metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[(di­methyl­malonato-κ2O:O′)(perchlorato-κO)copper(II)]-μ-bis­­(3-pyridylmeth­yl)piperazinediium-κ2N1′:N4′] perchlorate dihydrate]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825 USA
*Correspondence e-mail: laduca@msu.edu

(Received 1 November 2008; accepted 6 November 2008; online 13 November 2008)

In the title compound, {[Cu(C5H6O4)(ClO4)(C16H22N4)]ClO4·2H2O}n, square-pyramidally coordinated Cu atoms with perchlorate and dimethyl­malonate ligands are connected into cationic sinusoidal coordination polymer chains by doubly protonated bis­(3-pyridylmeth­yl)piperazine (3-bpmp) ligands. The chains aggregate into pseudo-layers parallel to the (101) crystal planes by N—H⋯O hydrogen bonding. Unligated perchlorate anions and water mol­ecules of crystallization provide additional hydrogen bonding between pseudo-layers.

Related literature

For copper carboxyl­ate coordination polymers containing 3-bpmp, see: Johnston et al. (2008[Johnston, L. L., Martin, D. P. & LaDuca, R. L. (2008). Inorg. Chim. Acta, 361, 2887-2894.]). For the synthesis of 3-bpmp, see: Pocic et al. (2005[Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624-628.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H6O4)(ClO4)(C16H22N4)]ClO4·2H2O

  • Mr = 698.95

  • Triclinic, [P \overline 1]

  • a = 9.6284 (15) Å

  • b = 10.5140 (16) Å

  • c = 14.061 (2) Å

  • α = 86.950 (2)°

  • β = 82.634 (2)°

  • γ = 84.638 (2)°

  • V = 1404.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 173 (2) K

  • 0.40 × 0.30 × 0.15 mm

Data collection
  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.680, Tmax = 0.859

  • 14378 measured reflections

  • 6309 independent reflections

  • 4904 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 1.05

  • 6309 reflections

  • 397 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O12 0.894 (18) 1.98 (2) 2.838 (4) 160 (4)
O1W—H1WB⋯O8i 0.875 (18) 2.35 (3) 3.053 (4) 137 (3)
O1W—H1WB⋯O2ii 0.875 (18) 2.46 (3) 3.120 (3) 133 (3)
O2W—H2WA⋯O7 0.929 (19) 2.14 (2) 3.044 (4) 164 (4)
O2W—H2WB⋯O1Wiii 0.941 (19) 1.95 (3) 2.807 (5) 150 (5)
N2—H2N⋯O2iv 0.887 (17) 1.804 (18) 2.673 (3) 166 (3)
N4—H4N⋯O4v 0.923 (17) 1.727 (17) 2.647 (3) 175 (3)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) x+1, y, z-1; (iv) -x+2, -y+1, -z; (v) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Crystal Maker (Palmer, 2007[Palmer, D. (2007). Crystal Maker. Crystal Maker, Bicester, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In comparison to coordination polymers based on the rigid rod tether 4,4'- bipyridine, extended phases based on the flexible and hydrogen-bonding capable bis(3-pyridylmethyl)piperazine (3-bpmp) ligand are much less common (Johnston et al., 2008).

The asymmetric unit of the title compound contains a divalent copper atom, two halves of two 3-bpmp molecules protonated at their piperazinyl nitrogen atoms, one dimethylmalonate dianion, one bound and one unbound perchlorate ion and two water molecules of crystallization (Figure 1). The Cu atoms are square pyramidally coordinated in a {CuN2O3} arrangement, with the basal plane occupied by two cis N atom donors from two crystallographically distinct 3-bpmp ligands and two cis O atom donors from a dimethylmalonate ligand in a 1,3-chelating binding mode. The apical position is filled by a ligated perchlorate anion.

The 3-bpmp ligands link the Cu atoms into sinusoidal cationic coordination polymer chains with formulation [Cu(3-bpmpH2)(dimethylmalonate)(ClO4)]nn+ (Figure 2), in which the through ligand Cu···Cu contact distance is 15.441 Å. The "wavelength" of this chain, defined by unbridged Cu···Cu contacts, is 15.991 Å. The chains are aligned parallel to the [1 0 1] crystal direction.

Neighboring chains interdigitate and aggregate into a pseudolayer (Figure 3) parallel to the (1 0 1) crystal plane by N—H···O hydrogen bonding between protonated piperazinyl N atoms and unligated dimethylmalonate O atoms. These stack into three dimensions (Figure 4) through additional hydrogen bonding patterns involving unligated perchlorate anions and water molecule dimers, and dimethylmalonate O atoms within the coordination polymer chains.

Related literature top

For copper carboxylate coordination polymers containing 3-bpmp, see: Johnston et al. (2008). For the synthesis of 3-bpmp, see: Pocic et al. (2005).

Experimental top

All chemicals were obtained commercially, except for 3-bpmp which was synthesized by a literature method (Pocic et al., 2005). Copper perchlorate hexahydrate (19 mg, 0.051 mmol) and dimethylmalonic acid (7 mg, 0.05 mmol) were dissolved in 3 ml water in a glass vial. A 1 ml aliquot of a 1:1 water:ethanol solution was carefully layered onto the aqueous solution, followed by 3 ml of an ethanolic solution of 3-bpmp (27 mg, 0.10 mmol). Blue blocks of the title compound formed after 1 week.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 - 0.99 Å and refined in riding mode with Uiso = 1.2Ueq(C) or 1.5Ueq(C) for methyl C atoms. All H atoms bound to O atoms were found via Fourier difference map, restrained with O—H = 0.89 Å, and refined with Uiso=1.2Ueq(O). All H atoms bound to N atoms were found via Fourier difference map, restrained with N—H = 0.89 Å, and refined with Uiso=1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination environment of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atoms are not shown. Color codes: dark blue Cu, light blue N, red O, black C, green Cl and orange O atoms of water molecules.
[Figure 2] Fig. 2. A single cationic [Cu(dimethylmalonate)(ClO4)(3-bpmpH2)]n chain in the title compound.
[Figure 3] Fig. 3. A supramolecular [Cu(dimethylmalonate)(ClO4)(3-bpmpH2)]n layer in the title compound. Hydrogen bonding between protonated piperazinyl N atoms and unligated dimethylmalonate carboxylate O atoms is shown as dashed lines.
[Figure 4] Fig. 4. Packing diagram illustrating the interaction of pseudolayers via hydrogen bonding involving the dimethylmalonate carboxylate O atoms, co-crystallized water molecules, and unligated perchlorate anions.
catena-Poly[[[(dimethylmalonato-κ2O:O')(perchlorato- κO)copper(II)]-µ-bis(3-pyridylmethyl)piperazinediium- κ2N1':N4'] perchlorate dihydrate] top
Crystal data top
[Cu(C5H6O4)(ClO4)(C16H22N4)]ClO4·2H2OZ = 2
Mr = 698.95F(000) = 722
Triclinic, P1Dx = 1.653 Mg m3
a = 9.6284 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5140 (16) ÅCell parameters from 14378 reflections
c = 14.061 (2) Åθ = 1.5–28.3°
α = 86.950 (2)°µ = 1.04 mm1
β = 82.634 (2)°T = 173 K
γ = 84.638 (2)°Block, blue
V = 1404.3 (4) Å30.40 × 0.30 × 0.15 mm
Data collection top
Bruker SMART 1K
diffractometer
6309 independent reflections
Radiation source: fine-focus sealed tube4904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.680, Tmax = 0.859k = 1313
14378 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0402P)2 + 1.0163P]
where P = (Fo2 + 2Fc2)/3
6309 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.57 e Å3
8 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu(C5H6O4)(ClO4)(C16H22N4)]ClO4·2H2Oγ = 84.638 (2)°
Mr = 698.95V = 1404.3 (4) Å3
Triclinic, P1Z = 2
a = 9.6284 (15) ÅMo Kα radiation
b = 10.5140 (16) ŵ = 1.04 mm1
c = 14.061 (2) ÅT = 173 K
α = 86.950 (2)°0.40 × 0.30 × 0.15 mm
β = 82.634 (2)°
Data collection top
Bruker SMART 1K
diffractometer
6309 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4904 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.859Rint = 0.035
14378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0408 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.57 e Å3
6309 reflectionsΔρmin = 0.44 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.73682 (3)0.38286 (3)0.22768 (2)0.01649 (9)
Cl10.52659 (6)0.15993 (6)0.15616 (4)0.01940 (14)
Cl20.04531 (7)0.26708 (7)0.67794 (5)0.02767 (17)
O10.89350 (18)0.26684 (16)0.17600 (12)0.0185 (4)
O1W0.3036 (3)0.0931 (2)0.7673 (2)0.0524 (7)
H1WA0.221 (3)0.124 (3)0.747 (3)0.063*
H1WB0.284 (4)0.013 (2)0.785 (3)0.063*
O21.06366 (18)0.11347 (16)0.18831 (12)0.0196 (4)
O2W0.6049 (5)0.2872 (3)0.1037 (2)0.0946 (12)
H2WA0.573 (6)0.247 (4)0.045 (2)0.114*
H2WB0.602 (6)0.218 (4)0.143 (3)0.114*
O30.71336 (18)0.28139 (17)0.34603 (13)0.0211 (4)
O40.78008 (19)0.12856 (17)0.44779 (13)0.0211 (4)
O50.6183 (2)0.07458 (18)0.20754 (14)0.0282 (5)
O60.5848 (2)0.28179 (18)0.13822 (15)0.0287 (5)
O70.5127 (2)0.1087 (2)0.06554 (15)0.0362 (5)
O80.3908 (2)0.1798 (2)0.21162 (16)0.0370 (5)
O90.1580 (3)0.1796 (2)0.70439 (19)0.0536 (7)
O100.0031 (3)0.3535 (2)0.75267 (17)0.0514 (7)
O110.0911 (3)0.3375 (3)0.59195 (18)0.0571 (7)
O120.0708 (3)0.2017 (2)0.6593 (2)0.0650 (9)
N10.7670 (2)0.50054 (19)0.11139 (15)0.0167 (5)
N20.8888 (2)0.91571 (19)0.00109 (15)0.0144 (4)
H2N0.908 (3)0.893 (2)0.0593 (13)0.017*
N30.5816 (2)0.50287 (19)0.29083 (15)0.0182 (5)
N40.4942 (2)0.8624 (2)0.49802 (15)0.0156 (4)
H4N0.3982 (18)0.863 (3)0.514 (2)0.019*
C10.9729 (3)0.1943 (2)0.22604 (18)0.0153 (5)
C20.9626 (3)0.2108 (2)0.33488 (18)0.0166 (5)
C30.8085 (3)0.2046 (2)0.37928 (18)0.0161 (5)
C41.0062 (3)0.3455 (3)0.3502 (2)0.0300 (7)
H4A0.94510.41020.31900.045*
H4B1.10410.35160.32230.045*
H4C0.99690.36000.41910.045*
C51.0578 (3)0.1103 (3)0.3830 (2)0.0255 (6)
H5A1.04830.12420.45200.038*
H5B1.15570.11720.35530.038*
H5C1.03090.02500.37280.038*
C110.7887 (3)0.4505 (3)0.02408 (19)0.0221 (6)
H110.79370.36020.02010.027*
C120.8040 (3)0.5242 (3)0.0596 (2)0.0246 (6)
H120.81970.48540.12000.029*
C130.7962 (3)0.6561 (3)0.05452 (19)0.0211 (6)
H130.80420.70920.11140.025*
C140.7766 (3)0.7096 (2)0.03496 (19)0.0169 (5)
C150.7619 (3)0.6285 (2)0.11544 (19)0.0166 (5)
H150.74750.66490.17670.020*
C160.7611 (3)0.8529 (2)0.0465 (2)0.0196 (6)
H16A0.67800.89060.01690.024*
H16B0.74470.87040.11570.024*
C171.0141 (3)0.8795 (2)0.05230 (18)0.0164 (5)
H17A1.03440.78550.05390.020*
H17B0.99390.90700.11930.020*
C180.8594 (3)1.0583 (2)0.00249 (19)0.0165 (5)
H18A0.83651.08880.06360.020*
H18B0.77741.08270.03750.020*
C210.4487 (3)0.5093 (3)0.2703 (2)0.0247 (6)
H210.42710.46120.21970.030*
C220.3425 (3)0.5851 (3)0.3216 (2)0.0307 (7)
H220.24870.58710.30690.037*
C230.3727 (3)0.6571 (3)0.3935 (2)0.0254 (6)
H230.30010.70850.42930.031*
C240.5109 (3)0.6542 (2)0.41357 (18)0.0187 (5)
C250.6108 (3)0.5742 (2)0.36102 (18)0.0176 (5)
H250.70500.56940.37530.021*
C260.5575 (3)0.7270 (2)0.49164 (19)0.0196 (6)
H26A0.53290.68120.55400.023*
H26B0.66110.72720.48070.023*
C270.5498 (3)0.9241 (2)0.57676 (18)0.0194 (6)
H27A0.65250.92820.56060.023*
H27B0.53360.87140.63690.023*
C280.5198 (3)0.9422 (2)0.40762 (18)0.0174 (5)
H28A0.48090.90380.35510.021*
H28B0.62220.94570.38910.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01812 (17)0.01517 (16)0.01464 (17)0.00267 (12)0.00069 (12)0.00020 (12)
Cl10.0194 (3)0.0213 (3)0.0175 (3)0.0024 (2)0.0016 (2)0.0016 (2)
Cl20.0217 (3)0.0271 (4)0.0340 (4)0.0028 (3)0.0008 (3)0.0043 (3)
O10.0208 (9)0.0205 (9)0.0129 (9)0.0050 (7)0.0027 (7)0.0007 (7)
O1W0.0443 (15)0.0369 (14)0.074 (2)0.0042 (12)0.0019 (14)0.0062 (14)
O20.0199 (9)0.0211 (9)0.0160 (9)0.0040 (8)0.0009 (7)0.0013 (7)
O2W0.160 (4)0.070 (2)0.050 (2)0.014 (2)0.005 (2)0.0045 (17)
O30.0181 (9)0.0240 (10)0.0182 (10)0.0053 (8)0.0020 (7)0.0040 (8)
O40.0197 (9)0.0232 (10)0.0179 (10)0.0010 (8)0.0024 (7)0.0048 (8)
O50.0284 (11)0.0276 (11)0.0268 (11)0.0047 (9)0.0029 (9)0.0028 (9)
O60.0333 (11)0.0223 (10)0.0330 (12)0.0087 (9)0.0098 (9)0.0009 (9)
O70.0451 (13)0.0387 (13)0.0287 (12)0.0031 (10)0.0144 (10)0.0129 (10)
O80.0193 (10)0.0534 (14)0.0336 (12)0.0031 (10)0.0056 (9)0.0099 (11)
O90.0453 (15)0.0555 (16)0.0568 (17)0.0255 (12)0.0116 (13)0.0118 (13)
O100.0655 (17)0.0493 (15)0.0382 (14)0.0187 (13)0.0128 (13)0.0165 (12)
O110.0573 (17)0.079 (2)0.0366 (15)0.0206 (15)0.0037 (12)0.0089 (14)
O120.0332 (14)0.0416 (15)0.123 (3)0.0146 (11)0.0043 (15)0.0191 (16)
N10.0172 (11)0.0154 (10)0.0169 (11)0.0011 (8)0.0000 (9)0.0012 (9)
N20.0158 (10)0.0127 (10)0.0138 (11)0.0002 (8)0.0014 (8)0.0008 (8)
N30.0207 (11)0.0150 (10)0.0175 (12)0.0014 (9)0.0005 (9)0.0010 (9)
N40.0148 (10)0.0183 (11)0.0130 (11)0.0004 (9)0.0012 (8)0.0016 (8)
C10.0150 (12)0.0135 (12)0.0169 (13)0.0041 (10)0.0018 (10)0.0004 (10)
C20.0165 (13)0.0186 (13)0.0148 (13)0.0019 (10)0.0015 (10)0.0015 (10)
C30.0177 (13)0.0142 (12)0.0158 (13)0.0000 (10)0.0013 (10)0.0052 (10)
C40.0348 (17)0.0286 (16)0.0288 (17)0.0155 (13)0.0019 (13)0.0060 (13)
C50.0197 (14)0.0377 (17)0.0172 (14)0.0049 (12)0.0015 (11)0.0023 (12)
C110.0282 (15)0.0166 (13)0.0208 (14)0.0000 (11)0.0007 (11)0.0025 (11)
C120.0336 (16)0.0228 (14)0.0167 (14)0.0034 (12)0.0009 (12)0.0040 (11)
C130.0248 (14)0.0204 (13)0.0175 (14)0.0060 (11)0.0005 (11)0.0030 (11)
C140.0139 (12)0.0141 (12)0.0224 (14)0.0037 (10)0.0003 (10)0.0005 (10)
C150.0174 (13)0.0161 (12)0.0164 (13)0.0031 (10)0.0006 (10)0.0028 (10)
C160.0171 (13)0.0155 (12)0.0250 (15)0.0033 (10)0.0037 (11)0.0000 (11)
C170.0189 (13)0.0128 (12)0.0170 (13)0.0008 (10)0.0031 (10)0.0029 (10)
C180.0165 (12)0.0117 (11)0.0203 (14)0.0010 (10)0.0009 (10)0.0003 (10)
C210.0272 (15)0.0213 (14)0.0261 (15)0.0033 (12)0.0073 (12)0.0052 (12)
C220.0218 (15)0.0313 (16)0.0394 (19)0.0047 (12)0.0073 (13)0.0101 (14)
C230.0203 (14)0.0266 (15)0.0283 (16)0.0031 (12)0.0004 (12)0.0088 (12)
C240.0209 (13)0.0172 (13)0.0172 (13)0.0013 (10)0.0000 (11)0.0011 (10)
C250.0177 (13)0.0171 (12)0.0175 (13)0.0008 (10)0.0007 (10)0.0004 (10)
C260.0198 (13)0.0186 (13)0.0190 (14)0.0035 (11)0.0010 (11)0.0020 (11)
C270.0244 (14)0.0211 (13)0.0133 (13)0.0012 (11)0.0041 (11)0.0018 (10)
C280.0212 (13)0.0197 (13)0.0107 (12)0.0030 (10)0.0016 (10)0.0018 (10)
Geometric parameters (Å, º) top
Cu1—O31.9283 (18)C4—H4C0.9800
Cu1—O11.9394 (17)C5—H5A0.9800
Cu1—N12.005 (2)C5—H5B0.9800
Cu1—N32.010 (2)C5—H5C0.9800
Cu1—O62.400 (2)C11—C121.374 (4)
Cl1—O51.433 (2)C11—H110.9500
Cl1—O71.436 (2)C12—C131.387 (4)
Cl1—O81.438 (2)C12—H120.9500
Cl1—O61.443 (2)C13—C141.389 (4)
Cl2—O101.420 (2)C13—H130.9500
Cl2—O121.425 (3)C14—C151.381 (3)
Cl2—O111.426 (3)C14—C161.516 (3)
Cl2—O91.429 (2)C15—H150.9500
O1—C11.278 (3)C16—H16A0.9900
O1W—H1WA0.894 (18)C16—H16B0.9900
O1W—H1WB0.875 (18)C17—C18i1.511 (3)
O2—C11.248 (3)C17—H17A0.9900
O2W—H2WA0.929 (19)C17—H17B0.9900
O2W—H2WB0.941 (19)C18—C17i1.511 (3)
O3—C31.281 (3)C18—H18A0.9900
O4—C31.239 (3)C18—H18B0.9900
N1—C111.345 (3)C21—C221.386 (4)
N1—C151.346 (3)C21—H210.9500
N2—C171.492 (3)C22—C231.370 (4)
N2—C181.499 (3)C22—H220.9500
N2—C161.503 (3)C23—C241.392 (4)
N2—H2N0.887 (17)C23—H230.9500
N3—C211.342 (4)C24—C251.383 (3)
N3—C251.343 (3)C24—C261.507 (4)
N4—C281.492 (3)C25—H250.9500
N4—C271.493 (3)C26—H26A0.9900
N4—C261.498 (3)C26—H26B0.9900
N4—H4N0.923 (17)C27—C28ii1.514 (3)
C1—C21.539 (4)C27—H27A0.9900
C2—C51.522 (3)C27—H27B0.9900
C2—C31.540 (3)C28—C27ii1.514 (3)
C2—C41.548 (4)C28—H28A0.9900
C4—H4A0.9800C28—H28B0.9900
C4—H4B0.9800
O3—Cu1—O191.49 (7)H5B—C5—H5C109.5
O3—Cu1—N1174.84 (8)N1—C11—C12122.9 (2)
O1—Cu1—N190.38 (8)N1—C11—H11118.6
O3—Cu1—N385.44 (8)C12—C11—H11118.6
O1—Cu1—N3175.47 (8)C11—C12—C13118.9 (3)
N1—Cu1—N392.41 (8)C11—C12—H12120.5
O3—Cu1—O699.44 (7)C13—C12—H12120.5
O1—Cu1—O689.56 (7)C12—C13—C14119.1 (2)
N1—Cu1—O685.38 (8)C12—C13—H13120.5
N3—Cu1—O694.23 (8)C14—C13—H13120.5
O5—Cl1—O7110.03 (13)C15—C14—C13118.2 (2)
O5—Cl1—O8110.26 (12)C15—C14—C16119.5 (2)
O7—Cl1—O8109.95 (14)C13—C14—C16122.2 (2)
O5—Cl1—O6109.60 (12)N1—C15—C14123.3 (2)
O7—Cl1—O6108.42 (13)N1—C15—H15118.4
O8—Cl1—O6108.54 (13)C14—C15—H15118.4
O10—Cl2—O12110.28 (17)N2—C16—C14112.3 (2)
O10—Cl2—O11109.08 (17)N2—C16—H16A109.1
O12—Cl2—O11107.14 (19)C14—C16—H16A109.1
O10—Cl2—O9109.14 (15)N2—C16—H16B109.1
O12—Cl2—O9111.41 (17)C14—C16—H16B109.1
O11—Cl2—O9109.75 (16)H16A—C16—H16B107.9
C1—O1—Cu1125.13 (16)N2—C17—C18i110.5 (2)
H1WA—O1W—H1WB106 (3)N2—C17—H17A109.5
H2WA—O2W—H2WB98 (3)C18i—C17—H17A109.5
C3—O3—Cu1125.71 (16)N2—C17—H17B109.5
Cl1—O6—Cu1129.66 (12)C18i—C17—H17B109.5
C11—N1—C15117.6 (2)H17A—C17—H17B108.1
C11—N1—Cu1118.88 (17)N2—C18—C17i110.23 (19)
C15—N1—Cu1123.45 (17)N2—C18—H18A109.6
C17—N2—C18109.43 (19)C17i—C18—H18A109.6
C17—N2—C16112.43 (19)N2—C18—H18B109.6
C18—N2—C16110.56 (18)C17i—C18—H18B109.6
C17—N2—H2N109.4 (18)H18A—C18—H18B108.1
C18—N2—H2N106.6 (17)N3—C21—C22121.2 (3)
C16—N2—H2N108.2 (18)N3—C21—H21119.4
C21—N3—C25118.6 (2)C22—C21—H21119.4
C21—N3—Cu1123.14 (19)C23—C22—C21120.0 (3)
C25—N3—Cu1118.18 (17)C23—C22—H22120.0
C28—N4—C27108.84 (19)C21—C22—H22120.0
C28—N4—C26114.45 (19)C22—C23—C24119.3 (3)
C27—N4—C26109.3 (2)C22—C23—H23120.3
C28—N4—H4N107.8 (17)C24—C23—H23120.3
C27—N4—H4N107.2 (18)C25—C24—C23117.4 (2)
C26—N4—H4N109.1 (17)C25—C24—C26117.9 (2)
O2—C1—O1121.6 (2)C23—C24—C26124.5 (2)
O2—C1—C2118.6 (2)N3—C25—C24123.4 (2)
O1—C1—C2119.7 (2)N3—C25—H25118.3
C5—C2—C1112.0 (2)C24—C25—H25118.3
C5—C2—C3110.5 (2)N4—C26—C24114.5 (2)
C1—C2—C3108.9 (2)N4—C26—H26A108.6
C5—C2—C4109.5 (2)C24—C26—H26A108.6
C1—C2—C4107.7 (2)N4—C26—H26B108.6
C3—C2—C4108.1 (2)C24—C26—H26B108.6
O4—C3—O3121.7 (2)H26A—C26—H26B107.6
O4—C3—C2119.4 (2)N4—C27—C28ii111.7 (2)
O3—C3—C2118.9 (2)N4—C27—H27A109.3
C2—C4—H4A109.5C28ii—C27—H27A109.3
C2—C4—H4B109.5N4—C27—H27B109.3
H4A—C4—H4B109.5C28ii—C27—H27B109.3
C2—C4—H4C109.5H27A—C27—H27B107.9
H4A—C4—H4C109.5N4—C28—C27ii109.3 (2)
H4B—C4—H4C109.5N4—C28—H28A109.8
C2—C5—H5A109.5C27ii—C28—H28A109.8
C2—C5—H5B109.5N4—C28—H28B109.8
H5A—C5—H5B109.5C27ii—C28—H28B109.8
C2—C5—H5C109.5H28A—C28—H28B108.3
H5A—C5—H5C109.5
O3—Cu1—O1—C125.1 (2)C1—C2—C3—O355.3 (3)
N1—Cu1—O1—C1150.0 (2)C4—C2—C3—O361.4 (3)
O6—Cu1—O1—C1124.6 (2)C15—N1—C11—C120.7 (4)
O1—Cu1—O3—C323.3 (2)Cu1—N1—C11—C12177.0 (2)
N3—Cu1—O3—C3153.4 (2)N1—C11—C12—C130.3 (4)
O6—Cu1—O3—C3113.1 (2)C11—C12—C13—C141.5 (4)
O5—Cl1—O6—Cu127.77 (19)C12—C13—C14—C151.7 (4)
O7—Cl1—O6—Cu1147.89 (15)C12—C13—C14—C16177.5 (2)
O8—Cl1—O6—Cu192.71 (17)C11—N1—C15—C140.5 (4)
O3—Cu1—O6—Cl115.88 (17)Cu1—N1—C15—C14177.01 (19)
O1—Cu1—O6—Cl175.56 (16)C13—C14—C15—N10.7 (4)
N1—Cu1—O6—Cl1165.97 (17)C16—C14—C15—N1176.6 (2)
N3—Cu1—O6—Cl1101.95 (16)C17—N2—C16—C1468.1 (3)
O1—Cu1—N1—C1145.5 (2)C18—N2—C16—C14169.3 (2)
N3—Cu1—N1—C11138.1 (2)C15—C14—C16—N2123.4 (3)
O6—Cu1—N1—C1144.05 (19)C13—C14—C16—N260.9 (3)
O1—Cu1—N1—C15137.0 (2)C18—N2—C17—C18i58.4 (3)
N3—Cu1—N1—C1539.4 (2)C16—N2—C17—C18i178.3 (2)
O6—Cu1—N1—C15133.5 (2)C17—N2—C18—C17i58.2 (3)
O3—Cu1—N3—C21103.2 (2)C16—N2—C18—C17i177.4 (2)
N1—Cu1—N3—C2181.5 (2)C25—N3—C21—C221.7 (4)
O6—Cu1—N3—C214.0 (2)Cu1—N3—C21—C22174.1 (2)
O3—Cu1—N3—C2572.62 (18)N3—C21—C22—C231.3 (4)
N1—Cu1—N3—C25102.68 (19)C21—C22—C23—C240.6 (4)
O6—Cu1—N3—C25171.78 (18)C22—C23—C24—C252.1 (4)
Cu1—O1—C1—O2173.27 (17)C22—C23—C24—C26178.9 (3)
Cu1—O1—C1—C29.9 (3)C21—N3—C25—C240.0 (4)
O2—C1—C2—C57.0 (3)Cu1—N3—C25—C24175.96 (19)
O1—C1—C2—C5176.1 (2)C23—C24—C25—N31.9 (4)
O2—C1—C2—C3129.6 (2)C26—C24—C25—N3178.8 (2)
O1—C1—C2—C353.5 (3)C28—N4—C26—C2456.9 (3)
O2—C1—C2—C4113.4 (3)C27—N4—C26—C24179.2 (2)
O1—C1—C2—C463.5 (3)C25—C24—C26—N4139.4 (2)
Cu1—O3—C3—O4168.75 (18)C23—C24—C26—N443.9 (4)
Cu1—O3—C3—C213.4 (3)C28—N4—C27—C28ii59.3 (3)
C5—C2—C3—O43.3 (3)C26—N4—C27—C28ii175.1 (2)
C1—C2—C3—O4126.8 (2)C27—N4—C28—C27ii57.8 (3)
C4—C2—C3—O4116.5 (3)C26—N4—C28—C27ii179.7 (2)
C5—C2—C3—O3178.8 (2)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O120.89 (2)1.98 (2)2.838 (4)160 (4)
O1W—H1WB···O8iii0.88 (2)2.35 (3)3.053 (4)137 (3)
O1W—H1WB···O2iv0.88 (2)2.46 (3)3.120 (3)133 (3)
O2W—H2WA···O70.93 (2)2.14 (2)3.044 (4)164 (4)
O2W—H2WB···O1Wv0.94 (2)1.95 (3)2.807 (5)150 (5)
N2—H2N···O2vi0.89 (2)1.80 (2)2.673 (3)166 (3)
N4—H4N···O4vii0.92 (2)1.73 (2)2.647 (3)175 (3)
Symmetry codes: (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x+1, y, z1; (vi) x+2, y+1, z; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C5H6O4)(ClO4)(C16H22N4)]ClO4·2H2O
Mr698.95
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.6284 (15), 10.5140 (16), 14.061 (2)
α, β, γ (°)86.950 (2), 82.634 (2), 84.638 (2)
V3)1404.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.40 × 0.30 × 0.15
Data collection
DiffractometerBruker SMART 1K
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.680, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
14378, 6309, 4904
Rint0.035
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.05
No. of reflections6309
No. of parameters397
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.44

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Crystal Maker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O120.894 (18)1.98 (2)2.838 (4)160 (4)
O1W—H1WB···O8i0.875 (18)2.35 (3)3.053 (4)137 (3)
O1W—H1WB···O2ii0.875 (18)2.46 (3)3.120 (3)133 (3)
O2W—H2WA···O70.929 (19)2.14 (2)3.044 (4)164 (4)
O2W—H2WB···O1Wiii0.941 (19)1.95 (3)2.807 (5)150 (5)
N2—H2N···O2iv0.887 (17)1.804 (18)2.673 (3)166 (3)
N4—H4N···O4v0.923 (17)1.727 (17)2.647 (3)175 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z1; (iv) x+2, y+1, z; (v) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund and Michigan State University for funding this work.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnston, L. L., Martin, D. P. & LaDuca, R. L. (2008). Inorg. Chim. Acta, 361, 2887–2894.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2007). Crystal Maker. Crystal Maker, Bicester, Oxfordshire, England.  Google Scholar
First citationPocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624–628.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds