metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1511-m1512

Azido­(1,1-di­phenyl­methanimine-κN)[hydridotris(pyrazolyl-κN2)borato](tri­phenyl­phosphine-κP)ruthenium(II) di­ethyl ether solvate

aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan, bDepartment of Chemistry, National Normal Taiwan University, Taipei 106, Taiwan, and cDepartment of Chemical Engineering, Tatung University, Taipei 104, Taiwan
*Correspondence e-mail: yhlo@ttu.edu.tw

(Received 28 October 2008; accepted 3 November 2008; online 8 November 2008)

The reaction of [RuCl(C9H10BN6)(C18H15P)2] with benzo­phenone imine in methanol, in the presence of sodium azide, leads to the formation of the title compound, [Ru(C9H10BN6)(N3)(HN=CPh2)(C18H15P)]·C4H10O, which crystallizes as the diethyl ether solvate. In the crystal structure, the Ru atom is coordinated by three N atoms of one hydridotris(pyrazoly)borate anion, one P atom of one triphenyl­phosphine ligand, one N atom of the azide anion and one N atom of the benzophenone­imine ligand in a slightly distorted octa­hedral geometry. The azide anion is almost linear [177.0 (5)°], with an Ru—N—N angle of 125.9 (3)°. There is a small difference between the N—N distances [1.200 (5) and 1.164 (5) Å], the longer bond being adjacent to the Ru atom.

Related literature

For general background, see: Agrell (1971[Agrell, I. (1971). Acta Chem. Scand. 25, 2965-2974.]); Alcock et al. (1992[Alcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906-2908.]); Burrows et al. (2001[Burrows, A. D. (2001). CrystEngComm, 46, 1-5.]); Moloy & Petersen (1995[Moloy, K. G. & Petersen, J. L. (1995). J. Am. Chem. Soc. 117, 7696-7710.]); Pavlik et al. (2005[Pavlik, S., Mereiter, K., Puchberger, M. & &Kirchner, K. (2005). Organometallics, 24, 3561-3575.]); Slugovc et al. (1997[Slugovc, C., Sapunov, V. N., Wiede, P., Mereiter, K., Schmid, R. & Kirchner, K. (1997). J. Chem. Soc. Dalton Trans. pp. 4209-4216.]); Trofimenko et al. (1993[Trofimenko, S. (1993). Chem. Rev. 93, 943-980.]). For related structures, see: Dori & Ziolo (1973[Dori, Z. & Ziolo, R. F. (1973). Chem. Rev. 73, 247-254.]); Gemel et al. (1996[Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998-4004.]); Meyer et al. (1998[Meyer, K., Bendix, J., Metzler-Nolte, N., Weyhermüller, T. & Wieghardt, K. (1998). J. Am. Chem. Soc. 120, 7260-7270.]); Huynh et al. (2003[Huynh, M. H. V., Meyer, T. J., Labouriau, A., Morris, D. E. & White, P. S. (2003). J. Am. Chem. Soc. 125, 2828-2829.]); Slugovc et al. (1998[Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827-831.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C9H10BN6)(N3)(C13H11N)(C18H15P)]·C4H10O

  • Mr = 873.76

  • Triclinic, [P \overline 1]

  • a = 11.7387 (12) Å

  • b = 13.0535 (13) Å

  • c = 14.7187 (15) Å

  • α = 70.445 (2)°

  • β = 81.716 (2)°

  • γ = 88.040 (3)°

  • V = 2102.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 200 (2) K

  • 0.19 × 0.07 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.918, Tmax = 0.989

  • 16858 measured reflections

  • 7382 independent reflections

  • 4895 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.113

  • S = 1.01

  • 7382 reflections

  • 523 parameters

  • H-atom parameters constrained

  • Δρmax = 1.75 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius B. V, Delft, The Netherlands.]); cell refinement: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The hydridotris(pyrazoly)borate anion (Tp,HB(pz)3) has been used by Trofimenko as a ligand in various transition metal complexes (Trofimenko,1993). Ruthenium(II) hydridotripyrazolylborate complexes, Ru(Tp), are of interest for stoichiometric and catalytic transformations of organic molecules (Pavlik et al., 2005). The complex [Ru(Tp)Cl(PPh3)2] (Alock et al., 1992) has been used as the starting material for the synthesis of several complexes because the chloride atom and the PPh3 group can be easily substituted (Slugovc et al., 1997; Moloy & Petersen, 1995; Burrows, 2001). On the other hand, the azide anion N3- is a versatile ligand because it shows a variety of coordination modes and compounds with this ligand shows interesting thermal and photochemical reactivities (Dori & Ziolo, 1973; Meyer et al., 1998; Huynh et al., 2003).

In the crystal structure of the title compound, the environment about the ruthenium metal center corresponds to a slightly distorted octahedron and the bite angle of the Tp ligand leads to an average N—Ru1—N angle of 86.3°, which is only slightly distorted from 90° (Fig. 1). The three Ru1—N(Tp) bond lengths of 2.077 (3), 2.114 (4), and 2.084 (4) Å) are slightly longer than the average distance of 2.038 Å observed in other ruthenium Tp complexes (Gemel et al. 1996; Slugovc et al. 1998). The Ru1—N7 and N7—C10 bond lengths of 2.053 (3) and 1.304 (5) Å correspond to a single Ru—N and a double C=N bond. The angles around C10 of 122.3 (4)°, 118.6 (4)° and 119.1 (4)° indicate a sp2 hybridization.

The azide anion is almost linear (177.0 (5)°) and is coordinated to Ru with an Ru—N(8)—N(9) angle of 125.9 (3)°. There is a small difference between the N—N distances [1.200 (5) and 1.164 (5) Å], the longer being adjacent to the Ru atom. It is also noted the title complex shows a νas(N3) stretching band in a lower energy region, at 2036 cm-1,compared with the typical values of these bands in azido complexes (2120–2030 cm-1; Agrell, 1971).

Related literature top

For general background, see: Agrell (1971); Alcock et al. (1992); Burrows et al. (2001); Moloy & Petersen (1995); Pavlik et al. (2005); Slugovc et al. (1997); Trofimenko et al. (1993). For related structures, see: Dori & Ziolo (1973); Gemel et al. (1996); Meyer et al. (1998); Huynh et al. (2003); Slugovc et al. (1998).

Experimental top

To a solution of [Ru(Tp)Cl(PPh3)2] (3.95 g, 4.50 mmol) in CH3OH (100 ml), an excess of benzophenoneimine (7.9 ml, 45.0 mmol) and NaN3 (2.93 g, 45.0 mmol) were added and the solution was refluxed for 120 min. Afterwards the reaction mixture was concentrated to approximately 10 ml and cooled to 253 K. The yellow precipitate which has formed was filtered off, washed with CH2Cl2and was dried under reduced pressure to give the title compound (2.34 g, 65% yield). The bright-yellow crystals used for X-ray structure analysis were obtained within 3 days by slow diffusion of diethyl ether into a solution of the title compound in CH2Cl2 at 273 K.

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 - 0.99 Å and Uiso(H) = 1.2 or 1.5Ueq(C), B—H = 1.0 Å and Uiso(H) = 1.2Ueq(B), and N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (the title compound with labelling and displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius).
Azido(1,1-diphenylmethanimine-κN)[hydridotris(pyrazolyl- κN2)borato](triphenylphosphine-κP)ruthenium(II) diethyl ether solvate top
Crystal data top
[Ru(C9H10BN6)(N3)(C13H11N)(C18H15P)]·C4H10OZ = 2
Mr = 873.76F(000) = 904
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.7387 (12) ÅCell parameters from 16922 reflections
b = 13.0535 (13) Åθ = 2.4–22.8°
c = 14.7187 (15) ŵ = 0.46 mm1
α = 70.445 (2)°T = 200 K
β = 81.716 (2)°Prism, red
γ = 88.040 (3)°0.19 × 0.07 × 0.02 mm
V = 2102.9 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
7382 independent reflections
Radiation source: fine-focus sealed tube4895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
CCD rotation images, thick slices scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1013
Tmin = 0.918, Tmax = 0.989k = 1315
16858 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
7382 reflections(Δ/σ)max = 0.001
523 parametersΔρmax = 1.75 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Ru(C9H10BN6)(N3)(C13H11N)(C18H15P)]·C4H10Oγ = 88.040 (3)°
Mr = 873.76V = 2102.9 (4) Å3
Triclinic, P1Z = 2
a = 11.7387 (12) ÅMo Kα radiation
b = 13.0535 (13) ŵ = 0.46 mm1
c = 14.7187 (15) ÅT = 200 K
α = 70.445 (2)°0.19 × 0.07 × 0.02 mm
β = 81.716 (2)°
Data collection top
Nonius KappaCCD
diffractometer
7382 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4895 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.989Rint = 0.061
16858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.01Δρmax = 1.75 e Å3
7382 reflectionsΔρmin = 0.57 e Å3
523 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.8157 (5)0.8932 (4)0.7251 (4)0.0386 (15)
H1'0.81250.96410.73760.046*
C10.8247 (4)0.8636 (4)0.4879 (3)0.0354 (12)
H10.82850.82130.44620.043*
C20.8292 (4)0.9767 (4)0.4569 (4)0.0424 (13)
H20.83591.02540.39180.051*
C30.8219 (4)1.0027 (4)0.5398 (4)0.0427 (13)
H30.82361.07430.54260.051*
C41.0523 (4)0.7072 (4)0.7588 (3)0.0367 (12)
H41.08860.64210.75540.044*
C51.1011 (4)0.7847 (4)0.7874 (3)0.0426 (13)
H51.17470.78340.80730.051*
C61.0193 (4)0.8638 (4)0.7806 (3)0.0405 (13)
H61.02700.92920.79420.049*
C70.6070 (4)0.6735 (4)0.8423 (3)0.0395 (13)
H70.57630.60320.85350.047*
C80.5601 (5)0.7450 (4)0.8884 (4)0.0517 (15)
H80.49380.73360.93630.062*
C90.6287 (5)0.8348 (4)0.8508 (4)0.0464 (14)
H90.61890.89900.86770.056*
C100.8495 (4)0.4452 (3)0.8627 (3)0.0290 (11)
C110.8971 (4)0.3351 (3)0.8753 (3)0.0315 (11)
C120.8898 (4)0.2849 (4)0.8067 (4)0.0390 (12)
H120.85050.32030.75270.047*
C130.9382 (5)0.1845 (4)0.8150 (4)0.0497 (14)
H130.93170.15160.76730.060*
C140.9959 (5)0.1326 (4)0.8926 (4)0.0495 (15)
H141.02970.06390.89860.059*
C151.0041 (4)0.1810 (4)0.9615 (4)0.0470 (14)
H151.04420.14531.01480.056*
C160.9548 (4)0.2809 (4)0.9540 (3)0.0374 (12)
H160.96030.31261.00270.045*
C170.8004 (4)0.4727 (3)0.9494 (3)0.0298 (11)
C180.7310 (4)0.3970 (4)1.0255 (3)0.0362 (12)
H180.71540.32801.02110.043*
C190.6847 (4)0.4219 (4)1.1073 (4)0.0461 (14)
H190.63730.36981.15850.055*
C200.7062 (4)0.5207 (4)1.1154 (4)0.0475 (14)
H200.67370.53741.17160.057*
C210.7757 (5)0.5958 (4)1.0410 (4)0.0484 (14)
H210.79130.66451.04610.058*
C220.8228 (4)0.5716 (4)0.9591 (3)0.0417 (13)
H220.87120.62360.90870.050*
C230.5401 (4)0.6507 (3)0.6241 (3)0.0265 (10)
C240.5229 (4)0.7597 (4)0.6139 (3)0.0334 (11)
H240.58530.80360.61490.040*
C250.4153 (4)0.8042 (4)0.6023 (3)0.0389 (12)
H250.40460.87920.59330.047*
C260.3236 (4)0.7410 (4)0.6035 (3)0.0371 (12)
H260.24970.77220.59580.045*
C270.3386 (4)0.6325 (4)0.6157 (3)0.0352 (12)
H270.27520.58840.61720.042*
C280.4466 (4)0.5878 (3)0.6259 (3)0.0313 (11)
H280.45680.51290.63430.038*
C290.7223 (4)0.6166 (3)0.4899 (3)0.0281 (11)
C300.6531 (4)0.6761 (3)0.4225 (3)0.0352 (12)
H300.58150.70240.44430.042*
C310.6870 (5)0.6977 (4)0.3238 (3)0.0422 (13)
H310.63880.73890.27830.051*
C320.7903 (5)0.6598 (4)0.2913 (4)0.0428 (13)
H320.81440.67620.22350.051*
C330.8588 (4)0.5977 (4)0.3579 (4)0.0377 (12)
H330.92870.56890.33590.045*
C340.8257 (4)0.5776 (3)0.4555 (3)0.0299 (11)
H340.87420.53640.50060.036*
C350.6572 (4)0.4502 (3)0.6762 (3)0.0253 (10)
C360.6827 (4)0.3772 (3)0.6266 (3)0.0337 (12)
H360.71740.40260.56050.040*
C370.6578 (4)0.2664 (4)0.6728 (4)0.0381 (12)
H370.67740.21700.63830.046*
C380.6057 (4)0.2287 (4)0.7670 (4)0.0401 (13)
H380.58690.15360.79760.048*
C390.5806 (4)0.3003 (4)0.8176 (3)0.0400 (13)
H390.54480.27430.88340.048*
C400.6073 (4)0.4101 (4)0.7731 (3)0.0360 (12)
H400.59120.45840.80920.043*
C410.3203 (7)0.0075 (7)0.9844 (5)0.120 (3)
H41A0.25590.02111.03650.180*
H41B0.32280.08700.96480.180*
H41C0.39260.02181.00780.180*
C420.3049 (6)0.0244 (6)0.9012 (5)0.092 (2)
H42A0.30080.10470.92120.110*
H42B0.23150.00470.87790.110*
C430.3815 (7)0.0031 (5)0.7392 (5)0.088 (2)
H43A0.30980.03160.71640.105*
H43B0.37440.08220.75180.105*
C440.4811 (6)0.0426 (5)0.6632 (5)0.086 (2)
H44A0.46990.02980.60310.128*
H44B0.55170.00730.68560.128*
H44C0.48740.12100.65050.128*
N10.8145 (3)0.8235 (3)0.5848 (3)0.0284 (9)
N20.8118 (3)0.9105 (3)0.6168 (3)0.0306 (9)
N30.9472 (3)0.7371 (3)0.7369 (2)0.0291 (9)
N40.9270 (3)0.8335 (3)0.7515 (3)0.0327 (9)
N50.7002 (3)0.7161 (3)0.7804 (3)0.0299 (9)
N60.7130 (3)0.8180 (3)0.7856 (3)0.0338 (9)
N70.8548 (3)0.5152 (3)0.7752 (3)0.0303 (9)
H7A0.88890.48110.73650.036*
N80.9577 (3)0.6233 (3)0.5978 (3)0.0336 (10)
N91.0225 (3)0.6845 (3)0.5335 (3)0.0347 (10)
N101.0865 (4)0.7402 (3)0.4696 (4)0.0632 (15)
O10.3970 (3)0.0154 (3)0.8253 (3)0.0591 (10)
P10.68709 (10)0.59726 (9)0.62088 (8)0.0255 (3)
Ru10.82112 (3)0.66797 (3)0.68486 (3)0.02500 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.045 (4)0.035 (3)0.041 (4)0.000 (3)0.006 (3)0.019 (3)
C10.045 (3)0.033 (3)0.025 (3)0.002 (2)0.004 (2)0.006 (2)
C20.056 (4)0.030 (3)0.030 (3)0.003 (2)0.005 (3)0.004 (2)
C30.050 (3)0.023 (3)0.050 (4)0.000 (2)0.010 (3)0.003 (2)
C40.032 (3)0.041 (3)0.026 (3)0.000 (2)0.000 (2)0.000 (2)
C50.032 (3)0.061 (3)0.031 (3)0.011 (3)0.006 (2)0.010 (3)
C60.041 (3)0.050 (3)0.030 (3)0.018 (3)0.002 (2)0.013 (3)
C70.033 (3)0.054 (3)0.033 (3)0.011 (3)0.004 (2)0.018 (3)
C80.040 (3)0.072 (4)0.052 (4)0.004 (3)0.008 (3)0.040 (3)
C90.046 (3)0.054 (3)0.054 (4)0.004 (3)0.003 (3)0.040 (3)
C100.023 (3)0.032 (3)0.028 (3)0.002 (2)0.005 (2)0.004 (2)
C110.026 (3)0.030 (3)0.034 (3)0.003 (2)0.002 (2)0.005 (2)
C120.040 (3)0.034 (3)0.039 (3)0.001 (2)0.010 (3)0.007 (2)
C130.062 (4)0.031 (3)0.057 (4)0.001 (3)0.005 (3)0.017 (3)
C140.053 (4)0.032 (3)0.055 (4)0.008 (3)0.004 (3)0.007 (3)
C150.048 (3)0.043 (3)0.038 (3)0.010 (3)0.007 (3)0.003 (3)
C160.041 (3)0.038 (3)0.028 (3)0.005 (2)0.006 (2)0.004 (2)
C170.029 (3)0.033 (3)0.024 (3)0.002 (2)0.006 (2)0.003 (2)
C180.031 (3)0.036 (3)0.037 (3)0.002 (2)0.003 (2)0.007 (2)
C190.039 (3)0.052 (3)0.038 (3)0.006 (3)0.007 (3)0.007 (3)
C200.045 (3)0.065 (4)0.034 (3)0.002 (3)0.000 (3)0.020 (3)
C210.062 (4)0.047 (3)0.038 (3)0.013 (3)0.000 (3)0.018 (3)
C220.049 (3)0.041 (3)0.031 (3)0.013 (3)0.002 (3)0.005 (2)
C230.030 (3)0.031 (2)0.017 (2)0.002 (2)0.001 (2)0.008 (2)
C240.034 (3)0.037 (3)0.034 (3)0.002 (2)0.004 (2)0.016 (2)
C250.044 (3)0.034 (3)0.039 (3)0.013 (2)0.009 (3)0.012 (2)
C260.029 (3)0.048 (3)0.033 (3)0.007 (2)0.003 (2)0.014 (3)
C270.030 (3)0.045 (3)0.032 (3)0.004 (2)0.000 (2)0.017 (2)
C280.036 (3)0.028 (2)0.026 (3)0.000 (2)0.000 (2)0.007 (2)
C290.037 (3)0.020 (2)0.025 (3)0.004 (2)0.001 (2)0.007 (2)
C300.038 (3)0.034 (3)0.032 (3)0.000 (2)0.005 (2)0.009 (2)
C310.053 (4)0.043 (3)0.027 (3)0.001 (3)0.009 (3)0.006 (2)
C320.057 (4)0.045 (3)0.023 (3)0.010 (3)0.008 (3)0.011 (2)
C330.038 (3)0.038 (3)0.036 (3)0.002 (2)0.009 (3)0.016 (2)
C340.033 (3)0.032 (3)0.025 (3)0.002 (2)0.005 (2)0.010 (2)
C350.025 (2)0.024 (2)0.028 (3)0.0003 (19)0.004 (2)0.011 (2)
C360.039 (3)0.028 (3)0.028 (3)0.004 (2)0.000 (2)0.004 (2)
C370.046 (3)0.030 (3)0.042 (3)0.003 (2)0.005 (3)0.019 (2)
C380.051 (3)0.024 (3)0.043 (3)0.005 (2)0.008 (3)0.007 (2)
C390.052 (3)0.038 (3)0.022 (3)0.009 (3)0.001 (2)0.003 (2)
C400.046 (3)0.032 (3)0.028 (3)0.004 (2)0.002 (2)0.010 (2)
C410.107 (7)0.195 (9)0.076 (6)0.029 (6)0.016 (5)0.079 (6)
C420.066 (5)0.120 (6)0.096 (6)0.022 (4)0.010 (4)0.052 (5)
C430.117 (6)0.081 (5)0.077 (5)0.035 (4)0.011 (5)0.040 (4)
C440.135 (7)0.058 (4)0.061 (5)0.026 (4)0.006 (5)0.017 (3)
N10.030 (2)0.024 (2)0.030 (2)0.0015 (17)0.0039 (18)0.0082 (18)
N20.038 (2)0.022 (2)0.032 (2)0.0003 (17)0.0050 (19)0.0090 (18)
N30.028 (2)0.032 (2)0.023 (2)0.0001 (18)0.0013 (18)0.0033 (18)
N40.040 (2)0.029 (2)0.030 (2)0.0026 (19)0.0062 (19)0.0100 (18)
N50.028 (2)0.036 (2)0.029 (2)0.0026 (18)0.0040 (18)0.0154 (19)
N60.034 (2)0.036 (2)0.037 (2)0.0011 (19)0.003 (2)0.021 (2)
N70.031 (2)0.030 (2)0.029 (2)0.0027 (17)0.0010 (18)0.0105 (19)
N80.035 (2)0.028 (2)0.031 (2)0.0002 (19)0.008 (2)0.0052 (19)
N90.030 (2)0.036 (2)0.044 (3)0.006 (2)0.007 (2)0.021 (2)
N100.051 (3)0.050 (3)0.074 (4)0.013 (2)0.029 (3)0.014 (3)
O10.061 (3)0.061 (2)0.062 (3)0.004 (2)0.009 (2)0.030 (2)
P10.0300 (7)0.0231 (6)0.0225 (7)0.0018 (5)0.0013 (5)0.0075 (5)
Ru10.0269 (2)0.0245 (2)0.0208 (2)0.00069 (15)0.00016 (16)0.00537 (16)
Geometric parameters (Å, º) top
B1—N41.529 (7)C25—H250.9500
B1—N21.541 (6)C26—C271.374 (6)
B1—N61.548 (6)C26—H260.9500
B1—H1'1.0000C27—C281.384 (6)
C1—N11.333 (5)C27—H270.9500
C1—C21.392 (6)C28—H280.9500
C1—H10.9500C29—C301.386 (6)
C2—C31.362 (6)C29—C341.393 (6)
C2—H20.9500C29—P11.845 (4)
C3—N21.344 (5)C30—C311.384 (6)
C3—H30.9500C30—H300.9500
C4—N31.333 (5)C31—C321.377 (7)
C4—C51.386 (6)C31—H310.9500
C4—H40.9500C32—C331.384 (7)
C5—C61.374 (6)C32—H320.9500
C5—H50.9500C33—C341.371 (6)
C6—N41.337 (5)C33—H330.9500
C6—H60.9500C34—H340.9500
C7—N51.323 (5)C35—C361.384 (6)
C7—C81.385 (6)C35—C401.390 (6)
C7—H70.9500C35—P11.840 (4)
C8—C91.353 (7)C36—C371.398 (6)
C8—H80.9500C36—H360.9500
C9—N61.342 (5)C37—C381.363 (6)
C9—H90.9500C37—H370.9500
C10—N71.299 (5)C38—C391.378 (6)
C10—C171.473 (6)C38—H380.9500
C10—C111.487 (6)C39—C401.387 (6)
C11—C121.389 (6)C39—H390.9500
C11—C161.395 (6)C40—H400.9500
C12—C131.384 (6)C41—C421.454 (8)
C12—H120.9500C41—H41A0.9800
C13—C141.376 (7)C41—H41B0.9800
C13—H130.9500C41—H41C0.9800
C14—C151.378 (7)C42—O11.411 (7)
C14—H140.9500C42—H42A0.9900
C15—C161.385 (6)C42—H42B0.9900
C15—H150.9500C43—O11.405 (7)
C16—H160.9500C43—C441.483 (8)
C17—C221.383 (6)C43—H43A0.9900
C17—C181.395 (6)C43—H43B0.9900
C18—C191.382 (6)C44—H44A0.9800
C18—H180.9500C44—H44B0.9800
C19—C201.369 (7)C44—H44C0.9800
C19—H190.9500N1—N21.366 (4)
C20—C211.380 (7)N1—Ru12.077 (3)
C20—H200.9500N3—N41.354 (5)
C21—C221.382 (6)N3—Ru12.114 (4)
C21—H210.9500N5—N61.372 (5)
C22—H220.9500N5—Ru12.084 (4)
C23—C281.384 (6)N7—Ru12.056 (3)
C23—C241.389 (6)N7—H7A0.8800
C23—P11.840 (4)N8—N91.200 (5)
C24—C251.382 (6)N8—Ru12.097 (4)
C24—H240.9500N9—N101.164 (5)
C25—C261.373 (6)P1—Ru12.3070 (13)
N4—B1—N2107.3 (4)C30—C31—H31119.9
N4—B1—N6108.1 (4)C31—C32—C33119.7 (5)
N2—B1—N6107.8 (4)C31—C32—H32120.1
N4—B1—H1'111.1C33—C32—H32120.1
N2—B1—H1'111.1C34—C33—C32120.0 (5)
N6—B1—H1'111.1C34—C33—H33120.0
N1—C1—C2110.0 (4)C32—C33—H33120.0
N1—C1—H1125.0C33—C34—C29121.2 (4)
C2—C1—H1125.0C33—C34—H34119.4
C3—C2—C1105.3 (4)C29—C34—H34119.4
C3—C2—H2127.3C36—C35—C40118.1 (4)
C1—C2—H2127.3C36—C35—P1123.5 (3)
N2—C3—C2108.8 (4)C40—C35—P1118.4 (3)
N2—C3—H3125.6C35—C36—C37120.7 (4)
C2—C3—H3125.6C35—C36—H36119.7
N3—C4—C5110.2 (5)C37—C36—H36119.7
N3—C4—H4124.9C38—C37—C36120.5 (4)
C5—C4—H4124.9C38—C37—H37119.7
C6—C5—C4104.7 (4)C36—C37—H37119.7
C6—C5—H5127.6C37—C38—C39119.5 (4)
C4—C5—H5127.6C37—C38—H38120.3
N4—C6—C5108.7 (4)C39—C38—H38120.3
N4—C6—H6125.6C38—C39—C40120.5 (4)
C5—C6—H6125.6C38—C39—H39119.8
N5—C7—C8111.0 (5)C40—C39—H39119.8
N5—C7—H7124.5C39—C40—C35120.7 (4)
C8—C7—H7124.5C39—C40—H40119.6
C9—C8—C7105.3 (5)C35—C40—H40119.6
C9—C8—H8127.4C42—C41—H41A109.5
C7—C8—H8127.4C42—C41—H41B109.5
N6—C9—C8108.7 (4)H41A—C41—H41B109.5
N6—C9—H9125.7C42—C41—H41C109.5
C8—C9—H9125.7H41A—C41—H41C109.5
N7—C10—C17122.0 (4)H41B—C41—H41C109.5
N7—C10—C11118.8 (4)O1—C42—C41110.5 (6)
C17—C10—C11119.2 (4)O1—C42—H42A109.6
C12—C11—C16117.9 (4)C41—C42—H42A109.6
C12—C11—C10120.9 (4)O1—C42—H42B109.6
C16—C11—C10121.2 (4)C41—C42—H42B109.6
C13—C12—C11121.7 (5)H42A—C42—H42B108.1
C13—C12—H12119.2O1—C43—C44109.7 (6)
C11—C12—H12119.2O1—C43—H43A109.7
C14—C13—C12119.7 (5)C44—C43—H43A109.7
C14—C13—H13120.1O1—C43—H43B109.7
C12—C13—H13120.1C44—C43—H43B109.7
C13—C14—C15119.5 (5)H43A—C43—H43B108.2
C13—C14—H14120.2C43—C44—H44A109.5
C15—C14—H14120.2C43—C44—H44B109.5
C14—C15—C16121.0 (5)H44A—C44—H44B109.5
C14—C15—H15119.5C43—C44—H44C109.5
C16—C15—H15119.5H44A—C44—H44C109.5
C15—C16—C11120.2 (5)H44B—C44—H44C109.5
C15—C16—H16119.9C1—N1—N2106.6 (3)
C11—C16—H16119.9C1—N1—Ru1134.0 (3)
C22—C17—C18118.2 (4)N2—N1—Ru1118.9 (3)
C22—C17—C10121.9 (4)C3—N2—N1109.2 (4)
C18—C17—C10119.9 (4)C3—N2—B1129.8 (4)
C19—C18—C17120.4 (4)N1—N2—B1120.3 (4)
C19—C18—H18119.8C4—N3—N4106.8 (4)
C17—C18—H18119.8C4—N3—Ru1133.6 (3)
C20—C19—C18120.9 (5)N4—N3—Ru1119.6 (3)
C20—C19—H19119.6C6—N4—N3109.5 (4)
C18—C19—H19119.6C6—N4—B1131.0 (4)
C19—C20—C21119.3 (5)N3—N4—B1119.2 (4)
C19—C20—H20120.3C7—N5—N6105.6 (4)
C21—C20—H20120.3C7—N5—Ru1136.8 (3)
C20—C21—C22120.3 (5)N6—N5—Ru1117.6 (3)
C20—C21—H21119.9C9—N6—N5109.5 (4)
C22—C21—H21119.9C9—N6—B1129.2 (4)
C21—C22—C17121.0 (4)N5—N6—B1121.3 (4)
C21—C22—H22119.5C10—N7—Ru1149.3 (3)
C17—C22—H22119.5C10—N7—H7A105.4
C28—C23—C24118.6 (4)Ru1—N7—H7A105.4
C28—C23—P1121.3 (3)N9—N8—Ru1125.9 (3)
C24—C23—P1119.7 (3)N10—N9—N8176.9 (5)
C25—C24—C23120.1 (4)C43—O1—C42113.3 (5)
C25—C24—H24120.0C23—P1—C35100.84 (19)
C23—C24—H24120.0C23—P1—C29100.2 (2)
C26—C25—C24120.6 (4)C35—P1—C29103.21 (19)
C26—C25—H25119.7C23—P1—Ru1118.60 (15)
C24—C25—H25119.7C35—P1—Ru1116.39 (14)
C25—C26—C27119.9 (5)C29—P1—Ru1115.06 (14)
C25—C26—H26120.0N7—Ru1—N1170.95 (14)
C27—C26—H26120.0N7—Ru1—N599.27 (14)
C26—C27—C28119.7 (5)N1—Ru1—N588.06 (14)
C26—C27—H27120.1N7—Ru1—N879.20 (14)
C28—C27—H27120.1N1—Ru1—N892.89 (14)
C23—C28—C27121.0 (4)N5—Ru1—N8173.15 (15)
C23—C28—H28119.5N7—Ru1—N390.87 (14)
C27—C28—H28119.5N1—Ru1—N384.22 (14)
C30—C29—C34118.1 (4)N5—Ru1—N386.64 (14)
C30—C29—P1122.1 (4)N8—Ru1—N386.71 (15)
C34—C29—P1119.6 (3)N7—Ru1—P190.93 (10)
C31—C30—C29120.8 (5)N1—Ru1—P193.73 (10)
C31—C30—H30119.6N5—Ru1—P194.99 (10)
C29—C30—H30119.6N8—Ru1—P191.71 (11)
C32—C31—C30120.1 (5)N3—Ru1—P1177.35 (10)
C32—C31—H31119.9

Experimental details

Crystal data
Chemical formula[Ru(C9H10BN6)(N3)(C13H11N)(C18H15P)]·C4H10O
Mr873.76
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)11.7387 (12), 13.0535 (13), 14.7187 (15)
α, β, γ (°)70.445 (2), 81.716 (2), 88.040 (3)
V3)2102.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.19 × 0.07 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.918, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
16858, 7382, 4895
Rint0.061
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.113, 1.01
No. of reflections7382
No. of parameters523
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.75, 0.57

Computer programs: COLLECT (Nonius, 1999), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

 

Acknowledgements

This research was supported by the National Science Council, Taiwan (NSC 97-2113-M-036-001-MY2) and in part by the project of specific research fields of Tatung University, Taiwan (B96-C07-081) and the project of specific research fields in Chung Yuan Christian University, Taiwan (under grant CYCU-97-CR-CH).

References

First citationAgrell, I. (1971). Acta Chem. Scand. 25, 2965–2974.  CrossRef CAS Web of Science Google Scholar
First citationAlcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906–2908.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurrows, A. D. (2001). CrystEngComm, 46, 1–5.  Google Scholar
First citationDori, Z. & Ziolo, R. F. (1973). Chem. Rev. 73, 247–254.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998–4004.  CSD CrossRef Web of Science Google Scholar
First citationHuynh, M. H. V., Meyer, T. J., Labouriau, A., Morris, D. E. & White, P. S. (2003). J. Am. Chem. Soc. 125, 2828–2829.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMeyer, K., Bendix, J., Metzler-Nolte, N., Weyhermüller, T. & Wieghardt, K. (1998). J. Am. Chem. Soc. 120, 7260–7270.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoloy, K. G. & Petersen, J. L. (1995). J. Am. Chem. Soc. 117, 7696–7710.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (1999). COLLECT. Nonius B. V, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPavlik, S., Mereiter, K., Puchberger, M. & &Kirchner, K. (2005). Organometallics, 24, 3561–3575.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.  Web of Science CSD CrossRef CAS Google Scholar
First citationSlugovc, C., Sapunov, V. N., Wiede, P., Mereiter, K., Schmid, R. & Kirchner, K. (1997). J. Chem. Soc. Dalton Trans. pp. 4209–4216.  CSD CrossRef Web of Science Google Scholar
First citationTrofimenko, S. (1993). Chem. Rev. 93, 943-980.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1511-m1512
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds