metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1563-m1564

(Acetato-κO)bis­­(2,2′-bi­pyridyl-κ2N,N′)copper(II)–ethyl sulfate–methyl sulfate (1/0.5/0.5)

aDepartment of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun, Guizhou 558000, People's Republic of China, and bDepartment of Chemistry and Biology, Qinzhou University, Qinzhou, Guangxi 535000, People's Republic of China
*Correspondence e-mail: marise2003050092@163.com

(Received 4 November 2008; accepted 11 November 2008; online 20 November 2008)

In the title complex, [Cu(C2H3O2)(C10H8N2)2](CH3CH2OSO3)0.5(CH3OSO3)0.5, the CuII ion is bis-chelated by two 2,2′-bipyridine lignds and coordinated by an O atom of an acetate ligand in a CuN4O disorted square-pyramidal environment. In the structure, equal amounts of methyl sulfate and ethyl sulfate anions are disordered on the same crystallographic sites. The crystal structure is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For genernal background to supra­molecular assembly and crystal engineering, see: Aakeröy et al. (1998[Aakeröy, C. B. & Beatty, A. M. (1998). Chem. Commun. pp. 1067-1068.]); Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-554.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2338.]); Lu et al. (2006[Lu, W.-J., Zhu, Y.-M. & Zhong, K.-L. (2006). Acta Cryst. C62, m448-m450.]). For related strutures, see: Akrivos et al. (1994[Akrivos, P. D., Hadjikakou, S. K., Karagiannidis, P., Luic, M. & Kojic-Prodic, B. (1994). J. Coord. Chem. 31, 273-282.]); Blake et al. (2000[Blake, A. J., Hubberstey, P., Suksangpanya, U. & Wilson, C. L. (2000). J. Chem. Soc. Dalton Trans. pp. 3873-3880.]); Belokon et al. (2002[Belokon, Y. N., Carta, P., Gutnov, A. V., Maleev, V., Moskalenko, M. A., Yashkina, L. V., Ikonnikov, N. S., Voskoboev, N. V., Khrustalev, V. N. & North, M. (2002). Helv. Chim. Acta, 85, 3301-3312.]); Lopez-Sandoval et al. (2004[Lopez-Sandoval, H., Richaud, A., Contreras, R., Leigh, G. J., Hitchcock, P. B., Flores-Parra, A., Galvez-Ruiz, J. C., Cruz, A., Noth, H. & Barba-Behrens, N. (2004). Polyhedron, 23, 1837-1843.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3O2)(C10H8N2)2](C2H5O4S)0.5(CH3O4S)0.5

  • Mr = 553.06

  • Triclinic, [P \overline 1]

  • a = 7.1314 (7) Å

  • b = 13.1173 (13) Å

  • c = 13.2783 (14) Å

  • α = 91.875 (1)°

  • β = 104.673 (1)°

  • γ = 101.162 (1)°

  • V = 1174.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 291 (2) K

  • 0.36 × 0.27 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.703, Tmax = 0.800

  • 8803 measured reflections

  • 4347 independent reflections

  • 3848 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.04

  • 4347 reflections

  • 331 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.9411 (15)
Cu1—N2 2.0207 (17)
Cu1—N1 2.0266 (17)
Cu1—N4 2.0471 (17)
Cu1—N3 2.1940 (18)
O1—Cu1—N2 91.45 (7)
O1—Cu1—N1 167.87 (6)
N2—Cu1—N1 80.14 (7)
O1—Cu1—N4 91.03 (7)
N2—Cu1—N4 166.61 (7)
N1—Cu1—N4 95.20 (7)
O1—Cu1—N3 94.44 (7)
N2—Cu1—N3 115.38 (7)
N1—Cu1—N3 97.05 (7)
N4—Cu1—N3 77.52 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O5i 0.93 2.49 3.339 (3) 151
C12—H12B⋯O3 0.96 2.46 3.414 (3) 174
C8—H8A⋯O6ii 0.93 2.59 3.295 (3) 133
C7—H7A⋯O2ii 0.93 2.39 3.286 (3) 162
C4—H4A⋯O2ii 0.93 2.58 3.482 (3) 163
C2—H2A⋯O4 0.93 2.56 3.454 (3) 162
C1—H1A⋯O1 0.93 2.49 2.992 (3) 114
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The field of supramolecular assembly and crystal engineering in which transition metal cationic centres are linked through anions via hydrogen-bonded supramolecular synthons is receiving growing attention (Yaghi et al., 1998; Kitagawa et al., 2004; Lu et al., 2006). This work is driven by the elegant multi-dimensional architectures which can be fabricated by bringing together the rapidly maturing fields of hydrogen-bonded crystal engineering inorganic co-ordination polymer construction (Aakeröy et al., 1998; Batten et al., 1998). In the synthethis of the title compound, methylsulfate and ethylsulfate are produced in two two stages (Blake et al., 2000).

Herein, we report the synthesis and crystal structure of the title compound, (I), containing a discrete copper(II) complex cation and a disordered mixture of equal amounts of ethyl sulfate and methyl sulfate anions. The molecular structure of (I) is shown in Fig. 1. The CuII ion is chelated by two 2,2'-bipyridine ligands and is bonded to one oxygen of acetate moiety ion forming a CuN4O distorted square-pyramidal coordination environment. In the crystal structure weak C-H···O hydrogen bonds link complex cations and sulfonate anions to form a three-dimensional network (Fig.2 and Table 2). Some crystal structures which are closely related to the title compound have already been studied (Blake et al., 2000; Lopez-Sandoval et al., 2004; Belokon et al., 2002; Akrivos et al., 1994).

Related literature top

For genernal background to supramolecular assembly and crystal engineering, see: Aakeröy et al.(1998); Batten et al. (1998); Yaghi et al. (1998); Kitagawa et al. (2004); Lu et al. (2006). For related strutures, see: Akrivos et al. (1994); Blake et al.,(2000); Belokon et al. (2002); Lopez-Sandoval et al. (2004).

Experimental top

Reagents and solvents used were of commercially available quality. To an aqueous solution (10 ml) of aminomethanesulfonic acid (0.11 g,1 mmol) and NaOH (0.04 g,1.0 mmol), Cu(CH3COO)2.H2O (0.20 g, 1.0 mmol) in methanol (10 ml) was added slowly. The solution was stirred for 30 min and then 2,2'-bipyridine (0.156 g, 1 mmol) in ethanol (10 ml) was added slowly. The mixture was refluxed overnight to give a green solution. After filtration, the solution was allowed to stand in air and after several days, green block-shaped crystal were collected in 20% yield. Analysis found: C 50.72, 30, H 4.22, N 10.16, S 5.72%; calculated for C47H46Cu2N8O12S2: C 50.90, H 4.16, N 10.12, S 5.78%.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. From an initial solution irregular bond lengths, large displacement parameters in the C atoms of the anion and the presence of large peaks in difference Fourier maps which were close to the terminal (C2H5–) group, led us to suspect the presence of the disorder. The initially refined ratio of the site-occupany factors for the disorder components were eventually fixed at 0.5/0.5.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids at the 30% probability level. The disorder is shown as open bonds.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.
(Acetato-κO)bis(2,2'-bipyridyl-κ2N,N')copper(II)– ethyl sulfate–methyl sulfate (1/0.5/0.5) top
Crystal data top
[Cu(C2H3O2)(C10H8N2)2](C2H5O4S)0.5(CH3O4S)0.5Z = 2
Mr = 553.06F(000) = 570
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1314 (7) ÅCell parameters from 4397 reflections
b = 13.1173 (13) Åθ = 2.3–28.1°
c = 13.2783 (14) ŵ = 1.07 mm1
α = 91.875 (1)°T = 291 K
β = 104.673 (1)°Block, green
γ = 101.162 (1)°0.36 × 0.27 × 0.22 mm
V = 1174.5 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4347 independent reflections
Radiation source: fine-focus sealed tube3848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.703, Tmax = 0.800k = 1515
8803 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.5539P]
where P = (Fo2 + 2Fc2)/3
4347 reflections(Δ/σ)max = 0.001
331 parametersΔρmax = 0.55 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Cu(C2H3O2)(C10H8N2)2](C2H5O4S)0.5(CH3O4S)0.5γ = 101.162 (1)°
Mr = 553.06V = 1174.5 (2) Å3
Triclinic, P1Z = 2
a = 7.1314 (7) ÅMo Kα radiation
b = 13.1173 (13) ŵ = 1.07 mm1
c = 13.2783 (14) ÅT = 291 K
α = 91.875 (1)°0.36 × 0.27 × 0.22 mm
β = 104.673 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4347 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3848 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.800Rint = 0.015
8803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.04Δρmax = 0.55 e Å3
4347 reflectionsΔρmin = 0.25 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.69835 (4)0.608241 (18)0.760447 (18)0.03168 (9)
O10.8543 (2)0.52120 (12)0.84602 (12)0.0433 (4)
O20.9954 (3)0.51379 (14)0.71558 (14)0.0550 (4)
N10.5337 (2)0.67731 (13)0.64598 (13)0.0317 (4)
N20.4968 (2)0.48175 (13)0.68357 (13)0.0323 (4)
N30.6247 (3)0.68159 (15)0.89221 (14)0.0383 (4)
N40.9261 (2)0.73567 (13)0.80779 (13)0.0326 (4)
C10.4895 (3)0.38259 (17)0.70852 (18)0.0415 (5)
H1A0.57720.36990.76940.050*
C20.3570 (3)0.29897 (18)0.6473 (2)0.0461 (6)
H2A0.35520.23130.66660.055*
C30.2279 (3)0.31788 (17)0.55725 (19)0.0430 (5)
H3A0.13710.26290.51490.052*
C40.2337 (3)0.41910 (16)0.52997 (17)0.0365 (5)
H4A0.14800.43290.46890.044*
C50.3697 (3)0.49981 (15)0.59519 (15)0.0289 (4)
C60.3895 (3)0.61088 (15)0.57390 (15)0.0284 (4)
C70.2728 (3)0.64571 (17)0.48789 (16)0.0362 (5)
H7A0.17540.59880.43890.043*
C80.3031 (3)0.75132 (18)0.47579 (18)0.0434 (5)
H8A0.22780.77610.41760.052*
C90.4454 (4)0.81974 (18)0.55037 (19)0.0469 (6)
H9A0.46510.89120.54430.056*
C100.5578 (3)0.78016 (16)0.63401 (18)0.0403 (5)
H10A0.65430.82630.68430.048*
C110.9728 (3)0.48732 (17)0.80077 (19)0.0424 (5)
C121.0787 (4)0.4086 (2)0.8584 (3)0.0645 (8)
H12A1.19630.40710.83620.097*
H12B0.99290.34080.84340.097*
H12C1.11440.42800.93220.097*
C131.0729 (3)0.75999 (18)0.76051 (18)0.0424 (5)
H13A1.06690.71950.70050.051*
C141.2314 (4)0.84204 (19)0.7971 (2)0.0516 (6)
H14A1.32830.85840.76130.062*
C151.2432 (4)0.89909 (19)0.8875 (2)0.0531 (7)
H15A1.35040.95410.91470.064*
C161.0960 (4)0.87503 (18)0.93812 (19)0.0467 (6)
H16A1.10370.91320.99990.056*
C170.9355 (3)0.79297 (16)0.89594 (15)0.0338 (5)
C180.7654 (3)0.76315 (16)0.94229 (16)0.0358 (5)
C190.7519 (4)0.8162 (2)1.03148 (18)0.0531 (6)
H19A0.85190.87221.06540.064*
C200.5900 (5)0.7851 (3)1.0690 (2)0.0658 (8)
H20A0.57840.82021.12840.079*
C210.4449 (5)0.7017 (3)1.0183 (2)0.0660 (8)
H21A0.33400.67931.04280.079*
C220.4667 (4)0.6515 (2)0.9297 (2)0.0532 (6)
H22A0.36840.59510.89510.064*
S10.65876 (9)0.06973 (4)0.75424 (4)0.04017 (14)
O30.7495 (3)0.17515 (13)0.79359 (16)0.0663 (5)
O40.4498 (3)0.05525 (16)0.70285 (18)0.0724 (6)
O50.7039 (3)0.00602 (14)0.82714 (14)0.0622 (5)
O60.7439 (3)0.04364 (14)0.65787 (13)0.0530 (4)
C23A0.9552 (16)0.054 (5)0.690 (4)0.066 (4)0.50
H23A1.00100.03710.63040.099*0.50
H23B0.98950.00820.74260.099*0.50
H23C1.01650.12500.71670.099*0.50
C23B0.9520 (17)0.047 (5)0.674 (4)0.066 (4)0.50
H23D0.99710.00230.72750.079*0.50
H23E1.02740.11760.69510.079*0.50
C24B0.9788 (9)0.0102 (6)0.5741 (5)0.0774 (19)0.50
H24A1.11740.01510.58040.116*0.50
H24B0.92680.05260.52070.116*0.50
H24C0.90970.06100.55580.116*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03401 (15)0.02954 (14)0.02825 (14)0.00588 (10)0.00340 (10)0.00086 (10)
O10.0449 (9)0.0416 (9)0.0391 (9)0.0128 (7)0.0004 (7)0.0030 (7)
O20.0610 (11)0.0528 (11)0.0479 (10)0.0116 (9)0.0098 (9)0.0044 (8)
N10.0361 (9)0.0272 (9)0.0297 (9)0.0068 (7)0.0056 (7)0.0029 (7)
N20.0332 (9)0.0299 (9)0.0330 (9)0.0052 (7)0.0081 (7)0.0034 (7)
N30.0376 (10)0.0447 (11)0.0345 (10)0.0115 (8)0.0108 (8)0.0041 (8)
N40.0324 (9)0.0318 (9)0.0307 (9)0.0053 (7)0.0049 (7)0.0002 (7)
C10.0423 (12)0.0370 (12)0.0442 (13)0.0056 (10)0.0103 (10)0.0123 (10)
C20.0457 (13)0.0294 (12)0.0638 (16)0.0025 (10)0.0192 (12)0.0098 (11)
C30.0388 (12)0.0316 (12)0.0538 (14)0.0026 (9)0.0121 (11)0.0040 (10)
C40.0331 (11)0.0356 (11)0.0376 (12)0.0030 (9)0.0074 (9)0.0022 (9)
C50.0261 (10)0.0302 (10)0.0311 (10)0.0043 (8)0.0104 (8)0.0005 (8)
C60.0262 (10)0.0290 (10)0.0306 (10)0.0052 (8)0.0093 (8)0.0011 (8)
C70.0314 (11)0.0385 (12)0.0352 (11)0.0056 (9)0.0041 (9)0.0013 (9)
C80.0429 (13)0.0426 (13)0.0423 (13)0.0132 (10)0.0030 (10)0.0099 (10)
C90.0539 (14)0.0297 (12)0.0549 (15)0.0116 (10)0.0082 (12)0.0057 (10)
C100.0444 (12)0.0278 (11)0.0433 (13)0.0065 (9)0.0037 (10)0.0039 (9)
C110.0365 (12)0.0317 (11)0.0480 (14)0.0029 (9)0.0045 (10)0.0050 (10)
C120.0500 (15)0.0452 (15)0.095 (2)0.0167 (12)0.0066 (15)0.0143 (15)
C130.0427 (13)0.0403 (12)0.0444 (13)0.0061 (10)0.0141 (10)0.0037 (10)
C140.0409 (13)0.0444 (14)0.0699 (17)0.0048 (11)0.0175 (12)0.0134 (12)
C150.0389 (13)0.0372 (13)0.0699 (18)0.0023 (10)0.0019 (12)0.0053 (12)
C160.0533 (14)0.0340 (12)0.0420 (13)0.0071 (10)0.0044 (11)0.0055 (10)
C170.0393 (11)0.0297 (11)0.0295 (10)0.0118 (9)0.0004 (9)0.0029 (8)
C180.0480 (13)0.0343 (11)0.0267 (10)0.0174 (10)0.0059 (9)0.0039 (8)
C190.0791 (18)0.0499 (15)0.0360 (13)0.0268 (13)0.0160 (13)0.0002 (11)
C200.092 (2)0.081 (2)0.0448 (15)0.0477 (19)0.0317 (16)0.0100 (14)
C210.0636 (18)0.101 (2)0.0576 (17)0.0440 (18)0.0362 (15)0.0336 (17)
C220.0437 (14)0.0680 (18)0.0526 (15)0.0148 (12)0.0176 (12)0.0150 (13)
S10.0482 (3)0.0304 (3)0.0421 (3)0.0057 (2)0.0144 (3)0.0001 (2)
O30.0808 (13)0.0359 (10)0.0769 (13)0.0036 (9)0.0255 (11)0.0142 (9)
O40.0535 (11)0.0638 (13)0.0943 (16)0.0101 (10)0.0111 (11)0.0104 (11)
O50.0844 (14)0.0543 (11)0.0475 (10)0.0122 (10)0.0173 (9)0.0154 (9)
O60.0659 (11)0.0516 (10)0.0441 (9)0.0147 (9)0.0175 (8)0.0019 (8)
C23A0.0588 (18)0.083 (7)0.068 (10)0.029 (2)0.0290 (18)0.013 (7)
C23B0.0588 (18)0.083 (7)0.068 (10)0.029 (2)0.0290 (18)0.013 (7)
C24B0.064 (4)0.094 (5)0.080 (4)0.021 (3)0.028 (3)0.013 (4)
Geometric parameters (Å, º) top
Cu1—O11.9411 (15)C12—H12B0.9600
Cu1—N22.0207 (17)C12—H12C0.9600
Cu1—N12.0266 (17)C13—C141.374 (3)
Cu1—N42.0471 (17)C13—H13A0.9300
Cu1—N32.1940 (18)C14—C151.369 (4)
O1—C111.287 (3)C14—H14A0.9300
O2—C111.234 (3)C15—C161.377 (4)
N1—C101.346 (3)C15—H15A0.9300
N1—C61.354 (2)C16—C171.393 (3)
N2—C11.347 (3)C16—H16A0.9300
N2—C51.348 (3)C17—C181.488 (3)
N3—C181.339 (3)C18—C191.388 (3)
N3—C221.341 (3)C19—C201.367 (4)
N4—C131.345 (3)C19—H19A0.9300
N4—C171.350 (3)C20—C211.372 (4)
C1—C21.381 (3)C20—H20A0.9300
C1—H1A0.9300C21—C221.386 (4)
C2—C31.374 (3)C21—H21A0.9300
C2—H2A0.9300C22—H22A0.9300
C3—C41.383 (3)S1—O31.4279 (18)
C3—H3A0.9300S1—O51.4341 (18)
C4—C51.389 (3)S1—O41.445 (2)
C4—H4A0.9300S1—O61.6026 (17)
C5—C61.480 (3)O6—C23A1.436 (7)
C6—C71.380 (3)O6—C23B1.438 (7)
C7—C81.381 (3)C23A—H23A0.9600
C7—H7A0.9300C23A—H23B0.9600
C8—C91.377 (3)C23A—H23C0.9600
C8—H8A0.9300C23B—C24B1.46 (5)
C9—C101.376 (3)C23B—H23D0.9700
C9—H9A0.9300C23B—H23E0.9700
C10—H10A0.9300C24B—H24A0.9600
C11—C121.511 (3)C24B—H24B0.9600
C12—H12A0.9600C24B—H24C0.9600
O1—Cu1—N291.45 (7)H12A—C12—H12B109.5
O1—Cu1—N1167.87 (6)C11—C12—H12C109.5
N2—Cu1—N180.14 (7)H12A—C12—H12C109.5
O1—Cu1—N491.03 (7)H12B—C12—H12C109.5
N2—Cu1—N4166.61 (7)N4—C13—C14122.8 (2)
N1—Cu1—N495.20 (7)N4—C13—H13A118.6
O1—Cu1—N394.44 (7)C14—C13—H13A118.6
N2—Cu1—N3115.38 (7)C15—C14—C13118.3 (2)
N1—Cu1—N397.05 (7)C15—C14—H14A120.8
N4—Cu1—N377.52 (7)C13—C14—H14A120.8
C11—O1—Cu1112.76 (15)C14—C15—C16120.0 (2)
C10—N1—C6118.32 (18)C14—C15—H15A120.0
C10—N1—Cu1126.67 (14)C16—C15—H15A120.0
C6—N1—Cu1114.99 (13)C15—C16—C17119.3 (2)
C1—N2—C5118.53 (18)C15—C16—H16A120.3
C1—N2—Cu1125.94 (15)C17—C16—H16A120.3
C5—N2—Cu1115.32 (13)N4—C17—C16120.6 (2)
C18—N3—C22118.5 (2)N4—C17—C18115.85 (18)
C18—N3—Cu1113.03 (14)C16—C17—C18123.6 (2)
C22—N3—Cu1128.37 (17)N3—C18—C19121.8 (2)
C13—N4—C17118.92 (18)N3—C18—C17115.71 (18)
C13—N4—Cu1123.50 (14)C19—C18—C17122.5 (2)
C17—N4—Cu1117.38 (14)C20—C19—C18119.3 (3)
N2—C1—C2122.6 (2)C20—C19—H19A120.3
N2—C1—H1A118.7C18—C19—H19A120.3
C2—C1—H1A118.7C19—C20—C21119.4 (3)
C3—C2—C1118.6 (2)C19—C20—H20A120.3
C3—C2—H2A120.7C21—C20—H20A120.3
C1—C2—H2A120.7C20—C21—C22118.7 (3)
C2—C3—C4119.7 (2)C20—C21—H21A120.6
C2—C3—H3A120.2C22—C21—H21A120.6
C4—C3—H3A120.2N3—C22—C21122.3 (3)
C3—C4—C5118.9 (2)N3—C22—H22A118.9
C3—C4—H4A120.5C21—C22—H22A118.9
C5—C4—H4A120.5O3—S1—O5114.52 (12)
N2—C5—C4121.65 (18)O3—S1—O4113.33 (13)
N2—C5—C6114.68 (17)O5—S1—O4113.34 (12)
C4—C5—C6123.66 (18)O3—S1—O6107.18 (11)
N1—C6—C7121.76 (18)O5—S1—O6106.19 (11)
N1—C6—C5114.55 (17)O4—S1—O6100.85 (12)
C7—C6—C5123.69 (18)C23A—O6—S1111.6 (19)
C6—C7—C8119.0 (2)C23B—O6—S1120.4 (18)
C6—C7—H7A120.5O6—C23A—H23A109.5
C8—C7—H7A120.5O6—C23A—H23B109.5
C9—C8—C7119.6 (2)O6—C23A—H23C109.5
C9—C8—H8A120.2O6—C23B—C24B107 (2)
C7—C8—H8A120.2O6—C23B—H23D110.3
C10—C9—C8118.6 (2)C24B—C23B—H23D110.3
C10—C9—H9A120.7O6—C23B—H23E110.3
C8—C9—H9A120.7C24B—C23B—H23E110.3
N1—C10—C9122.6 (2)H23D—C23B—H23E108.6
N1—C10—H10A118.7C23B—C24B—H24A109.5
C9—C10—H10A118.7C23B—C24B—H24B109.5
O2—C11—O1123.5 (2)H24A—C24B—H24B109.5
O2—C11—C12121.8 (2)C23B—C24B—H24C109.5
O1—C11—C12114.7 (2)H24A—C24B—H24C109.5
C11—C12—H12A109.5H24B—C24B—H24C109.5
C11—C12—H12B109.5
N2—Cu1—O1—C1183.73 (15)C10—N1—C6—C5178.14 (18)
N1—Cu1—O1—C1137.9 (4)Cu1—N1—C6—C53.6 (2)
N4—Cu1—O1—C1183.11 (15)N2—C5—C6—N10.6 (2)
N3—Cu1—O1—C11160.68 (15)C4—C5—C6—N1178.70 (18)
O1—Cu1—N1—C10136.1 (3)N2—C5—C6—C7179.65 (18)
N2—Cu1—N1—C10177.24 (19)C4—C5—C6—C71.0 (3)
N4—Cu1—N1—C1015.43 (18)N1—C6—C7—C80.6 (3)
N3—Cu1—N1—C1062.60 (18)C5—C6—C7—C8179.67 (19)
O1—Cu1—N1—C642.0 (4)C6—C7—C8—C91.4 (3)
N2—Cu1—N1—C64.66 (13)C7—C8—C9—C101.8 (4)
N4—Cu1—N1—C6162.67 (14)C6—N1—C10—C91.7 (3)
N3—Cu1—N1—C6119.29 (14)Cu1—N1—C10—C9176.35 (17)
O1—Cu1—N2—C18.46 (18)C8—C9—C10—N10.2 (4)
N1—Cu1—N2—C1179.67 (18)Cu1—O1—C11—O25.2 (3)
N4—Cu1—N2—C1109.1 (3)Cu1—O1—C11—C12172.77 (16)
N3—Cu1—N2—C187.15 (18)C17—N4—C13—C141.1 (3)
O1—Cu1—N2—C5166.17 (14)Cu1—N4—C13—C14175.82 (17)
N1—Cu1—N2—C55.04 (14)N4—C13—C14—C152.3 (4)
N4—Cu1—N2—C565.5 (3)C13—C14—C15—C161.4 (4)
N3—Cu1—N2—C598.22 (14)C14—C15—C16—C170.5 (4)
O1—Cu1—N3—C1884.49 (15)C13—N4—C17—C160.9 (3)
N2—Cu1—N3—C18178.22 (13)Cu1—N4—C17—C16174.12 (15)
N1—Cu1—N3—C1899.38 (14)C13—N4—C17—C18178.51 (18)
N4—Cu1—N3—C185.59 (14)Cu1—N4—C17—C186.4 (2)
O1—Cu1—N3—C2291.6 (2)C15—C16—C17—N41.7 (3)
N2—Cu1—N3—C222.1 (2)C15—C16—C17—C18177.7 (2)
N1—Cu1—N3—C2284.5 (2)C22—N3—C18—C190.4 (3)
N4—Cu1—N3—C22178.3 (2)Cu1—N3—C18—C19176.14 (17)
O1—Cu1—N4—C1386.96 (17)C22—N3—C18—C17179.43 (19)
N2—Cu1—N4—C1313.7 (4)Cu1—N3—C18—C174.0 (2)
N1—Cu1—N4—C1382.63 (17)N4—C17—C18—N31.3 (3)
N3—Cu1—N4—C13178.72 (18)C16—C17—C18—N3179.33 (19)
O1—Cu1—N4—C1787.84 (15)N4—C17—C18—C19178.58 (19)
N2—Cu1—N4—C17171.5 (2)C16—C17—C18—C190.8 (3)
N1—Cu1—N4—C17102.57 (15)N3—C18—C19—C200.6 (4)
N3—Cu1—N4—C176.48 (14)C17—C18—C19—C20179.3 (2)
C5—N2—C1—C20.1 (3)C18—C19—C20—C210.5 (4)
Cu1—N2—C1—C2174.60 (17)C19—C20—C21—C220.3 (4)
N2—C1—C2—C30.2 (4)C18—N3—C22—C210.2 (4)
C1—C2—C3—C40.2 (3)Cu1—N3—C22—C21175.77 (18)
C2—C3—C4—C50.6 (3)C20—C21—C22—N30.1 (4)
C1—N2—C5—C40.3 (3)O3—S1—O6—C23A60 (3)
Cu1—N2—C5—C4174.78 (15)O5—S1—O6—C23A62 (3)
C1—N2—C5—C6179.62 (17)O4—S1—O6—C23A179 (3)
Cu1—N2—C5—C64.6 (2)O3—S1—O6—C23B62 (3)
C3—C4—C5—N20.6 (3)O5—S1—O6—C23B61 (3)
C3—C4—C5—C6179.90 (19)O4—S1—O6—C23B179 (3)
C10—N1—C6—C72.1 (3)S1—O6—C23B—C24B175 (2)
Cu1—N1—C6—C7176.14 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O5i0.932.493.339 (3)151
C12—H12B···O30.962.463.414 (3)174
C8—H8A···O6ii0.932.593.295 (3)133
C7—H7A···O2ii0.932.393.286 (3)162
C4—H4A···O2ii0.932.583.482 (3)163
C2—H2A···O40.932.563.454 (3)162
C1—H1A···O10.932.492.992 (3)114
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2H3O2)(C10H8N2)2](C2H5O4S)0.5(CH3O4S)0.5
Mr553.06
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.1314 (7), 13.1173 (13), 13.2783 (14)
α, β, γ (°)91.875 (1), 104.673 (1), 101.162 (1)
V3)1174.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.36 × 0.27 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.703, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
8803, 4347, 3848
Rint0.015
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.04
No. of reflections4347
No. of parameters331
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.9411 (15)Cu1—N42.0471 (17)
Cu1—N22.0207 (17)Cu1—N32.1940 (18)
Cu1—N12.0266 (17)
O1—Cu1—N291.45 (7)N1—Cu1—N495.20 (7)
O1—Cu1—N1167.87 (6)O1—Cu1—N394.44 (7)
N2—Cu1—N180.14 (7)N2—Cu1—N3115.38 (7)
O1—Cu1—N491.03 (7)N1—Cu1—N397.05 (7)
N2—Cu1—N4166.61 (7)N4—Cu1—N377.52 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O5i0.932.493.339 (3)151.4
C12—H12B···O30.962.463.414 (3)174.4
C8—H8A···O6ii0.932.593.295 (3)132.9
C7—H7A···O2ii0.932.393.286 (3)161.9
C4—H4A···O2ii0.932.583.482 (3)163.4
C2—H2A···O40.932.563.454 (3)162.3
C1—H1A···O10.932.492.992 (3)113.9
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by a key grant from the Qiannan Normal College for Nationalities Foundation of Guizhou Province (grant No. 2007z15) and the Qinzhou University Foundation of Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 2008XJKY-10B).

References

First citationAakeröy, C. B. & Beatty, A. M. (1998). Chem. Commun. pp. 1067–1068.  Google Scholar
First citationAkrivos, P. D., Hadjikakou, S. K., Karagiannidis, P., Luic, M. & Kojic-Prodic, B. (1994). J. Coord. Chem. 31, 273–282.  CrossRef CAS Web of Science Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBelokon, Y. N., Carta, P., Gutnov, A. V., Maleev, V., Moskalenko, M. A., Yashkina, L. V., Ikonnikov, N. S., Voskoboev, N. V., Khrustalev, V. N. & North, M. (2002). Helv. Chim. Acta, 85, 3301–3312.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlake, A. J., Hubberstey, P., Suksangpanya, U. & Wilson, C. L. (2000). J. Chem. Soc. Dalton Trans. pp. 3873–3880.  Web of Science CrossRef Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2338.  Web of Science CrossRef CAS Google Scholar
First citationLopez-Sandoval, H., Richaud, A., Contreras, R., Leigh, G. J., Hitchcock, P. B., Flores-Parra, A., Galvez-Ruiz, J. C., Cruz, A., Noth, H. & Barba-Behrens, N. (2004). Polyhedron, 23, 1837–1843.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, W.-J., Zhu, Y.-M. & Zhong, K.-L. (2006). Acta Cryst. C62, m448–m450.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–554.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1563-m1564
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds