21 21 21

  • a = 6.1525 (2) Å

  • b = 12.7466 (7) Å

  • c = 17.3414 (10) Å

  • V = 1359.97 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 295 (2) K

  • 0.25 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.962

  • 11868 measured reflections

  • 5093 independent reflections

  • 3412 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.106

  • S = 1.01

  • 5093 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1993 Friedel pairs

  • Flack parameter: −0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.51 3.424 (2) 169
C5—H5⋯Cg2ii 0.93 2.96 3.486 (2) 117
C6—H6⋯Cg3ii 0.93 2.94 3.535 (2) 123
C12—H12⋯Cg1iii 0.93 2.94 3.788 (3) 152
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}]; (iii) [-x, y+{\script{5\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C1–C6 ring, Cg2 is the centroid of the C7–C9/C14–C16 ring and Cg3 is the centroid of the C9–C14 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Several compounds containing the para -toluene sulfonate moiety are used in the fields of biology and industry. The merging of lipids can be monitored using a derivative of para-toluene sulfonate (Yachi et al., 1989). This method has been used in studying the membrane fusion during the acrosome reaction (Spungin et al., 1984).

The geometric parameters in the title compound (I) agree well with the reported values of similar structures (Manivannan et al., 2005; Ramachandran et al., 2007). The phenyl ring makes a dihedral angle of 65.21 (3)° with the naphthalene ring system. The torsion angles of O2—S1—C7—C8 and O3—S1—C7—C16 [2.04 (15)° and 46.94 (15)°, respectively] indicate the syn conformation of the sulfonyl moiety. The crystal structure is stabilized through weak intermolecular C—H···O and C—H···π interactions (Fig. 2 and Table 1). Cg1, Cg2 and Cg3 are the centroids of the C1–C6 ring, the C7–C9/C14–C16 ring and the C9–C14 ring, respectively.

Related literature top

For general background, see: Spungin et al. (1984); Yachi et al. (1989). For related structures, see: Manivannan et al. (2005); Ramachandran et al. (2007). Cg1 is the centroid of the C1–C6 ring, Cg2 is the centroid of the C7–C9/C14–C16 ring and Cg3 is the centroid of the C9–C14 ring.

Experimental top

2-Naphthalene sulfonyl chloride (2.5 mmol) dissolved in acetone (4 ml) was added dropwise to phenol (2.5 mmol) in aqueous NaOH solution (4 ml, 5%) with constant shaking. The precipitated compound (2 mmol, yield 77%) recrystallized from ethanol yielded colourless crystals.

Refinement top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for the sake of clarity.
Phenyl naphthalene-2-sulfonate top
Crystal data top
C16H12O3SF(000) = 592
Mr = 284.32Dx = 1.389 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4818 reflections
a = 6.1525 (2) Åθ = 2.2–25.4°
b = 12.7466 (7) ŵ = 0.24 mm1
c = 17.3414 (10) ÅT = 295 K
V = 1359.97 (12) Å3Tablet, colourless
Z = 40.25 × 0.18 × 0.16 mm
Data collection top
Bruker Kappa APEXII
diffractometer
5093 independent reflections
Radiation source: fine-focus sealed tube3412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 34.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 95
Tmin = 0.942, Tmax = 0.962k = 1918
11868 measured reflectionsl = 2527
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.0596P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5093 reflectionsΔρmax = 0.26 e Å3
181 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 1993 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C16H12O3SV = 1359.97 (12) Å3
Mr = 284.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1525 (2) ŵ = 0.24 mm1
b = 12.7466 (7) ÅT = 295 K
c = 17.3414 (10) Å0.25 × 0.18 × 0.16 mm
Data collection top
Bruker Kappa APEXII
diffractometer
5093 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3412 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.962Rint = 0.027
11868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.26 e Å3
S = 1.01Δρmin = 0.31 e Å3
5093 reflectionsAbsolute structure: Flack (1983), 1993 Friedel pairs
181 parametersAbsolute structure parameter: 0.03 (7)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.68361 (7)0.89579 (3)0.10630 (3)0.03997 (11)
O10.8255 (2)0.88973 (9)0.18279 (6)0.0403 (3)
O20.4945 (2)0.95689 (12)0.12058 (8)0.0527 (4)
O30.6661 (3)0.78918 (10)0.08397 (9)0.0646 (4)
C10.8523 (3)0.98154 (12)0.22766 (9)0.0332 (3)
C21.0472 (3)1.03331 (16)0.22378 (11)0.0438 (4)
H21.15571.01140.19010.053*
C31.0781 (3)1.11934 (17)0.27152 (13)0.0537 (5)
H31.20891.15580.27010.064*
C40.9168 (3)1.15065 (16)0.32060 (12)0.0513 (5)
H40.93891.20840.35240.062*
C50.7234 (3)1.09789 (16)0.32342 (10)0.0497 (5)
H50.61441.12030.35670.060*
C60.6895 (3)1.01146 (14)0.27702 (10)0.0422 (4)
H60.55940.97440.27920.051*
C70.8516 (3)0.96307 (12)0.04171 (9)0.0334 (3)
C80.7855 (3)1.05729 (12)0.01241 (9)0.0355 (4)
H80.65221.08550.02690.043*
C90.9203 (3)1.11168 (13)0.03991 (10)0.0380 (4)
C100.8568 (4)1.20865 (14)0.07297 (12)0.0522 (5)
H100.72311.23790.06010.063*
C110.9892 (5)1.25888 (17)0.12299 (12)0.0652 (6)
H110.94581.32230.14460.078*
C121.1911 (5)1.2161 (2)0.14254 (12)0.0709 (7)
H121.28081.25160.17690.085*
C131.2580 (3)1.12340 (18)0.11191 (12)0.0569 (5)
H131.39331.09630.12510.068*
C141.1230 (3)1.06801 (14)0.06014 (10)0.0405 (4)
C151.1837 (3)0.96940 (15)0.02884 (10)0.0439 (4)
H151.31640.93990.04250.053*
C161.0520 (3)0.91760 (13)0.02050 (10)0.0395 (4)
H161.09290.85270.04030.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0443 (2)0.0406 (2)0.0350 (2)0.00821 (18)0.00007 (19)0.00279 (17)
O10.0525 (7)0.0344 (5)0.0339 (6)0.0047 (6)0.0012 (5)0.0021 (5)
O20.0361 (7)0.0768 (9)0.0451 (8)0.0027 (6)0.0010 (6)0.0017 (7)
O30.0897 (11)0.0457 (7)0.0584 (9)0.0245 (7)0.0029 (9)0.0083 (6)
C10.0381 (10)0.0353 (7)0.0262 (7)0.0012 (6)0.0017 (6)0.0046 (6)
C20.0352 (10)0.0579 (11)0.0382 (9)0.0016 (8)0.0018 (7)0.0005 (8)
C30.0463 (12)0.0649 (13)0.0498 (12)0.0151 (10)0.0042 (9)0.0019 (10)
C40.0665 (14)0.0508 (11)0.0365 (11)0.0090 (9)0.0024 (9)0.0056 (8)
C50.0563 (13)0.0562 (11)0.0366 (9)0.0022 (9)0.0132 (8)0.0060 (9)
C60.0413 (10)0.0503 (9)0.0348 (8)0.0094 (8)0.0053 (8)0.0016 (7)
C70.0373 (9)0.0340 (7)0.0290 (7)0.0004 (6)0.0011 (6)0.0049 (6)
C80.0374 (9)0.0343 (7)0.0348 (8)0.0011 (7)0.0017 (7)0.0063 (6)
C90.0478 (10)0.0338 (8)0.0325 (8)0.0053 (7)0.0064 (7)0.0034 (7)
C100.0675 (14)0.0375 (9)0.0516 (11)0.0044 (8)0.0138 (10)0.0012 (8)
C110.0953 (18)0.0482 (11)0.0521 (14)0.0225 (12)0.0208 (13)0.0102 (9)
C120.0927 (18)0.0760 (15)0.0440 (12)0.0440 (15)0.0050 (13)0.0084 (11)
C130.0562 (12)0.0748 (13)0.0396 (10)0.0233 (10)0.0020 (8)0.0062 (10)
C140.0419 (11)0.0515 (10)0.0280 (8)0.0102 (8)0.0035 (7)0.0074 (7)
C150.0378 (10)0.0594 (10)0.0347 (9)0.0062 (9)0.0008 (8)0.0070 (8)
C160.0451 (10)0.0425 (9)0.0310 (9)0.0101 (7)0.0023 (7)0.0024 (7)
Geometric parameters (Å, º) top
S1—O31.4172 (13)C7—C161.411 (2)
S1—O21.4217 (15)C8—C91.411 (2)
S1—O11.5899 (13)C8—H80.9300
S1—C71.7487 (17)C9—C141.410 (3)
O1—C11.4149 (19)C9—C101.417 (2)
C1—C21.370 (2)C10—C111.351 (3)
C1—C61.372 (2)C10—H100.9300
C2—C31.387 (3)C11—C121.398 (4)
C2—H20.9300C11—H110.9300
C3—C41.367 (3)C12—C131.360 (3)
C3—H30.9300C12—H120.9300
C4—C51.368 (3)C13—C141.412 (3)
C4—H40.9300C13—H130.9300
C5—C61.380 (3)C14—C151.419 (3)
C5—H50.9300C15—C161.351 (3)
C6—H60.9300C15—H150.9300
C7—C81.366 (2)C16—H160.9300
O3—S1—O2120.72 (10)C7—C8—C9119.74 (16)
O3—S1—O1102.89 (9)C7—C8—H8120.1
O2—S1—O1109.31 (7)C9—C8—H8120.1
O3—S1—C7109.88 (9)C14—C9—C8119.07 (16)
O2—S1—C7109.05 (8)C14—C9—C10119.18 (18)
O1—S1—C7103.52 (7)C8—C9—C10121.74 (17)
C1—O1—S1118.86 (10)C11—C10—C9120.4 (2)
C2—C1—C6122.41 (16)C11—C10—H10119.8
C2—C1—O1118.25 (15)C9—C10—H10119.8
C6—C1—O1119.20 (15)C10—C11—C12120.4 (2)
C1—C2—C3118.10 (17)C10—C11—H11119.8
C1—C2—H2121.0C12—C11—H11119.8
C3—C2—H2121.0C13—C12—C11120.9 (2)
C4—C3—C2120.22 (18)C13—C12—H12119.6
C4—C3—H3119.9C11—C12—H12119.6
C2—C3—H3119.9C12—C13—C14120.3 (2)
C3—C4—C5120.68 (18)C12—C13—H13119.8
C3—C4—H4119.7C14—C13—H13119.8
C5—C4—H4119.7C9—C14—C13118.75 (19)
C4—C5—C6120.22 (17)C9—C14—C15119.15 (17)
C4—C5—H5119.9C13—C14—C15122.09 (19)
C6—C5—H5119.9C16—C15—C14121.17 (18)
C1—C6—C5118.37 (17)C16—C15—H15119.4
C1—C6—H6120.8C14—C15—H15119.4
C5—C6—H6120.8C15—C16—C7119.23 (16)
C8—C7—C16121.62 (16)C15—C16—H16120.4
C8—C7—S1119.58 (13)C7—C16—H16120.4
C16—C7—S1118.80 (12)
O3—S1—O1—C1171.58 (12)S1—C7—C8—C9179.81 (12)
O2—S1—O1—C142.13 (14)C7—C8—C9—C140.9 (2)
C7—S1—O1—C173.97 (13)C7—C8—C9—C10178.76 (16)
S1—O1—C1—C2104.08 (16)C14—C9—C10—C110.3 (3)
S1—O1—C1—C680.26 (17)C8—C9—C10—C11179.92 (18)
C6—C1—C2—C30.4 (3)C9—C10—C11—C120.3 (3)
O1—C1—C2—C3175.92 (16)C10—C11—C12—C130.2 (3)
C1—C2—C3—C40.1 (3)C11—C12—C13—C140.6 (3)
C2—C3—C4—C50.0 (3)C8—C9—C14—C13179.35 (16)
C3—C4—C5—C60.6 (3)C10—C9—C14—C131.0 (2)
C2—C1—C6—C51.0 (3)C8—C9—C14—C151.5 (2)
O1—C1—C6—C5176.47 (15)C10—C9—C14—C15178.11 (16)
C4—C5—C6—C11.1 (3)C12—C13—C14—C91.2 (3)
O3—S1—C7—C8132.35 (14)C12—C13—C14—C15177.93 (18)
O2—S1—C7—C82.04 (15)C9—C14—C15—C160.8 (3)
O1—S1—C7—C8118.32 (13)C13—C14—C15—C16179.89 (18)
O3—S1—C7—C1646.94 (15)C14—C15—C16—C70.6 (3)
O2—S1—C7—C16178.67 (12)C8—C7—C16—C151.3 (2)
O1—S1—C7—C1662.39 (13)S1—C7—C16—C15179.43 (14)
C16—C7—C8—C90.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.513.424 (2)169
C5—H5···Cg2ii0.932.963.486 (2)117
C6—H6···Cg3ii0.932.943.535 (2)123
C12—H12···Cg1iii0.932.943.788 (3)152
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y+2, z+1/2; (iii) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H12O3S
Mr284.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)6.1525 (2), 12.7466 (7), 17.3414 (10)
V3)1359.97 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.942, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
11868, 5093, 3412
Rint0.027
(sin θ/λ)max1)0.805
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 1.01
No. of reflections5093
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.31
Absolute structureFlack (1983), 1993 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: , APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.513.424 (2)169
C5—H5···Cg2ii0.932.963.486 (2)117
C6—H6···Cg3ii0.932.943.535 (2)123
C12—H12···Cg1iii0.932.943.788 (3)152
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y+2, z+1/2; (iii) x, y+5/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Madras, for the data collection.

References

First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationManivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005). Acta Cryst. E61, o239–o241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, G., Kanakam, C. C., Manivannan, V., Thiruvenkatam, V. & Row, T. N. G. (2007). Acta Cryst. E63, o4638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1984). Biochim. Biophys. Acta, 769, 531–542.  Google Scholar
First citationYachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hananon, M. (1989). Biochim. Biophys. Acta, 978, 1–7.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds