organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(4-chloro­phen­yl)butane-1,4-dione

aDepartment of Chemistry and Biology, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: shuqin2000@yahoo.com.cn

(Received 12 November 2008; accepted 21 November 2008; online 29 November 2008)

The mol­ecule of title compound, C16H12Cl2O2, is centrosymmetric. Thus, the asymmetric unit comprises two half-mol­ecules. The two benzene rings are coplanar in each independent molecule (dihedral angles = 0°). The crystal packing exhibits inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For applications of the title compound, see: Rao et al. (2004[Rao, H. S. P., Jothilingam, S. & Scheeren, H. W. (2004). Tetrahedron, 60, 1625-1630.]); Stauffer & Neier (2000[Stauffer, F. & Neier, R. (2000). Org. Lett. 2, 3535-3537.]); Shridhar et al. (1982[Shridhar, D. R., Jogibhukta, M., Rao, P. S. & Handa, V. K. (1982). Synthesis, pp. 1061-1062.]). For the preparation of the title compound, see: Stetter (1976[Stetter, H. (1976). Angew. Chem. Int. Ed. 15, 639-648.]); Nimgirawath et al. (1976[Nimgirawath, S., Ritchie, E. & Taylor, W. C. (1976). Aust. J. Chem. 29, 339-356.]); Yamamoto et al. (2003[Yamamoto, Y., Maekawa, H., Goda, S. & Nishiguchi, I. (2003). Org. Lett. 5, 2755-2758.]); Yuguchi et al. (2004[Yuguchi, M., Tokuda, M. & Orito, K. (2004). J. Org. Chem. 69, 908-914.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Cl2O2

  • Mr = 307.16

  • Monoclinic, P 21 /c

  • a = 10.3663 (2) Å

  • b = 5.2532 (1) Å

  • c = 26.1125 (6) Å

  • β = 95.272 (2)°

  • V = 1415.97 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.914, Tmax = 0.956

  • 14170 measured reflections

  • 2789 independent reflections

  • 1836 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 0.97

  • 2789 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.97 2.59 3.553 (3) 173
C11—H11⋯O1ii 0.93 2.50 3.246 (2) 138
C8—H8ACg1iii 0.97 2.98 3.876 (2) 154
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of C9–C14.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,4-Diketones are very useful intermediates for the synthesis of substituted furans, pyrroles and thiophenes via Paal-Knorr cyclization reaction (Rao et al., 2004; Stauffer et al., 2000; Shridhar et al., 1982). A variety of methods have been reported for the preparation of these 1,4-dicarbonyl compounds (Stetter et al., 1976; Yamamoto et al., 2003; Yuguchi et al., 2004).

The molecule is centrosymmetric. There are two halves of the molecules in the asymmetric unit (Fig. 1). The two phenyl rings are co-planar in both molecules. Intermolecular C—H···O hydrogen bonds and C—H···π interactions stabilize the crystal packing (Table 1).

Related literature top

For applications of the title compound, see: Rao et al. (2004); Stauffer & Neier (2000); Shridhar et al. (1982). For the preparation of the title compound, see: Stetter (1976); Nimgirawath et al. (1976); Yamamoto et al. (2003); Yuguchi et al. (2004).

Experimental top

The title compound was synthesized as previously described by Nimgirawath et al. (1976). Colourless crystals suitable for X-ray data collection were obtained by slow evaporation of a 1:2 (v/v) ratio CH2Cl2:CH3OH solution at 293 K.

Refinement top

All H atoms were refine independently; C—H (methyl H) = 0.96 Å, C—H (methine H) = 0.93Å and 0.93 Å for thiophene H. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq (methyl C) was applied.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.
1,4-Bis(4-chlorophenyl)butane-1,4-dione top
Crystal data top
C16H12Cl2O2F(000) = 632
Mr = 307.16Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3417 reflections
a = 10.3663 (2) Åθ = 2.6–23.1°
b = 5.2532 (1) ŵ = 0.46 mm1
c = 26.1125 (6) ÅT = 298 K
β = 95.272 (2)°Block, colourless
V = 1415.97 (5) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2789 independent reflections
Radiation source: fine-focus sealed tube1836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1212
Tmin = 0.914, Tmax = 0.956k = 66
14170 measured reflectionsl = 3132
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0637P)2]
where P = (Fo2 + 2Fc2)/3
2789 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H12Cl2O2V = 1415.97 (5) Å3
Mr = 307.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3663 (2) ŵ = 0.46 mm1
b = 5.2532 (1) ÅT = 298 K
c = 26.1125 (6) Å0.20 × 0.10 × 0.10 mm
β = 95.272 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2789 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1836 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.956Rint = 0.058
14170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 0.97Δρmax = 0.21 e Å3
2789 reflectionsΔρmin = 0.23 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3102 (2)0.4151 (4)0.32315 (8)0.0609 (5)
C20.3437 (2)0.2160 (4)0.35628 (8)0.0658 (6)
H20.40690.09950.34880.079*
C30.2824 (2)0.1933 (4)0.40024 (8)0.0612 (6)
H30.30410.05840.42250.073*
C40.18851 (19)0.3661 (3)0.41264 (8)0.0524 (5)
C50.1579 (2)0.5660 (4)0.37840 (8)0.0590 (5)
H50.09600.68510.38590.071*
C60.2175 (2)0.5899 (4)0.33398 (8)0.0627 (6)
H60.19550.72280.31130.075*
C70.1272 (2)0.3362 (4)0.46133 (8)0.0559 (5)
C80.0298 (2)0.5308 (4)0.47540 (7)0.0576 (5)
H8A0.03860.54320.44760.069*
H8B0.07190.69550.47900.069*
C90.1559 (2)0.7318 (4)0.15908 (8)0.0593 (5)
C100.1743 (2)0.6200 (4)0.11264 (8)0.0623 (6)
H100.12750.47550.10190.075*
C110.2621 (2)0.7227 (4)0.08217 (8)0.0575 (5)
H110.27450.64590.05090.069*
C120.33228 (18)0.9383 (3)0.09714 (7)0.0508 (5)
C130.3118 (2)1.0476 (4)0.14417 (8)0.0628 (6)
H130.35811.19260.15490.075*
C140.2249 (2)0.9467 (4)0.17514 (8)0.0674 (6)
H140.21271.02200.20660.081*
C150.42674 (19)1.0574 (4)0.06459 (7)0.0537 (5)
C160.45259 (19)0.9285 (4)0.01517 (8)0.0558 (5)
H16A0.37130.90950.00610.067*
H16B0.48650.75940.02290.067*
Cl10.04740 (6)0.59996 (12)0.19828 (2)0.0828 (2)
Cl20.38806 (6)0.44975 (15)0.26764 (2)0.0908 (3)
O10.15594 (16)0.1582 (3)0.48988 (6)0.0830 (5)
O20.48192 (15)1.2536 (3)0.07810 (6)0.0746 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0561 (13)0.0641 (12)0.0619 (13)0.0073 (11)0.0012 (10)0.0094 (10)
C20.0571 (13)0.0598 (13)0.0800 (15)0.0045 (11)0.0034 (12)0.0096 (12)
C30.0596 (14)0.0472 (11)0.0746 (14)0.0029 (10)0.0055 (11)0.0030 (10)
C40.0524 (12)0.0432 (10)0.0596 (12)0.0020 (9)0.0061 (10)0.0006 (9)
C50.0639 (14)0.0499 (11)0.0632 (13)0.0086 (10)0.0063 (10)0.0010 (10)
C60.0705 (15)0.0559 (12)0.0609 (13)0.0026 (11)0.0023 (11)0.0044 (10)
C70.0566 (13)0.0454 (11)0.0637 (13)0.0034 (9)0.0049 (10)0.0052 (9)
C80.0648 (14)0.0473 (11)0.0600 (12)0.0027 (10)0.0017 (10)0.0039 (9)
C90.0569 (13)0.0607 (12)0.0600 (13)0.0043 (10)0.0036 (10)0.0077 (10)
C100.0634 (14)0.0543 (12)0.0682 (14)0.0080 (10)0.0007 (11)0.0027 (10)
C110.0614 (13)0.0531 (11)0.0575 (12)0.0005 (10)0.0036 (10)0.0074 (9)
C120.0530 (12)0.0478 (10)0.0504 (11)0.0042 (9)0.0017 (9)0.0011 (9)
C130.0733 (15)0.0528 (12)0.0609 (13)0.0079 (11)0.0011 (11)0.0067 (10)
C140.0807 (16)0.0673 (14)0.0543 (12)0.0008 (12)0.0064 (11)0.0065 (11)
C150.0502 (12)0.0520 (11)0.0577 (12)0.0030 (10)0.0020 (9)0.0021 (9)
C160.0504 (12)0.0559 (11)0.0599 (12)0.0011 (9)0.0012 (9)0.0014 (9)
Cl10.0788 (5)0.0941 (5)0.0772 (4)0.0099 (3)0.0169 (3)0.0112 (3)
Cl20.0818 (5)0.1167 (6)0.0764 (4)0.0026 (4)0.0215 (3)0.0058 (4)
O10.0957 (13)0.0697 (10)0.0855 (11)0.0224 (9)0.0175 (9)0.0298 (9)
O20.0803 (11)0.0631 (9)0.0819 (11)0.0212 (8)0.0150 (8)0.0150 (8)
Geometric parameters (Å, º) top
C1—C61.377 (3)C9—C141.381 (3)
C1—C21.381 (3)C9—Cl11.733 (2)
C1—Cl21.732 (2)C10—C111.373 (3)
C2—C31.368 (3)C10—H100.9300
C2—H20.9300C11—C121.383 (3)
C3—C41.391 (3)C11—H110.9300
C3—H30.9300C12—C131.390 (3)
C4—C51.397 (3)C12—C151.492 (3)
C4—C71.481 (3)C13—C141.371 (3)
C5—C61.369 (3)C13—H130.9300
C5—H50.9300C14—H140.9300
C6—H60.9300C15—O21.215 (2)
C7—O11.216 (2)C15—C161.503 (3)
C7—C81.506 (3)C16—C16ii1.517 (4)
C8—C8i1.511 (4)C16—H16A0.9700
C8—H8A0.9700C16—H16B0.9700
C8—H8B0.9700Cl1—Cl23.8985 (9)
C9—C101.376 (3)
C6—C1—C2121.1 (2)C10—C9—Cl1120.01 (17)
C6—C1—Cl2119.31 (17)C14—C9—Cl1119.58 (16)
C2—C1—Cl2119.60 (18)C11—C10—C9119.75 (19)
C3—C2—C1118.8 (2)C11—C10—H10120.1
C3—C2—H2120.6C9—C10—H10120.1
C1—C2—H2120.6C10—C11—C12121.17 (19)
C2—C3—C4121.84 (19)C10—C11—H11119.4
C2—C3—H3119.1C12—C11—H11119.4
C4—C3—H3119.1C11—C12—C13117.95 (19)
C3—C4—C5117.68 (19)C11—C12—C15122.57 (17)
C3—C4—C7119.70 (18)C13—C12—C15119.47 (17)
C5—C4—C7122.62 (19)C14—C13—C12121.59 (19)
C6—C5—C4121.17 (19)C14—C13—H13119.2
C6—C5—H5119.4C12—C13—H13119.2
C4—C5—H5119.4C13—C14—C9119.2 (2)
C5—C6—C1119.39 (19)C13—C14—H14120.4
C5—C6—H6120.3C9—C14—H14120.4
C1—C6—H6120.3O2—C15—C12120.42 (18)
O1—C7—C4120.50 (19)O2—C15—C16120.99 (19)
O1—C7—C8120.30 (19)C12—C15—C16118.58 (17)
C4—C7—C8119.20 (16)C15—C16—C16ii113.6 (2)
C7—C8—C8i113.5 (2)C15—C16—H16A108.8
C7—C8—H8A108.9C16ii—C16—H16A108.8
C8i—C8—H8A108.9C15—C16—H16B108.8
C7—C8—H8B108.9C16ii—C16—H16B108.8
C8i—C8—H8B108.9H16A—C16—H16B107.7
H8A—C8—H8B107.7C9—Cl1—Cl275.29 (7)
C10—C9—C14120.4 (2)C1—Cl2—Cl186.46 (7)
C6—C1—C2—C30.5 (3)C10—C11—C12—C130.3 (3)
Cl2—C1—C2—C3179.23 (15)C10—C11—C12—C15178.93 (18)
C1—C2—C3—C40.6 (3)C11—C12—C13—C140.0 (3)
C2—C3—C4—C50.2 (3)C15—C12—C13—C14179.26 (19)
C2—C3—C4—C7178.57 (18)C12—C13—C14—C90.2 (3)
C3—C4—C5—C60.5 (3)C10—C9—C14—C130.2 (3)
C7—C4—C5—C6179.23 (18)Cl1—C9—C14—C13179.13 (16)
C4—C5—C6—C10.7 (3)C11—C12—C15—O2176.53 (19)
C2—C1—C6—C50.2 (3)C13—C12—C15—O22.7 (3)
Cl2—C1—C6—C5178.55 (15)C11—C12—C15—C163.9 (3)
C3—C4—C7—O11.9 (3)C13—C12—C15—C16176.85 (17)
C5—C4—C7—O1179.45 (18)O2—C15—C16—C16ii2.1 (3)
C3—C4—C7—C8177.44 (18)C12—C15—C16—C16ii178.39 (19)
C5—C4—C7—C81.2 (3)C10—C9—Cl1—Cl2107.86 (17)
O1—C7—C8—C8i3.6 (3)C14—C9—Cl1—Cl271.11 (16)
C4—C7—C8—C8i177.0 (2)C6—C1—Cl2—Cl143.73 (16)
C14—C9—C10—C110.1 (3)C2—C1—Cl2—Cl1137.48 (16)
Cl1—C9—C10—C11178.83 (15)C9—Cl1—Cl2—C1158.48 (10)
C9—C10—C11—C120.4 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1iii0.972.593.553 (3)173
C11—H11···O1iv0.932.503.246 (2)138
C8—H8A···Cg1v0.972.983.876 (2)154
Symmetry codes: (iii) x, y+1, z; (iv) x, y+1/2, z1/2; (v) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H12Cl2O2
Mr307.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.3663 (2), 5.2532 (1), 26.1125 (6)
β (°) 95.272 (2)
V3)1415.97 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.914, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
14170, 2789, 1836
Rint0.058
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 0.97
No. of reflections2789
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.972.593.553 (3)172.9
C11—H11···O1ii0.932.503.246 (2)137.5
C8—H8A···Cg1iii0.972.983.876 (2)154
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to Xiangfan University for financial support.

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNimgirawath, S., Ritchie, E. & Taylor, W. C. (1976). Aust. J. Chem. 29, 339–356.  CrossRef CAS Google Scholar
First citationRao, H. S. P., Jothilingam, S. & Scheeren, H. W. (2004). Tetrahedron, 60, 1625–1630.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShridhar, D. R., Jogibhukta, M., Rao, P. S. & Handa, V. K. (1982). Synthesis, pp. 1061–1062.  CrossRef Google Scholar
First citationStauffer, F. & Neier, R. (2000). Org. Lett. 2, 3535–3537.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStetter, H. (1976). Angew. Chem. Int. Ed. 15, 639–648.  CrossRef Google Scholar
First citationYamamoto, Y., Maekawa, H., Goda, S. & Nishiguchi, I. (2003). Org. Lett. 5, 2755–2758.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYuguchi, M., Tokuda, M. & Orito, K. (2004). J. Org. Chem. 69, 908–914.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds