metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-n-butyl­ammonium bis­­(2,2-di­cyano­ethyl­ene-1,1-di­thiol­ato)palladium(II)

aCollege of St Catherine, St Paul, Minnesota 55105, USA, and bUniversity of Minnesota, Minneapolis, Minnesota 55455, USA
*Correspondence e-mail: dejanzen@stkate.edu

(Received 27 October 2008; accepted 12 November 2008; online 20 November 2008)

In the title compound, (C16H36N)2[Pd(C4N2S2)2], the PdII center adopts a distorted square-planar geometry due to the four-membered chelate rings formed by coordination of the 2,2-dicyano­ethyl­ene-1,1-dithiol­ate (i-mnt) ligands [bite angle 75.0159 (17)°]. The bond distances in the coordinated i-mnt ligands indicate some delocalization of the π-system.

Related literature

For general background, see: Fackler & Coucouvanis (1966[Fackler, J. P. & Coucouvanis, D. (1966). J. Am. Chem. Soc. 88, 3913-3920.]); Werden et al. (1966[Werden, B. G., Billig, E. & Gray, H. B. (1966). Inorg. Chem. 5, 78-81.]). For related structures, see: Cao et al. (1999[Cao, R., Su, W., Hong, M. & Tatsumi, K. (1999). Chem. Lett. 11, 1219-1220.]); Dong et al. (2005[Dong, F.-Y., Dou, J.-M., Gao, X.-K., Li, D.-C. & Wang, D.-Q. (2005). Ind. J. Chem. Sect. A, 44, 1144-1150.]); Gao et al. (2005[Gao, X.-K., Dou, J.-M., Li, D.-C., Dong, F.-Y. & Wang, D.-Q. (2005). J. Incl. Phen. Macro. Chem. 53, 111-119.]); Long et al. (1996[Long, D., Hou, H., Xinx, X., Yu, K., Luo, B. & Chen, L. (1996). J. Coord. Chem. 38, 15-24.], 1997[Long, D., Zheng, H., Xin, X., Sakane, G. & Shibahara, T. (1997). Polyhedron, 16, 4305-4311.], 1998[Long, D., Chen, J.-T., Cui, Y. & Huang, J.-S. (1998). Chem. Lett. 2, 171-172.]); Mori et al. (1995[Mori, H., Hirabayashi, I., Tanaka, S., Mori, T. & Maruyama, Y. (1995). Synth. Met. 70, 1177-1178.]); Sun et al. (2006[Sun, Y.-M., Dong, F.-Y., Dou, J.-M., Li, D.-C., Gao, X.-K. & Wang, D.-Q. (2006). J. Inorg. Organomet. Poly. Mater. 16, 61-67.]); Zhu et al. (1991[Zhu, D., Xing, X. C., Wu, P. J., Wang, P., Zhang, D. M. & Yang, D. L. (1991). Synth. Met. 41-43, 2541-2546.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H36N)2[Pd(C4N2S2)2]

  • Mr = 871.68

  • Monoclinic, P 21 /c

  • a = 13.9468 (13) Å

  • b = 8.6267 (8) Å

  • c = 20.3231 (19) Å

  • β = 108.218 (2)°

  • V = 2322.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 173 (2) K

  • 0.50 × 0.40 × 0.33 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2003[Bruker (2003). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.749, Tmax = 0.824

  • 22206 measured reflections

  • 4124 independent reflections

  • 3613 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.02

  • 4124 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salts of metal complexes of [Pd(i-mnt)2]2- (i-mnt = 2,2-dicyanoethylene-1,1-dithiolate) have been studied for their interesting electronic properties including their use in conducting charge-transfer salts (Mori et al., 1995; Zhu et al., 1991) and their redox behavior especially in relation to the analagous isomeric ligand 1,2-dicyanoethylene-1,2-dithiolate (mnt2-) complexes (Fackler & Coucouvanis, 1966; Werden et al., 1966). In sharp contrast to mnt complexes of the form [M(mnt)2]2- (M= NiII, PdII, PtII) which do exhibit reversible oxidation behavior, analagous i-mnt complexes of the form [M(i-mnt)2]2- do not. This effect is attributed to better π-delocalization of the five-membered rings formed by complexation of mnt compared with four-membered chelate rings of i-mnt complexes. Salts of [Pd(i-mnt)2]2- have also been studied as supramolecular linker groups in organic-inorganic hybrid coordination polymers (Cao et al., 1999; Dong et al., 2005; Gao et al., 2005; Long et al., 1997,1998; Sun et al., 2006). While several x-ray structures of [Pd(i-mnt)2]2- with alkali metal-complexed crown ether salts and one simple potassium salt have been reported, only one other simple non-coordinating cation salt (tetraethylammonium, Long et al. 1996) has been structurally characterized.

The structure of the anion in (C16H36N)2[Pd(S2C4N2)2] shows significant distortions from a square planar environment as forced by the four-membered chelate rings of the i-mnt ligands, with the i-mnt bite angle of S(2)—Pd(1)—S(1) 75.0159 (17)°. As the Pd sits on the inversion centre at (0,0,0) in the space group P21/c, Z'=0.5, the anion is quite planar, with a calculated r.m.s. deviation from a least-squares plane formed by all atoms of the complex anion of 0.0806 (13) Å. The bond lengths within the coordinated i-mnt ligand, in particular the bonds C(1)—C(2) 1.379 (3) Å, C(2)—C(3) 1.424 (3) Å, and C(2)—C(4) 1.429 (3)Å are very similar to those observed in the tetraethylammonium salt, showing significant π-delocalization. No columnar stacking is observed amongst the complex anions. As expected, upon comparison of this structure with that of the tetraethylammonium salt, little effect was observed on the intramolecular features of the complex anion.

Related literature top

For general background, see: Fackler & Coucouvanis (1966); Werden et al. (1966). For related structures, see: Cao et al. (1999); Dong et al. (2005); Gao et al. (2005); Long et al. (1996, 1997, 1998); Mori et al. (1995); Sun et al. (2006); Zhu et al. (1991).

Experimental top

The title compound (C16H36N)2[Pd(S2C4N2)2] was prepared using a procedure similar to that described by Fackler and Coucouvanis (1966) substituting the use of tetra-n-propylammonium iodide with tetra-n-butylammonium bromide. The title compound has been previously characterized by Werden et al. (1966). Spectroscopic analysis of the title compound obtained by this procedure was consistent with the data previously reported. Crystals were obtained by diffusion of diethyl ether into a concentrated solution of the title compound dissolved in acetone.

Refinement top

The H atoms were geometrically placed (C—H = 0.98–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (C16H36N)2[Pd(S2C4N2)2] showing 50% displacement ellipsoids for the non-hydrogen atoms. Only the crystallographically independent atoms are labelled.
Tetra-n-butylammonium bis(2,2-dicyanoethylene-1,1-dithiolato)palladium(II) top
Crystal data top
(C16H36N)2[Pd(C4N2S2)2]F(000) = 928
Mr = 871.68Dx = 1.246 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3632 reflections
a = 13.9468 (13) Åθ = 2.2–25.0°
b = 8.6267 (8) ŵ = 0.61 mm1
c = 20.3231 (19) ÅT = 173 K
β = 108.218 (2)°Block, orange
V = 2322.6 (4) Å30.50 × 0.40 × 0.33 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4124 independent reflections
Radiation source: normal-focus sealed tube3613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker 2003)
h = 1616
Tmin = 0.749, Tmax = 0.824k = 1010
22206 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.8279P]
where P = (Fo2 + 2Fc2)/3
4124 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
(C16H36N)2[Pd(C4N2S2)2]V = 2322.6 (4) Å3
Mr = 871.68Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.9468 (13) ŵ = 0.61 mm1
b = 8.6267 (8) ÅT = 173 K
c = 20.3231 (19) Å0.50 × 0.40 × 0.33 mm
β = 108.218 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4124 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2003)
3613 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.824Rint = 0.027
22206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
4124 reflectionsΔρmin = 0.28 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.00001.00001.00000.03612 (8)
S10.15463 (4)1.09186 (5)0.99538 (2)0.04065 (12)
C10.19356 (14)1.09487 (19)1.08491 (9)0.0367 (4)
N10.40960 (13)1.2828 (2)1.07224 (9)0.0542 (5)
S20.10006 (4)1.02365 (5)1.11567 (3)0.04049 (12)
N20.33826 (14)1.1436 (2)1.25846 (10)0.0597 (5)
C20.28567 (14)1.1511 (2)1.12541 (9)0.0375 (4)
N30.25990 (9)0.61333 (15)0.92368 (7)0.0254 (3)
C30.35433 (15)1.2222 (2)1.09551 (10)0.0415 (5)
C40.31446 (15)1.1474 (2)1.19936 (11)0.0438 (5)
C50.17965 (12)0.64663 (19)0.95836 (8)0.0280 (4)
H5A0.18980.75330.97720.034*
H5B0.11250.64300.92260.034*
C60.17926 (13)0.53612 (19)1.01639 (9)0.0312 (4)
H6A0.24940.51871.04650.037*
H6B0.15100.43500.99650.037*
C70.11676 (13)0.6011 (2)1.05940 (9)0.0338 (4)
H7A0.14840.69801.08230.041*
H7B0.04840.62701.02850.041*
C80.10805 (15)0.4871 (2)1.11407 (10)0.0402 (4)
H8A0.07070.53521.14230.060*
H8B0.17570.45831.14370.060*
H8C0.07210.39421.09150.060*
C90.25005 (12)0.44804 (19)0.89542 (8)0.0278 (4)
H9A0.30610.42880.87630.033*
H9B0.25850.37540.93450.033*
C100.15178 (13)0.4104 (2)0.84001 (10)0.0379 (4)
H10A0.14580.47310.79810.045*
H10B0.09440.43670.85680.045*
C110.14795 (15)0.2387 (2)0.82185 (10)0.0413 (4)
H11A0.20310.21470.80250.050*
H11B0.15920.17690.86460.050*
C120.04792 (16)0.1920 (3)0.76986 (12)0.0587 (6)
H12A0.04890.08090.76000.088*
H12B0.03720.25100.72690.088*
H12C0.00690.21400.78910.088*
C130.24560 (12)0.7323 (2)0.86637 (8)0.0302 (4)
H13A0.17680.72010.83330.036*
H13B0.24960.83700.88700.036*
C140.32053 (13)0.7239 (2)0.82619 (9)0.0364 (4)
H14A0.32760.61500.81310.044*
H14B0.38740.76020.85590.044*
C150.28591 (14)0.8236 (2)0.76111 (9)0.0434 (5)
H15A0.22050.78400.73060.052*
H15B0.27540.93120.77430.052*
C160.36177 (18)0.8238 (3)0.72159 (12)0.0618 (6)
H16A0.33740.89100.68090.093*
H16B0.37020.71800.70670.093*
H16C0.42680.86250.75160.093*
C170.36558 (11)0.62498 (19)0.97581 (8)0.0271 (3)
H17A0.37570.53541.00770.033*
H17B0.41520.61550.95030.033*
C180.38904 (12)0.7716 (2)1.01894 (9)0.0323 (4)
H18A0.33970.78491.04450.039*
H18B0.38430.86270.98850.039*
C190.49551 (13)0.7591 (2)1.06987 (9)0.0375 (4)
H19A0.49870.66931.10080.045*
H19B0.54350.73991.04380.045*
C200.52758 (15)0.9040 (2)1.11359 (11)0.0516 (5)
H20A0.59690.89131.14440.077*
H20B0.48230.92071.14130.077*
H20C0.52420.99351.08330.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.05110 (14)0.02259 (11)0.03883 (13)0.00135 (8)0.02006 (10)0.00010 (8)
S10.0562 (3)0.0330 (2)0.0383 (3)0.0008 (2)0.0228 (2)0.00116 (19)
C10.0513 (11)0.0244 (9)0.0408 (10)0.0087 (8)0.0236 (9)0.0046 (7)
N10.0447 (10)0.0646 (12)0.0576 (11)0.0134 (9)0.0224 (9)0.0267 (9)
S20.0536 (3)0.0341 (3)0.0400 (3)0.0036 (2)0.0237 (2)0.00052 (19)
N20.0626 (12)0.0758 (14)0.0422 (11)0.0116 (10)0.0185 (9)0.0066 (9)
C20.0451 (11)0.0344 (10)0.0376 (10)0.0092 (8)0.0197 (9)0.0077 (8)
N30.0217 (7)0.0270 (7)0.0260 (7)0.0027 (5)0.0054 (6)0.0010 (6)
C30.0414 (11)0.0426 (11)0.0419 (11)0.0145 (9)0.0149 (9)0.0148 (9)
C40.0453 (11)0.0418 (11)0.0486 (13)0.0000 (9)0.0209 (10)0.0068 (9)
C50.0226 (8)0.0282 (8)0.0331 (9)0.0038 (7)0.0085 (7)0.0034 (7)
C60.0307 (9)0.0273 (9)0.0378 (10)0.0033 (7)0.0138 (8)0.0023 (7)
C70.0299 (9)0.0350 (10)0.0376 (10)0.0043 (7)0.0120 (8)0.0073 (8)
C80.0382 (10)0.0494 (12)0.0377 (10)0.0005 (9)0.0188 (8)0.0042 (8)
C90.0269 (8)0.0267 (8)0.0294 (9)0.0027 (7)0.0083 (7)0.0022 (7)
C100.0293 (9)0.0410 (11)0.0402 (10)0.0017 (8)0.0062 (8)0.0107 (8)
C110.0508 (12)0.0384 (10)0.0344 (10)0.0087 (9)0.0126 (9)0.0071 (8)
C120.0543 (13)0.0669 (15)0.0559 (13)0.0249 (12)0.0187 (11)0.0259 (12)
C130.0278 (9)0.0300 (9)0.0289 (9)0.0024 (7)0.0034 (7)0.0033 (7)
C140.0345 (10)0.0385 (10)0.0363 (10)0.0008 (8)0.0112 (8)0.0038 (8)
C150.0409 (11)0.0538 (12)0.0330 (10)0.0038 (9)0.0078 (8)0.0069 (9)
C160.0645 (15)0.0790 (17)0.0487 (13)0.0003 (13)0.0276 (12)0.0143 (12)
C170.0211 (8)0.0311 (9)0.0269 (8)0.0029 (7)0.0042 (7)0.0007 (7)
C180.0269 (9)0.0317 (9)0.0343 (10)0.0012 (7)0.0036 (7)0.0024 (7)
C190.0297 (9)0.0397 (10)0.0376 (10)0.0024 (8)0.0024 (8)0.0049 (8)
C200.0426 (11)0.0459 (12)0.0541 (13)0.0044 (9)0.0025 (10)0.0090 (10)
Geometric parameters (Å, º) top
Pd1—S1i2.3269 (5)C10—H10B0.9900
Pd1—S12.3269 (5)C11—C121.518 (3)
Pd1—S2i2.3375 (5)C11—H11A0.9900
Pd1—S22.3375 (5)C11—H11B0.9900
S1—C11.7288 (19)C12—H12A0.9800
C1—C21.379 (3)C12—H12B0.9800
C1—S21.7258 (19)C12—H12C0.9800
N1—C31.148 (2)C13—C141.516 (2)
N2—C41.142 (2)C13—H13A0.9900
C2—C31.424 (3)C13—H13B0.9900
C2—C41.429 (3)C14—C151.524 (2)
N3—C131.518 (2)C14—H14A0.9900
N3—C51.525 (2)C14—H14B0.9900
N3—C171.5260 (19)C15—C161.515 (3)
N3—C91.527 (2)C15—H15A0.9900
C5—C61.518 (2)C15—H15B0.9900
C5—H5A0.9900C16—H16A0.9800
C5—H5B0.9900C16—H16B0.9800
C6—C71.521 (2)C16—H16C0.9800
C6—H6A0.9900C17—C181.515 (2)
C6—H6B0.9900C17—H17A0.9900
C7—C81.517 (3)C17—H17B0.9900
C7—H7A0.9900C18—C191.525 (2)
C7—H7B0.9900C18—H18A0.9900
C8—H8A0.9800C18—H18B0.9900
C8—H8B0.9800C19—C201.517 (3)
C8—H8C0.9800C19—H19A0.9900
C9—C101.512 (2)C19—H19B0.9900
C9—H9A0.9900C20—H20A0.9800
C9—H9B0.9900C20—H20B0.9800
C10—C111.523 (3)C20—H20C0.9800
C10—H10A0.9900
S1i—Pd1—S1180.0C12—C11—H11A109.1
S1i—Pd1—S2i75.015 (17)C10—C11—H11A109.1
S1—Pd1—S2i104.985 (17)C12—C11—H11B109.1
S1i—Pd1—S2104.985 (17)C10—C11—H11B109.1
S1—Pd1—S275.015 (17)H11A—C11—H11B107.8
S2i—Pd1—S2180.0C11—C12—H12A109.5
C1—S1—Pd187.29 (7)C11—C12—H12B109.5
C2—C1—S2125.26 (14)H12A—C12—H12B109.5
C2—C1—S1124.12 (14)C11—C12—H12C109.5
S2—C1—S1110.59 (11)H12A—C12—H12C109.5
C1—S2—Pd187.02 (7)H12B—C12—H12C109.5
C1—C2—C3121.47 (17)C14—C13—N3115.69 (13)
C1—C2—C4121.52 (17)C14—C13—H13A108.4
C3—C2—C4116.93 (18)N3—C13—H13A108.4
C13—N3—C5106.73 (12)C14—C13—H13B108.4
C13—N3—C17110.78 (12)N3—C13—H13B108.4
C5—N3—C17110.85 (12)H13A—C13—H13B107.4
C13—N3—C9111.59 (12)C13—C14—C15110.84 (15)
C5—N3—C9110.92 (12)C13—C14—H14A109.5
C17—N3—C9106.04 (11)C15—C14—H14A109.5
N1—C3—C2178.4 (2)C13—C14—H14B109.5
N2—C4—C2179.3 (2)C15—C14—H14B109.5
C6—C5—N3114.98 (13)H14A—C14—H14B108.1
C6—C5—H5A108.5C16—C15—C14112.12 (17)
N3—C5—H5A108.5C16—C15—H15A109.2
C6—C5—H5B108.5C14—C15—H15A109.2
N3—C5—H5B108.5C16—C15—H15B109.2
H5A—C5—H5B107.5C14—C15—H15B109.2
C5—C6—C7110.90 (14)H15A—C15—H15B107.9
C5—C6—H6A109.5C15—C16—H16A109.5
C7—C6—H6A109.5C15—C16—H16B109.5
C5—C6—H6B109.5H16A—C16—H16B109.5
C7—C6—H6B109.5C15—C16—H16C109.5
H6A—C6—H6B108.0H16A—C16—H16C109.5
C8—C7—C6111.91 (14)H16B—C16—H16C109.5
C8—C7—H7A109.2C18—C17—N3116.33 (13)
C6—C7—H7A109.2C18—C17—H17A108.2
C8—C7—H7B109.2N3—C17—H17A108.2
C6—C7—H7B109.2C18—C17—H17B108.2
H7A—C7—H7B107.9N3—C17—H17B108.2
C7—C8—H8A109.5H17A—C17—H17B107.4
C7—C8—H8B109.5C17—C18—C19108.79 (14)
H8A—C8—H8B109.5C17—C18—H18A109.9
C7—C8—H8C109.5C19—C18—H18A109.9
H8A—C8—H8C109.5C17—C18—H18B109.9
H8B—C8—H8C109.5C19—C18—H18B109.9
C10—C9—N3115.76 (13)H18A—C18—H18B108.3
C10—C9—H9A108.3C20—C19—C18112.68 (15)
N3—C9—H9A108.3C20—C19—H19A109.1
C10—C9—H9B108.3C18—C19—H19A109.1
N3—C9—H9B108.3C20—C19—H19B109.1
H9A—C9—H9B107.4C18—C19—H19B109.1
C9—C10—C11110.14 (15)H19A—C19—H19B107.8
C9—C10—H10A109.6C19—C20—H20A109.5
C11—C10—H10A109.6C19—C20—H20B109.5
C9—C10—H10B109.6H20A—C20—H20B109.5
C11—C10—H10B109.6C19—C20—H20C109.5
H10A—C10—H10B108.1H20A—C20—H20C109.5
C12—C11—C10112.46 (17)H20B—C20—H20C109.5
S2i—Pd1—S1—C1178.05 (6)C5—C6—C7—C8175.31 (15)
S2—Pd1—S1—C11.95 (6)C13—N3—C9—C1056.92 (18)
Pd1—S1—C1—C2175.49 (15)C5—N3—C9—C1061.94 (18)
Pd1—S1—C1—S22.72 (8)C17—N3—C9—C10177.64 (15)
C2—C1—S2—Pd1175.47 (16)N3—C9—C10—C11174.36 (14)
S1—C1—S2—Pd12.71 (8)C9—C10—C11—C12176.18 (16)
S1i—Pd1—S2—C1178.05 (6)C5—N3—C13—C14178.03 (14)
S1—Pd1—S2—C11.95 (6)C17—N3—C13—C1457.26 (18)
S2—C1—C2—C3173.49 (14)C9—N3—C13—C1460.64 (18)
S1—C1—C2—C34.5 (3)N3—C13—C14—C15167.77 (15)
S2—C1—C2—C43.4 (3)C13—C14—C15—C16177.23 (17)
S1—C1—C2—C4178.64 (14)C13—N3—C17—C1867.16 (18)
C13—N3—C5—C6178.31 (14)C5—N3—C17—C1851.13 (18)
C17—N3—C5—C660.97 (17)C9—N3—C17—C18171.60 (14)
C9—N3—C5—C656.56 (17)N3—C17—C18—C19177.49 (14)
N3—C5—C6—C7165.40 (13)C17—C18—C19—C20177.67 (17)
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula(C16H36N)2[Pd(C4N2S2)2]
Mr871.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.9468 (13), 8.6267 (8), 20.3231 (19)
β (°) 108.218 (2)
V3)2322.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.50 × 0.40 × 0.33
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2003)
Tmin, Tmax0.749, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
22206, 4124, 3613
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.02
No. of reflections4124
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by funding from the NSF through a Research Site for Educators in Chemistry grant. The authors acknowledge Victor G. Young, Jr and the X-ray Crystallographic Laboratory in the Department of Chemistry at the University of Minnesota.

References

First citationBruker (2003). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, R., Su, W., Hong, M. & Tatsumi, K. (1999). Chem. Lett. 11, 1219–1220.  Web of Science CSD CrossRef Google Scholar
First citationDong, F.-Y., Dou, J.-M., Gao, X.-K., Li, D.-C. & Wang, D.-Q. (2005). Ind. J. Chem. Sect. A, 44, 1144–1150.  Google Scholar
First citationFackler, J. P. & Coucouvanis, D. (1966). J. Am. Chem. Soc. 88, 3913–3920.  CrossRef CAS Web of Science Google Scholar
First citationGao, X.-K., Dou, J.-M., Li, D.-C., Dong, F.-Y. & Wang, D.-Q. (2005). J. Incl. Phen. Macro. Chem. 53, 111–119.  Web of Science CSD CrossRef CAS Google Scholar
First citationLong, D., Chen, J.-T., Cui, Y. & Huang, J.-S. (1998). Chem. Lett. 2, 171–172.  CSD CrossRef Google Scholar
First citationLong, D., Hou, H., Xinx, X., Yu, K., Luo, B. & Chen, L. (1996). J. Coord. Chem. 38, 15–24.  CrossRef CAS Web of Science Google Scholar
First citationLong, D., Zheng, H., Xin, X., Sakane, G. & Shibahara, T. (1997). Polyhedron, 16, 4305–4311.  CSD CrossRef CAS Web of Science Google Scholar
First citationMori, H., Hirabayashi, I., Tanaka, S., Mori, T. & Maruyama, Y. (1995). Synth. Met. 70, 1177–1178.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-M., Dong, F.-Y., Dou, J.-M., Li, D.-C., Gao, X.-K. & Wang, D.-Q. (2006). J. Inorg. Organomet. Poly. Mater. 16, 61–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerden, B. G., Billig, E. & Gray, H. B. (1966). Inorg. Chem. 5, 78–81.  CrossRef CAS Web of Science Google Scholar
First citationZhu, D., Xing, X. C., Wu, P. J., Wang, P., Zhang, D. M. & Yang, D. L. (1991). Synth. Met. 41–43, 2541–2546.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds