organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis[bis­(diiso­propyl­amino)­phos­phanyl]-1,2,3,4-tetra­phospha­bi­cyclo[1.1.0]butane

aDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicz St., 80952 - PL Gdańsk, Poland
*Correspondence e-mail: kasiab29@wp.pl

(Received 23 October 2008; accepted 14 November 2008; online 22 November 2008)

The title compound, C24H56N4P6 or (iPr2N)2P–P4–P(NiPr2)2, adopts a butterfly structure, with planar environments for the N atoms and pyramidal environments for the P atoms. The structure studied has a 15% twin component that is related by a twofold rotation about [100].

Related literature

For 2,4-bis­{[bis­(trimethyl­silyl)amido](diisopropylo­amido)­phosphido}1,2,3,4-tetra­phosphabicyclo­(1,1,0)butane, see: Bezombes et al. (2004[Bezombes, J.-P., Hitchcock, P. B., Lappert, M. F. & Nycz, J. E. (2004). Dalton Trans. pp. 499-501.]). For 2,4-bis­(bis-di-tert-butyl­ophos­phido)­1,2,3,4-tetra­phosphabicyclo­(1,1,0)butane, see: Matern et al. (1997[Matern, E., Fritz, G. & Pikies, J. (1997). Z. Anorg. Allg. Chem. 623, 1769-1773.]). For the handling of twinned diffraction data, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C24H56N4P6

  • Mr = 586.55

  • Monoclinic, P 21 /c

  • a = 13.3307 (5) Å

  • b = 20.9304 (7) Å

  • c = 12.8939 (5) Å

  • β = 109.349 (4)°

  • V = 3394.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 120 (2) K

  • 0.46 × 0.14 × 0.06 mm

Data collection
  • Oxford Diffraction KM-4 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.954, Tmax = 1.045

  • 6310 measured reflections

  • 6310 independent reflections

  • 4727 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.136

  • S = 1.04

  • 6310 reflections

  • 324 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The molecular structure of 1 is shown in Fig.1. The crystal structure of 1 is build up of discrete molecules. The geometry of the phosphorous skeleton in 1 is similar to that in P4[(NiPr2)(N(SiMe3)]2 (Bezombes et al., 2004). The P1—P2 distance, 2.246 (2) Å, and P3—P4 distance, 2.243 (2) Å are slightly longer than P—P distances in the tetraphosphabicyclobutane core (P2,P5,P6,P4). The geometry around N atoms is strictly planar, the sum of angles around N2 atom is 360.8 °. The environments of P1 and P3 atoms are pyramidal, the sum of angles around P1 atom is 310.4 °. Clearly visible is very sharp pyramidal geometry around P2 and P4 atoms, the sum of angles around P2 atom is only 248.81 °.

Related literature top

For 2,4-bis{[bis(trimethylsilyl)amido](diisopropyloamido)phosphido}1,2,3,4-tetraphosphabicyclo(1,1,0)butane, see: Bezombes et al. (2004). For 2,4-bis(bis-di-tert-butylophosphido)1,2,3,4-tetraphosphabicyclo(1,1,0)butane, see: Matern et al. (1997). For the handling of twinned diffraction data, see: Spek (2003).

Experimental top

All operations were carried out under purified nitrogen using Schlenk techniques. (iPr2N)2PP(SiMe3)Li 2.5THF (0.170 g, 0.51 mmol) in toluene (5 ml) was dropped slowly to a suspension of Cp*ZrCl3(0.484 g, 0.94 mmol) in toluene (4 ml) at -30 °C.The reaction mixture turned immediately brown. The solution was allowed to stand one day at ambient temperature, then evaporated under reduced pressure and dried under vacuum (0.001 Torr) for 1 h. The residue was dissolved in 4 ml pentane and filtered. The solution was kept at 4 °C for two weeks and yielded small amount of colourless crystals of 1.

Refinement top

All C–H hydrogen atoms were refined as riding on carbon atoms with methyl C–H = 0.98 Å, methylene C–H = 0.99 Å and Uiso(H)=1.2 Ueq(C)for methylene CH and 1.5Ueq(C) for methyl groups.

The structure initially refined to a rather high R index of 7.42%, the difference Fourier map showed relatively large peaks for an all-light atom structure (ca 1 e Å-3 ) and the weighting scheme used by the programme SHELXL97 (Sheldrick, 2008) suggested unexpectedly large values for the second weighting parameters. A preliminary check with the TwinRotMat routine of PLATON (Spek, 2003) showed twofold twinning about [1 0 0]. Refinement against the TwinRotMat generated data gave a lower R index of 5.0%, final difference Fourier map (no peak larger than ca 0.6 e Å-3) and the second weight value decreased to 0.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of 1, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted.
[Figure 2] Fig. 2. Packing diagram for 1. View direction is parallel to the crystallographic b axis.
2,4-Bis[bis(diisopropylamino)phosphanyl]-1,2,3,4-tetraphosphabicyclo[1.1.0]butane top
Crystal data top
C24H56N4P6F(000) = 1272
Mr = 586.55Dx = 1.148 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10425 reflections
a = 13.3307 (5) Åθ = 2.5–32.4°
b = 20.9304 (7) ŵ = 0.34 mm1
c = 12.8939 (5) ÅT = 120 K
β = 109.349 (4)°Prism, colourless
V = 3394.4 (2) Å30.46 × 0.14 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
6310 independent reflections
Graphite monochromator4727 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0
ω scans, 0.75 deg widthθmax = 25.5°, θmin = 2.5°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1616
Tmin = 0.955, Tmax = 1.045k = 2525
6310 measured reflectionsl = 1315
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0841P)2]
where P = (Fo2 + 2Fc2)/3
6310 reflections(Δ/σ)max < 0.001
324 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C24H56N4P6V = 3394.4 (2) Å3
Mr = 586.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3307 (5) ŵ = 0.34 mm1
b = 20.9304 (7) ÅT = 120 K
c = 12.8939 (5) Å0.46 × 0.14 × 0.06 mm
β = 109.349 (4)°
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
6310 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
4727 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 1.045Rint = 0
6310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.04Δρmax = 0.61 e Å3
6310 reflectionsΔρmin = 0.51 e Å3
324 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1377 (2)0.37879 (15)0.4006 (3)0.0268 (7)
H10.09880.41880.43280.032*
C20.2520 (3)0.39804 (17)0.3362 (3)0.0348 (8)
H2A0.25240.4260.27510.052*
H2B0.28290.42070.38490.052*
H2C0.29410.35970.30720.052*
C30.1350 (3)0.33570 (18)0.4960 (3)0.0361 (8)
H3A0.17590.29680.46790.054*
H3B0.1660.35820.54480.054*
H3C0.06110.32430.53710.054*
C40.1270 (3)0.28996 (15)0.2755 (3)0.0284 (7)
H40.18330.27670.30650.034*
C50.1821 (3)0.29992 (18)0.1524 (3)0.0400 (9)
H5A0.23180.33580.14070.06*
H5B0.22120.26110.12010.06*
H5C0.12880.30920.11740.06*
C60.0471 (3)0.23567 (17)0.2981 (4)0.0459 (10)
H6A0.00820.24590.26620.069*
H6B0.08340.19620.26510.069*
H6C0.01460.22980.37770.069*
C70.0671 (2)0.49548 (15)0.2373 (3)0.0254 (7)
H70.09240.48520.30020.03*
C80.0059 (3)0.55820 (16)0.2653 (3)0.0357 (8)
H8A0.05660.55240.33120.053*
H8B0.05190.59130.27910.053*
H8C0.0170.57120.20370.053*
C90.1655 (3)0.50184 (17)0.1357 (3)0.0323 (8)
H9A0.14460.51650.07360.048*
H9B0.21440.53290.150.048*
H9C0.20090.46030.11810.048*
C100.0504 (2)0.44695 (16)0.1414 (3)0.0266 (7)
H100.02030.48590.0970.032*
C110.0259 (3)0.39069 (18)0.0623 (3)0.0414 (9)
H11A0.05460.35140.10270.062*
H11B0.05860.39780.00540.062*
H11C0.05120.38650.02770.062*
C120.1705 (3)0.4575 (2)0.1920 (3)0.0414 (9)
H12A0.18420.49430.24180.062*
H12B0.20060.46570.13350.062*
H12C0.20370.41930.23310.062*
C130.5113 (2)0.46488 (15)0.8092 (3)0.0252 (7)
H130.43960.46520.81820.03*
C140.5113 (3)0.51854 (16)0.7295 (3)0.0355 (8)
H14A0.58180.52170.72170.053*
H14B0.49380.5590.75780.053*
H14C0.45820.50950.65770.053*
C150.5919 (3)0.47724 (17)0.9223 (3)0.0334 (8)
H15A0.58650.44360.9730.05*
H15B0.57750.51880.94940.05*
H15C0.66370.47730.91730.05*
C160.6260 (3)0.39185 (17)0.7457 (3)0.0373 (9)
H160.66520.43340.76310.045*
C170.6113 (4)0.3773 (3)0.6272 (5)0.090 (2)
H17A0.6810.37450.61740.136*
H17B0.56960.41140.58050.136*
H17C0.57390.33650.60670.136*
C180.6957 (3)0.3420 (2)0.8243 (6)0.0786 (18)
H18A0.66280.29970.80650.118*
H18B0.70250.35310.90010.118*
H18C0.76630.34130.81630.118*
C190.3926 (3)0.34377 (15)0.9308 (3)0.0293 (8)
H190.39470.39030.91410.035*
C200.2820 (3)0.32984 (19)0.9340 (3)0.0459 (10)
H20A0.22960.33790.86130.069*
H20B0.26720.35760.98840.069*
H20C0.27780.2850.95420.069*
C210.4770 (4)0.33255 (18)1.0423 (3)0.0450 (10)
H21A0.47810.28721.06150.068*
H21B0.46050.35821.09810.068*
H21C0.54680.3451.0390.068*
C220.4165 (3)0.23797 (14)0.8507 (3)0.0277 (7)
H220.40420.22730.92110.033*
C230.5224 (3)0.20904 (17)0.8573 (3)0.0386 (9)
H23A0.53610.21680.78820.058*
H23B0.52080.16290.86980.058*
H23C0.57890.22870.91820.058*
C240.3262 (3)0.20786 (17)0.7590 (3)0.0414 (9)
H24A0.25830.22550.75960.062*
H24B0.32660.16150.76990.062*
H24C0.33530.21710.68810.062*
N10.08069 (19)0.35006 (11)0.3314 (2)0.0204 (6)
N20.00033 (19)0.44163 (12)0.2262 (2)0.0206 (5)
N30.52404 (19)0.40146 (11)0.7648 (2)0.0212 (6)
N40.4172 (2)0.30869 (11)0.8429 (2)0.0216 (6)
P10.03033 (6)0.37788 (4)0.31167 (6)0.01830 (19)
P20.10621 (6)0.42397 (4)0.47668 (6)0.0214 (2)
P30.43260 (6)0.34204 (4)0.72996 (6)0.01890 (19)
P40.28812 (6)0.40449 (4)0.66843 (6)0.0212 (2)
P50.27184 (6)0.39792 (4)0.49234 (7)0.0271 (2)
P60.18012 (7)0.33459 (4)0.55847 (7)0.0273 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0242 (17)0.0277 (17)0.0323 (18)0.0045 (14)0.0146 (14)0.0053 (14)
C20.0264 (18)0.0326 (19)0.048 (2)0.0002 (14)0.0157 (16)0.0008 (17)
C30.040 (2)0.042 (2)0.034 (2)0.0085 (16)0.0225 (17)0.0024 (16)
C40.0321 (18)0.0203 (16)0.0359 (19)0.0082 (14)0.0152 (15)0.0044 (14)
C50.045 (2)0.035 (2)0.035 (2)0.0159 (17)0.0078 (17)0.0111 (16)
C60.049 (2)0.0227 (19)0.068 (3)0.0010 (16)0.022 (2)0.0028 (18)
C70.0300 (18)0.0221 (16)0.0245 (17)0.0012 (13)0.0095 (14)0.0031 (13)
C80.047 (2)0.0247 (18)0.036 (2)0.0013 (15)0.0143 (17)0.0010 (15)
C90.0302 (19)0.0337 (19)0.0316 (19)0.0067 (15)0.0084 (15)0.0076 (15)
C100.0279 (18)0.0296 (18)0.0240 (17)0.0015 (14)0.0110 (14)0.0068 (14)
C110.060 (3)0.042 (2)0.031 (2)0.0044 (18)0.0265 (18)0.0018 (17)
C120.032 (2)0.058 (3)0.037 (2)0.0070 (18)0.0149 (17)0.0092 (18)
C130.0190 (16)0.0261 (17)0.0309 (18)0.0033 (13)0.0088 (13)0.0045 (14)
C140.0286 (19)0.0298 (19)0.043 (2)0.0019 (15)0.0053 (16)0.0037 (16)
C150.0345 (19)0.036 (2)0.0292 (18)0.0080 (15)0.0100 (15)0.0089 (16)
C160.0242 (18)0.037 (2)0.056 (2)0.0031 (15)0.0214 (17)0.0123 (18)
C170.072 (3)0.140 (5)0.092 (4)0.054 (3)0.072 (3)0.068 (4)
C180.029 (2)0.052 (3)0.155 (6)0.017 (2)0.030 (3)0.012 (3)
C190.049 (2)0.0192 (16)0.0272 (18)0.0066 (15)0.0228 (16)0.0025 (13)
C200.060 (3)0.042 (2)0.052 (2)0.0215 (19)0.041 (2)0.0212 (19)
C210.080 (3)0.031 (2)0.0234 (19)0.003 (2)0.0167 (19)0.0030 (15)
C220.043 (2)0.0166 (16)0.0236 (17)0.0040 (14)0.0108 (14)0.0033 (13)
C230.054 (2)0.0259 (18)0.037 (2)0.0158 (16)0.0170 (18)0.0051 (16)
C240.061 (2)0.0256 (19)0.037 (2)0.0106 (17)0.0155 (19)0.0005 (16)
N10.0239 (14)0.0173 (13)0.0229 (13)0.0054 (10)0.0116 (11)0.0028 (10)
N20.0233 (13)0.0207 (13)0.0188 (13)0.0001 (10)0.0082 (10)0.0049 (10)
N30.0172 (13)0.0207 (13)0.0258 (14)0.0002 (10)0.0074 (11)0.0030 (11)
N40.0292 (14)0.0180 (13)0.0193 (13)0.0038 (11)0.0105 (11)0.0003 (10)
P10.0177 (4)0.0201 (4)0.0168 (4)0.0002 (3)0.0052 (3)0.0026 (3)
P20.0183 (4)0.0241 (4)0.0195 (4)0.0007 (3)0.0032 (3)0.0009 (3)
P30.0197 (4)0.0193 (4)0.0169 (4)0.0014 (3)0.0050 (3)0.0009 (3)
P40.0187 (4)0.0240 (4)0.0191 (4)0.0022 (3)0.0037 (3)0.0001 (3)
P50.0201 (4)0.0415 (5)0.0195 (4)0.0020 (4)0.0063 (3)0.0047 (4)
P60.0255 (5)0.0248 (4)0.0251 (4)0.0041 (3)0.0003 (4)0.0043 (4)
Geometric parameters (Å, º) top
C1—N11.479 (4)C14—H14C0.98
C1—C31.516 (5)C15—H15A0.98
C1—C21.529 (5)C15—H15B0.98
C1—H11C15—H15C0.98
C2—H2A0.98C16—N31.474 (4)
C2—H2B0.98C16—C171.505 (6)
C2—H2C0.98C16—C181.534 (6)
C3—H3A0.98C16—H161
C3—H3B0.98C17—H17A0.98
C3—H3C0.98C17—H17B0.98
C4—N11.479 (4)C17—H17C0.98
C4—C61.519 (5)C18—H18A0.98
C4—C51.526 (5)C18—H18B0.98
C4—H41C18—H18C0.98
C5—H5A0.98C19—N41.476 (4)
C5—H5B0.98C19—C201.516 (5)
C5—H5C0.98C19—C211.521 (5)
C6—H6A0.98C19—H191
C6—H6B0.98C20—H20A0.98
C6—H6C0.98C20—H20B0.98
C7—N21.472 (4)C20—H20C0.98
C7—C91.522 (4)C21—H21A0.98
C7—C81.525 (4)C21—H21B0.98
C7—H71C21—H21C0.98
C8—H8A0.98C22—N41.484 (4)
C8—H8B0.98C22—C231.512 (5)
C8—H8C0.98C22—C241.517 (5)
C9—H9A0.98C22—H221
C9—H9B0.98C23—H23A0.98
C9—H9C0.98C23—H23B0.98
C10—N21.469 (4)C23—H23C0.98
C10—C111.521 (5)C24—H24A0.98
C10—C121.531 (5)C24—H24B0.98
C10—H101C24—H24C0.98
C11—H11A0.98N1—P11.686 (2)
C11—H11B0.98N2—P11.692 (2)
C11—H11C0.98N3—P31.695 (2)
C12—H12A0.98N4—P31.688 (3)
C12—H12B0.98P1—P22.2482 (11)
C12—H12C0.98P2—P62.2121 (11)
C13—N31.477 (4)P2—P52.2176 (11)
C13—C151.520 (4)P3—P42.2438 (11)
C13—C141.522 (5)P4—P62.2070 (11)
C13—H131P4—P52.2123 (11)
C14—H14A0.98P5—P62.1610 (12)
C14—H14B0.98
N1—C1—C3111.6 (3)C13—C15—H15C109.5
N1—C1—C2113.5 (3)H15A—C15—H15C109.5
C3—C1—C2110.5 (3)H15B—C15—H15C109.5
N1—C1—H1107N3—C16—C17112.3 (3)
C3—C1—H1107N3—C16—C18111.9 (3)
C2—C1—H1107C17—C16—C18112.3 (4)
C1—C2—H2A109.5N3—C16—H16106.6
C1—C2—H2B109.5C17—C16—H16106.6
H2A—C2—H2B109.5C18—C16—H16106.6
C1—C2—H2C109.5C16—C17—H17A109.5
H2A—C2—H2C109.5C16—C17—H17B109.5
H2B—C2—H2C109.5H17A—C17—H17B109.5
C1—C3—H3A109.5C16—C17—H17C109.5
C1—C3—H3B109.5H17A—C17—H17C109.5
H3A—C3—H3B109.5H17B—C17—H17C109.5
C1—C3—H3C109.5C16—C18—H18A109.5
H3A—C3—H3C109.5C16—C18—H18B109.5
H3B—C3—H3C109.5H18A—C18—H18B109.5
N1—C4—C6112.9 (3)C16—C18—H18C109.5
N1—C4—C5111.7 (3)H18A—C18—H18C109.5
C6—C4—C5111.6 (3)H18B—C18—H18C109.5
N1—C4—H4106.7N4—C19—C20112.9 (3)
C6—C4—H4106.7N4—C19—C21111.5 (3)
C5—C4—H4106.7C20—C19—C21111.5 (3)
C4—C5—H5A109.5N4—C19—H19106.8
C4—C5—H5B109.5C20—C19—H19106.8
H5A—C5—H5B109.5C21—C19—H19106.8
C4—C5—H5C109.5C19—C20—H20A109.5
H5A—C5—H5C109.5C19—C20—H20B109.5
H5B—C5—H5C109.5H20A—C20—H20B109.5
C4—C6—H6A109.5C19—C20—H20C109.5
C4—C6—H6B109.5H20A—C20—H20C109.5
H6A—C6—H6B109.5H20B—C20—H20C109.5
C4—C6—H6C109.5C19—C21—H21A109.5
H6A—C6—H6C109.5C19—C21—H21B109.5
H6B—C6—H6C109.5H21A—C21—H21B109.5
N2—C7—C9111.1 (3)C19—C21—H21C109.5
N2—C7—C8112.9 (3)H21A—C21—H21C109.5
C9—C7—C8111.7 (3)H21B—C21—H21C109.5
N2—C7—H7106.9N4—C22—C23112.1 (3)
C9—C7—H7106.9N4—C22—C24112.5 (3)
C8—C7—H7106.9C23—C22—C24111.3 (3)
C7—C8—H8A109.5N4—C22—H22106.8
C7—C8—H8B109.5C23—C22—H22106.8
H8A—C8—H8B109.5C24—C22—H22106.8
C7—C8—H8C109.5C22—C23—H23A109.5
H8A—C8—H8C109.5C22—C23—H23B109.5
H8B—C8—H8C109.5H23A—C23—H23B109.5
C7—C9—H9A109.5C22—C23—H23C109.5
C7—C9—H9B109.5H23A—C23—H23C109.5
H9A—C9—H9B109.5H23B—C23—H23C109.5
C7—C9—H9C109.5C22—C24—H24A109.5
H9A—C9—H9C109.5C22—C24—H24B109.5
H9B—C9—H9C109.5H24A—C24—H24B109.5
N2—C10—C11113.0 (3)C22—C24—H24C109.5
N2—C10—C12111.6 (3)H24A—C24—H24C109.5
C11—C10—C12111.1 (3)H24B—C24—H24C109.5
N2—C10—H10106.9C1—N1—C4115.1 (2)
C11—C10—H10106.9C1—N1—P1127.1 (2)
C12—C10—H10106.9C4—N1—P1117.8 (2)
C10—C11—H11A109.5C10—N2—C7117.2 (2)
C10—C11—H11B109.5C10—N2—P1118.3 (2)
H11A—C11—H11B109.5C7—N2—P1124.3 (2)
C10—C11—H11C109.5C16—N3—C13114.7 (2)
H11A—C11—H11C109.5C16—N3—P3118.6 (2)
H11B—C11—H11C109.5C13—N3—P3126.7 (2)
C10—C12—H12A109.5C19—N4—C22115.9 (2)
C10—C12—H12B109.5C19—N4—P3125.3 (2)
H12A—C12—H12B109.5C22—N4—P3118.4 (2)
C10—C12—H12C109.5N1—P1—N2109.62 (12)
H12A—C12—H12C109.5N1—P1—P298.49 (9)
H12B—C12—H12C109.5N2—P1—P2102.35 (9)
N3—C13—C15112.9 (3)P6—P2—P558.40 (4)
N3—C13—C14112.1 (3)P6—P2—P194.47 (4)
C15—C13—C14111.3 (3)P5—P2—P195.90 (4)
N3—C13—H13106.7N4—P3—N3110.93 (13)
C15—C13—H13106.7N4—P3—P4102.15 (9)
C14—C13—H13106.7N3—P3—P497.12 (9)
C13—C14—H14A109.5P6—P4—P558.55 (4)
C13—C14—H14B109.5P6—P4—P398.15 (4)
H14A—C14—H14B109.5P5—P4—P396.17 (4)
C13—C14—H14C109.5P6—P5—P460.60 (4)
H14A—C14—H14C109.5P6—P5—P260.68 (4)
H14B—C14—H14C109.5P4—P5—P280.46 (4)
C13—C15—H15A109.5P5—P6—P460.85 (4)
C13—C15—H15B109.5P5—P6—P260.93 (4)
H15A—C15—H15B109.5P4—P6—P280.70 (4)
C3—C1—N1—C463.7 (3)C4—N1—P1—P2147.9 (2)
C2—C1—N1—C462.0 (3)C10—N2—P1—N1138.7 (2)
C3—C1—N1—P1115.5 (3)C7—N2—P1—N147.2 (3)
C2—C1—N1—P1118.9 (3)C10—N2—P1—P2117.5 (2)
C6—C4—N1—C1126.1 (3)C7—N2—P1—P256.6 (2)
C5—C4—N1—C1107.2 (3)N1—P1—P2—P684.13 (9)
C6—C4—N1—P153.1 (3)N2—P1—P2—P6163.53 (9)
C5—C4—N1—P173.6 (3)N1—P1—P2—P5142.77 (9)
C11—C10—N2—C7125.6 (3)N2—P1—P2—P5104.88 (10)
C12—C10—N2—C7108.4 (3)C19—N4—P3—N353.6 (3)
C11—C10—N2—P159.9 (3)C22—N4—P3—N3133.4 (2)
C12—C10—N2—P166.2 (3)C19—N4—P3—P449.0 (3)
C9—C7—N2—C1066.3 (3)C22—N4—P3—P4124.0 (2)
C8—C7—N2—C1060.1 (4)C16—N3—P3—N4111.4 (2)
C9—C7—N2—P1119.6 (3)C13—N3—P3—N471.5 (3)
C8—C7—N2—P1114.1 (3)C16—N3—P3—P4142.6 (2)
C17—C16—N3—C13120.2 (4)C13—N3—P3—P434.5 (3)
C18—C16—N3—C13112.5 (4)N4—P3—P4—P690.61 (10)
C17—C16—N3—P357.3 (4)N3—P3—P4—P6156.11 (10)
C18—C16—N3—P370.1 (4)N4—P3—P4—P5149.63 (10)
C15—C13—N3—C1663.2 (4)N3—P3—P4—P597.09 (10)
C14—C13—N3—C1663.5 (3)P3—P4—P5—P695.80 (4)
C15—C13—N3—P3119.6 (3)P6—P4—P5—P261.62 (4)
C14—C13—N3—P3113.7 (3)P3—P4—P5—P2157.42 (4)
C20—C19—N4—C2261.8 (4)P1—P2—P5—P691.63 (4)
C21—C19—N4—C2264.7 (4)P6—P2—P5—P461.54 (4)
C20—C19—N4—P3111.4 (3)P1—P2—P5—P4153.17 (4)
C21—C19—N4—P3122.2 (3)P2—P5—P6—P495.64 (4)
C23—C22—N4—C19121.2 (3)P4—P5—P6—P295.64 (4)
C24—C22—N4—C19112.5 (3)P3—P4—P6—P592.27 (4)
C23—C22—N4—P365.1 (3)P5—P4—P6—P261.81 (4)
C24—C22—N4—P361.2 (3)P3—P4—P6—P2154.08 (4)
C1—N1—P1—N275.2 (3)P1—P2—P6—P594.19 (4)
C4—N1—P1—N2105.7 (2)P5—P2—P6—P461.73 (4)
C1—N1—P1—P231.2 (3)P1—P2—P6—P4155.91 (4)

Experimental details

Crystal data
Chemical formulaC24H56N4P6
Mr586.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)13.3307 (5), 20.9304 (7), 12.8939 (5)
β (°) 109.349 (4)
V3)3394.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.46 × 0.14 × 0.06
Data collection
DiffractometerOxford Diffraction KM-4 CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.955, 1.045
No. of measured, independent and
observed [I > 2σ(I)] reflections
6310, 6310, 4727
Rint0
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.136, 1.04
No. of reflections6310
No. of parameters324
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.51

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The work was undertaken with financial support from the Polish Ministry of Science and Higher Education (grant No. N N204 271535).

References

First citationBezombes, J.-P., Hitchcock, P. B., Lappert, M. F. & Nycz, J. E. (2004). Dalton Trans. pp. 499–501.  Web of Science CSD CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMatern, E., Fritz, G. & Pikies, J. (1997). Z. Anorg. Allg. Chem. 623, 1769–1773.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds