metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1554-m1555

catena-Poly[[[aqua­(1,10-phenanthroline-κ2N,N′)cadmium(II)]-μ-pyridine-2,3-di­carboxyl­ato-κ4N,O2:O3,O3′] dihydrate]

aDepartment of Chemical Engineering, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China, and bCollege of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People's Republic of China
*Correspondence e-mail: limwuse@163.com

(Received 9 October 2008; accepted 10 November 2008; online 20 November 2008)

The title complex, {[Cd(C7H3NO4)(C12H8N2)(H2O)]·2H2O}n, is a one-dimensional coordination polymer, wherein the Cd atom is seven-coordinated by two 1,10-phenanthroline N atoms, one N and three O atoms from two different pyridine-2,3-dicarboxyl­ate ligands, and one water mol­ecule. It is further extended to a two-dimensional layer structure by hydrogen bonds and ππ stacking inter­actions [centroid-centroid distances of 3.560 (2) and 3.666 (2) Å]. There is a C4 water chain in the structure whose repeat unit contains four water mol­ecules with O⋯O distances in the range 2.748 (3)–2.795 (4) Å. One of the two H atoms of each water of hydration is statistically distributed over two positions with equal occupancy.

Related literature

For potential applications of metal–organic coordination polymers, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. (2001). Chem. Rev. 101, 1629-1658.]). For related structures, see: Gutschke et al. (1995[Gutschke, S. O. H., Slawin, A. M. Z. & Wood, P. T. (1995). J. Chem. Soc. Chem. Commun. pp. 2197-2198.]); Li et al. (2006[Li, M., Xiang, J. F., Yuan, L. J., Wu, S. M., Chen, S. P. & Sun, J. T. (2006). Cryst. Growth Des. 9, 2036-2040.]); Yu et al. (2004[Yu, Z. T., Liao, Z. L., Jiang, Y. S., Li, G. H., Li, G. D. & Chen, J. S. (2004). Chem. Commun. pp. 1814-1815.]). For the structure of ice, see: Eisenberg & Kauzmann (1969[Eisenberg, D. & Kauzmann, W. (1969). The Structure and Properties of Water. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C7H3NO4)(C12H8N2)(H2O)]·2H2O

  • Mr = 511.76

  • Triclinic, [P \overline 1]

  • a = 7.8154 (5) Å

  • b = 10.5854 (7) Å

  • c = 13.0681 (8) Å

  • α = 70.934 (1)°

  • β = 77.940 (1)°

  • γ = 68.698 (1)°

  • V = 946.98 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 293 (2) K

  • 0.40 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.645, Tmax = 0.840

  • 6124 measured reflections

  • 4194 independent reflections

  • 3979 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.07

  • 4194 reflections

  • 272 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3W—H3W3⋯O2W 0.86 1.99 2.780 (3) 152
O3W—H2W3⋯O3Wi 0.83 1.98 2.795 (4) 164
O3W—H1W3⋯O1ii 0.83 2.06 2.860 (2) 161
O2W—H1W2⋯O2ii 0.83 2.02 2.840 (2) 173
O2W—H3W2⋯O2Wiii 0.84 1.93 2.748 (3) 163
O2W—H2W2⋯O3W 0.86 1.98 2.780 (3) 155
O1W—H2W1⋯O2iv 0.82 1.97 2.7784 (19) 168
O1W—H1W1⋯O3v 0.86 1.90 2.751 (2) 167
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) x+1, y, z; (v) -x, -y, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal-organic coordination polymers have been of great interest due to their intriguing potential applications, such as catalysis, magnetism, electronic and chemical separation (Moulton & Zaworotko, 2001). Multidentate N– or O-donor ligands, such as pyridine- or imidazole- (di)carboxylic acids, have drawn extensive attention in the construction of coordination polymers or metal-organic formworks (MOF). For example, pyridine or imidazole dicarboxyic acid ligands, including pyridine-2,6-, 2,5- or 3,4-dicarboxylic and imidazole-3,4-dicarboxylic acids, have been extensively employed in the construction of such metal-organic formworks. Comparing with other pyridine-dicarboxylic acids, pyridine-2,3-dicarboxylic acid (2,3-pydc) has been rarely used as a linkage ligand (Gutschke et al., 1995; Yu et al., 2004; Li et al., 2006). We have synthesized a novel one-dimensional (one-dimensional) coordination polymer based on 2,3-pydc, [Cd(2,3-pydc)(H2O)(phen).2H2O]n (phen = 1,10-phenanthroline), (I), the crystal structure of which is presented in this article.

The title complex is a one-dimensional chain-like coordination polymer. In the structure of the title compound (Fig. 1), the Cd ion is seven-coordinated with two N atoms from phen, one N and three O atoms from two different pyridine-2,3-dicarboxylate and a water molecule. The 2,3-pydc affords four coordination atoms to connect two Cd ions, one as chelating bidentate through the N atom and one O atom of carboxylate in 2-position, the other with two O atoms of carboxylate in 3-position. Thus, complex (I) illustrates a one-dimensional chain structure along a axis, as shown in Fig. 2. Two adjacent chains band together by a series of hydrogen bonds involving water and carbonyl O-atoms (details are given in Table 1), π-π interaction of 1,10-phenanthroline with the shortest distance between the centroids of C11—C14/C18/C19 rings being 3.560 (2) Å and the shortest distance between the centroids of N3/C13—C17 rings are 3.666 (2) Å, thus resulting in a two-dimensional supramolecular structure. The structure also displays a short C6—O2···π(Cg(1)) interaction with a perpendicular distance between O2 and the centroid of Cg(1) being 3.562 (2) Å.

It is also worthwhile to note that there is a C4 water chain in (I), whose repeating unit contains four water molecules with O—O distances 2.750 (4) 2.782 (3), and 2.798 (4) Å (average distance = 2.777 Å), which are all close to the corresponding distance of O—O in the ice Ic (2.75 Å) and Ih (2.759 Å) determined at 143 and 183 K, respectively (Eisenberg & Kauzmann, 1969). Moreover, each water molecule links to the host by the H-bonding interaction between water of hydration and coordination water molecules. Water molecule can participate in four hydrogen bonds in a tetrahedral arrangement with two hydrogen atoms and two lone pairs, but also frequently show 3-coordinate configurations, just as in (I).

Related literature top

For potential applications of metal–organic coordination polymers, see: Moulton & Zaworotko (2001). For related structures, see: Gutschke et al. (1995); Li et al. (2006); Yu et al. (2004). For the structure of ice, see: Eisenberg & Kauzmann (1969).

Experimental top

CdO (0.05 mmol), 1,10-phenanthroline (0.05 mmol) and pyridine 2,3-dicarboxylic acid (0.10 mmol) were added into 1 ml water and stirred for 5 min in air, then transferred to a closed container. After reacting at 353 K for 7 days, the mixture was cooled to room temperature at a rate of 5 K/h. Colorless crystals suitable for X-ray analysis were obtained.

Refinement top

All H atoms attached to C atoms of were fixed geometrically and treated as riding with C—H = 0.93 Å with Uiso(H) = 1.5Ueq(parent atom). Hydrogen atoms of water molecules were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H = 0.85 (1) Å) with Uiso(H) = 1.5Ueq(O). The two hydrogen atoms were statistically distributed over two positions each (H2W2 and H3W2, H2W3 and H3W3) with occupation factors of 0.50.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of Cd in (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; hydrogen atoms were omitted for clarity. Symmetry codes: a = x - 1, y, z; b = x + 1, y, z.
[Figure 2] Fig. 2. Unit cell packing of (I) showing (one-dimensional) chain-like structure along the a-axis; hydrogen bonds have been shown by dotted lines.
catena-Poly[[[aqua(1,10-phenanthroline- κ2N,N')cadmium(II)]-µ-pyridine-2,3-dicarboxylato- κ4N,O2:O3,O3'] dihydrate] top
Crystal data top
[Cd(C7H3NO4)(C12H8N2)(H2O)]·2H2OZ = 2
Mr = 511.76F(000) = 512
Triclinic, P1Dx = 1.795 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8154 (5) ÅCell parameters from 4951 reflections
b = 10.5854 (7) Åθ = 2.3–29.6°
c = 13.0681 (8) ŵ = 1.20 mm1
α = 70.934 (1)°T = 293 K
β = 77.940 (1)°Rod-like, colorless
γ = 68.698 (1)°0.40 × 0.16 × 0.15 mm
V = 946.98 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4194 independent reflections
Radiation source: fine-focus sealed tube3979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ϕ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.645, Tmax = 0.840k = 1313
6124 measured reflectionsl = 1614
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0181P)2 + 0.4298P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4194 reflectionsΔρmax = 0.28 e Å3
272 parametersΔρmin = 0.27 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (5)
Crystal data top
[Cd(C7H3NO4)(C12H8N2)(H2O)]·2H2Oγ = 68.698 (1)°
Mr = 511.76V = 946.98 (10) Å3
Triclinic, P1Z = 2
a = 7.8154 (5) ÅMo Kα radiation
b = 10.5854 (7) ŵ = 1.20 mm1
c = 13.0681 (8) ÅT = 293 K
α = 70.934 (1)°0.40 × 0.16 × 0.15 mm
β = 77.940 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4194 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3979 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.840Rint = 0.012
6124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0198 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.08Δρmax = 0.28 e Å3
4194 reflectionsΔρmin = 0.27 e Å3
272 parameters
Special details top

Experimental. Elemental analysis. Cacld. for C19H17CdN3O7: C, 44.55; H, 3.35; N, 8.21; Found: C, 44.05; H, 3.44; N, 8.53.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.351199 (16)0.150242 (13)0.791379 (10)0.02558 (5)
O10.03910 (18)0.25289 (13)0.83701 (12)0.0341 (3)
O1W0.3973 (2)0.23034 (15)0.92673 (11)0.0386 (3)
H1W10.37650.17500.98970.046*
H2W10.50910.21670.91780.046*
O20.23661 (17)0.22382 (14)0.87797 (12)0.0347 (3)
O30.39081 (19)0.04132 (16)0.87081 (13)0.0444 (4)
O40.3121 (2)0.10668 (15)0.72263 (12)0.0431 (3)
N10.2029 (2)0.02383 (15)0.85619 (12)0.0271 (3)
N20.2943 (2)0.15794 (18)0.61441 (14)0.0370 (4)
N30.3212 (2)0.37684 (16)0.67259 (13)0.0325 (3)
C10.0212 (2)0.03040 (17)0.84658 (13)0.0228 (3)
C20.0784 (2)0.04976 (17)0.83637 (13)0.0242 (3)
C30.0120 (3)0.19266 (19)0.84791 (15)0.0311 (4)
H30.05190.25000.84480.037*
C40.1965 (3)0.24943 (19)0.86391 (16)0.0336 (4)
H40.25750.34550.87400.040*
C50.2886 (3)0.16083 (19)0.86460 (16)0.0319 (4)
H50.41470.19760.87110.038*
C60.0676 (2)0.18204 (17)0.85371 (13)0.0240 (3)
C70.2739 (2)0.01160 (19)0.80796 (15)0.0286 (4)
C80.2799 (4)0.0538 (3)0.5853 (2)0.0539 (6)
H80.29530.03330.63670.065*
C90.2429 (4)0.0683 (4)0.4814 (2)0.0711 (8)
H90.23600.00790.46380.085*
C100.2171 (4)0.1952 (4)0.4069 (2)0.0715 (9)
H100.19220.20670.33730.086*
C110.2277 (3)0.3097 (3)0.43373 (18)0.0540 (6)
C120.2682 (3)0.2858 (2)0.54009 (15)0.0371 (4)
C130.2814 (3)0.4003 (2)0.57072 (15)0.0353 (4)
C140.2530 (3)0.5338 (2)0.49409 (18)0.0483 (6)
C150.2690 (4)0.6423 (2)0.5264 (2)0.0581 (7)
H150.25270.73130.47760.070*
C160.3084 (4)0.6176 (2)0.6286 (2)0.0572 (7)
H160.31870.68920.65090.069*
C170.3331 (3)0.4828 (2)0.70002 (19)0.0446 (5)
H170.35920.46670.77030.054*
C180.1968 (4)0.4480 (4)0.3597 (2)0.0708 (9)
H180.16690.46430.29030.085*
C190.2102 (4)0.5535 (4)0.3882 (2)0.0674 (8)
H190.19120.64180.33800.081*
O2W0.3981 (2)0.49790 (17)0.09955 (14)0.0559 (4)
H2W20.30590.48450.08420.067*0.50
H1W20.35890.57810.10800.067*
H3W20.45620.51710.03760.067*0.50
O3W0.0437 (3)0.49496 (17)0.09995 (15)0.0593 (5)
H1W30.00280.57360.11190.071*
H2W30.00310.49960.04650.071*0.50
H3W30.15990.48140.08330.071*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02151 (8)0.02702 (8)0.02817 (8)0.00974 (5)0.00549 (5)0.00348 (5)
O10.0248 (7)0.0268 (6)0.0536 (8)0.0105 (5)0.0005 (6)0.0146 (6)
O1W0.0330 (7)0.0508 (8)0.0362 (7)0.0193 (6)0.0036 (6)0.0105 (6)
O20.0216 (7)0.0326 (7)0.0505 (8)0.0084 (5)0.0026 (6)0.0164 (6)
O30.0263 (7)0.0505 (9)0.0554 (9)0.0196 (7)0.0050 (6)0.0044 (7)
O40.0384 (8)0.0416 (8)0.0443 (8)0.0102 (7)0.0183 (6)0.0002 (6)
N10.0205 (7)0.0260 (7)0.0348 (8)0.0076 (6)0.0066 (6)0.0058 (6)
N20.0356 (9)0.0441 (9)0.0339 (9)0.0136 (7)0.0041 (7)0.0127 (7)
N30.0307 (8)0.0316 (8)0.0301 (8)0.0100 (7)0.0001 (6)0.0041 (6)
C10.0217 (8)0.0235 (8)0.0225 (8)0.0084 (6)0.0024 (6)0.0037 (6)
C20.0229 (8)0.0242 (8)0.0252 (8)0.0087 (7)0.0041 (6)0.0040 (6)
C30.0324 (10)0.0255 (8)0.0387 (10)0.0129 (7)0.0085 (8)0.0057 (7)
C40.0336 (10)0.0225 (8)0.0405 (10)0.0038 (7)0.0093 (8)0.0058 (7)
C50.0233 (9)0.0284 (9)0.0404 (10)0.0038 (7)0.0097 (7)0.0057 (8)
C60.0240 (8)0.0245 (8)0.0243 (8)0.0090 (7)0.0039 (6)0.0053 (6)
C70.0241 (9)0.0285 (9)0.0380 (10)0.0088 (7)0.0069 (7)0.0126 (7)
C80.0603 (16)0.0619 (15)0.0513 (14)0.0235 (13)0.0057 (11)0.0264 (12)
C90.078 (2)0.097 (2)0.0637 (18)0.0357 (18)0.0071 (15)0.0462 (18)
C100.0657 (18)0.123 (3)0.0417 (14)0.0371 (18)0.0068 (13)0.0351 (17)
C110.0397 (13)0.0903 (19)0.0300 (11)0.0203 (12)0.0050 (9)0.0136 (12)
C120.0250 (9)0.0547 (12)0.0268 (9)0.0103 (9)0.0025 (7)0.0077 (8)
C130.0230 (9)0.0405 (10)0.0294 (9)0.0057 (8)0.0011 (7)0.0003 (8)
C140.0336 (11)0.0488 (13)0.0380 (11)0.0065 (10)0.0012 (9)0.0092 (9)
C150.0528 (15)0.0359 (12)0.0580 (15)0.0093 (11)0.0093 (12)0.0082 (10)
C160.0682 (17)0.0346 (11)0.0593 (15)0.0195 (11)0.0141 (13)0.0098 (11)
C170.0519 (14)0.0382 (11)0.0418 (12)0.0191 (10)0.0054 (10)0.0093 (9)
C180.0593 (17)0.111 (3)0.0266 (11)0.0262 (17)0.0137 (11)0.0059 (14)
C190.0535 (16)0.080 (2)0.0391 (13)0.0158 (14)0.0086 (11)0.0176 (13)
O2W0.0545 (10)0.0439 (9)0.0604 (11)0.0030 (8)0.0024 (8)0.0191 (8)
O3W0.0714 (12)0.0408 (9)0.0740 (12)0.0219 (8)0.0031 (10)0.0247 (8)
Geometric parameters (Å, º) top
Cd1—O12.3185 (13)C4—H40.9300
Cd1—O1W2.3336 (14)C5—H50.9300
Cd1—N32.3513 (15)C8—C91.395 (4)
Cd1—N12.3616 (14)C8—H80.9300
Cd1—O3i2.4049 (15)C9—C101.351 (5)
Cd1—N22.4151 (16)C9—H90.9300
Cd1—O4i2.5189 (16)C10—C111.400 (4)
O1—C61.256 (2)C10—H100.9300
O1W—H1W10.8630C11—C121.411 (3)
O1W—H2W10.8216C11—C181.433 (4)
O2—C61.238 (2)C12—C131.437 (3)
O3—C71.257 (2)C13—C141.410 (3)
O3—Cd1ii2.4049 (15)C14—C151.399 (4)
O4—C71.238 (2)C14—C191.422 (4)
O4—Cd1ii2.5189 (16)C15—C161.353 (4)
N1—C51.336 (2)C15—H150.9300
N1—C11.341 (2)C16—C171.396 (3)
N2—C81.324 (3)C16—H160.9300
N2—C121.356 (3)C17—H170.9300
N3—C171.322 (3)C18—C191.331 (5)
N3—C131.353 (3)C18—H180.9300
C1—C21.393 (2)C19—H190.9300
C1—C61.526 (2)O2W—H2W20.8556
C2—C31.389 (2)O2W—H1W20.8277
C2—C71.501 (2)O2W—H3W20.8415
C3—C41.377 (3)O3W—H1W30.8306
C3—H30.9300O3W—H2W30.8344
C4—C51.377 (3)O3W—H3W30.8577
O1—Cd1—O1W85.50 (5)C4—C5—H5118.9
O1—Cd1—N382.48 (5)O2—C6—O1125.52 (16)
O1W—Cd1—N387.94 (5)O2—C6—C1117.87 (15)
O1—Cd1—N170.02 (5)O1—C6—C1116.58 (15)
O1W—Cd1—N1114.38 (5)O4—C7—O3122.84 (17)
N3—Cd1—N1142.12 (5)O4—C7—C2119.52 (17)
O1—Cd1—O3i139.09 (5)O3—C7—C2117.56 (16)
O1W—Cd1—O3i78.30 (5)N2—C8—C9123.3 (3)
N3—Cd1—O3i133.35 (5)N2—C8—H8118.4
N1—Cd1—O3i82.89 (5)C9—C8—H8118.4
O1—Cd1—N291.39 (5)C10—C9—C8118.7 (3)
O1W—Cd1—N2158.39 (6)C10—C9—H9120.6
N3—Cd1—N270.46 (6)C8—C9—H9120.6
N1—Cd1—N284.31 (6)C9—C10—C11120.5 (2)
O3i—Cd1—N2116.44 (6)C9—C10—H10119.8
O1—Cd1—O4i164.61 (5)C11—C10—H10119.8
O1W—Cd1—O4i88.95 (5)C10—C11—C12117.3 (2)
N3—Cd1—O4i82.98 (5)C10—C11—C18123.3 (2)
N1—Cd1—O4i125.23 (5)C12—C11—C18119.3 (3)
O3i—Cd1—O4i52.80 (5)N2—C12—C11121.9 (2)
N2—Cd1—O4i88.50 (5)N2—C12—C13119.02 (17)
C6—O1—Cd1118.77 (11)C11—C12—C13119.1 (2)
Cd1—O1W—H1W1109.3N3—C13—C14121.7 (2)
Cd1—O1W—H2W1103.1N3—C13—C12118.94 (17)
H1W1—O1W—H2W1105.8C14—C13—C12119.32 (19)
C7—O3—Cd1ii93.36 (11)C15—C14—C13117.7 (2)
C7—O4—Cd1ii88.54 (12)C15—C14—C19122.6 (2)
C5—N1—C1119.41 (15)C13—C14—C19119.7 (3)
C5—N1—Cd1124.26 (12)C16—C15—C14119.9 (2)
C1—N1—Cd1112.35 (11)C16—C15—H15120.0
C8—N2—C12118.31 (19)C14—C15—H15120.0
C8—N2—Cd1127.04 (16)C15—C16—C17118.9 (2)
C12—N2—Cd1114.59 (13)C15—C16—H16120.5
C17—N3—C13118.51 (18)C17—C16—H16120.5
C17—N3—Cd1124.53 (14)N3—C17—C16123.2 (2)
C13—N3—Cd1116.90 (13)N3—C17—H17118.4
N1—C1—C2121.67 (15)C16—C17—H17118.4
N1—C1—C6115.02 (14)C19—C18—C11121.4 (2)
C2—C1—C6123.23 (15)C19—C18—H18119.3
C3—C2—C1117.80 (16)C11—C18—H18119.3
C3—C2—C7118.66 (15)C18—C19—C14121.2 (2)
C1—C2—C7123.46 (15)C18—C19—H19119.4
C4—C3—C2120.00 (17)C14—C19—H19119.4
C4—C3—H3120.0H2W2—O2W—H1W2105.8
C2—C3—H3120.0H2W2—O2W—H3W2101.4
C3—C4—C5118.55 (16)H1W2—O2W—H3W297.7
C3—C4—H4120.7H1W3—O3W—H2W3106.6
C5—C4—H4120.7H1W3—O3W—H3W3107.2
N1—C5—C4122.22 (17)H2W3—O3W—H3W3109.5
N1—C5—H5118.9
O1W—Cd1—O1—C6131.03 (14)Cd1—N1—C5—C4155.90 (15)
N3—Cd1—O1—C6140.47 (14)C3—C4—C5—N13.7 (3)
N1—Cd1—O1—C613.05 (13)Cd1—O1—C6—O2179.59 (14)
O3i—Cd1—O1—C664.70 (16)Cd1—O1—C6—C12.4 (2)
N2—Cd1—O1—C670.38 (14)N1—C1—C6—O2158.83 (16)
O4i—Cd1—O1—C6159.78 (16)C2—C1—C6—O218.1 (2)
O1—Cd1—N1—C5179.92 (16)N1—C1—C6—O119.4 (2)
O1W—Cd1—N1—C5104.93 (15)C2—C1—C6—O1163.76 (16)
N3—Cd1—N1—C5133.86 (14)Cd1ii—O4—C7—O315.87 (19)
O3i—Cd1—N1—C531.25 (15)Cd1ii—O4—C7—C2167.34 (15)
N2—Cd1—N1—C586.36 (15)Cd1ii—O3—C7—O416.7 (2)
O4i—Cd1—N1—C52.24 (17)Cd1ii—O3—C7—C2166.48 (13)
O1—Cd1—N1—C122.61 (11)C3—C2—C7—O4119.5 (2)
O1W—Cd1—N1—C197.76 (12)C1—C2—C7—O457.2 (3)
N3—Cd1—N1—C123.44 (17)C3—C2—C7—O357.5 (2)
O3i—Cd1—N1—C1171.45 (13)C1—C2—C7—O3125.86 (19)
N2—Cd1—N1—C170.95 (12)C12—N2—C8—C91.3 (4)
O4i—Cd1—N1—C1155.06 (11)Cd1—N2—C8—C9178.6 (2)
O1—Cd1—N2—C898.04 (19)N2—C8—C9—C101.2 (4)
O1W—Cd1—N2—C8179.31 (17)C8—C9—C10—C110.0 (5)
N3—Cd1—N2—C8179.6 (2)C9—C10—C11—C120.8 (4)
N1—Cd1—N2—C828.28 (19)C9—C10—C11—C18178.2 (3)
O3i—Cd1—N2—C850.9 (2)C8—N2—C12—C110.4 (3)
O4i—Cd1—N2—C897.4 (2)Cd1—N2—C12—C11178.00 (16)
O1—Cd1—N2—C1279.33 (14)C8—N2—C12—C13179.3 (2)
O1W—Cd1—N2—C121.9 (2)Cd1—N2—C12—C131.7 (2)
N3—Cd1—N2—C122.19 (13)C10—C11—C12—N20.6 (3)
N1—Cd1—N2—C12149.10 (14)C18—C11—C12—N2178.4 (2)
O3i—Cd1—N2—C12131.76 (13)C10—C11—C12—C13179.6 (2)
O4i—Cd1—N2—C1285.28 (14)C18—C11—C12—C131.3 (3)
O1—Cd1—N3—C1785.52 (17)C17—N3—C13—C140.1 (3)
O1W—Cd1—N3—C170.21 (17)Cd1—N3—C13—C14177.42 (15)
N1—Cd1—N3—C17128.57 (16)C17—N3—C13—C12179.96 (18)
O3i—Cd1—N3—C1771.96 (19)Cd1—N3—C13—C122.7 (2)
N2—Cd1—N3—C17179.69 (18)N2—C12—C13—N30.6 (3)
O4i—Cd1—N3—C1789.41 (17)C11—C12—C13—N3179.66 (18)
O1—Cd1—N3—C1391.62 (13)N2—C12—C13—C14179.52 (18)
O1W—Cd1—N3—C13177.35 (13)C11—C12—C13—C140.2 (3)
N1—Cd1—N3—C1348.57 (17)N3—C13—C14—C150.6 (3)
O3i—Cd1—N3—C13110.90 (14)C12—C13—C14—C15179.3 (2)
N2—Cd1—N3—C132.56 (13)N3—C13—C14—C19179.6 (2)
O4i—Cd1—N3—C1393.46 (13)C12—C13—C14—C190.6 (3)
C5—N1—C1—C25.2 (3)C13—C14—C15—C160.8 (4)
Cd1—N1—C1—C2153.32 (13)C19—C14—C15—C16179.4 (2)
C5—N1—C1—C6171.73 (16)C14—C15—C16—C170.3 (4)
Cd1—N1—C1—C629.74 (17)C13—N3—C17—C160.6 (3)
N1—C1—C2—C36.6 (3)Cd1—N3—C17—C16177.74 (18)
C6—C1—C2—C3170.04 (16)C15—C16—C17—N30.5 (4)
N1—C1—C2—C7170.04 (16)C10—C11—C18—C19179.3 (3)
C6—C1—C2—C713.3 (3)C12—C11—C18—C191.7 (4)
C1—C2—C3—C42.9 (3)C11—C18—C19—C141.0 (4)
C7—C2—C3—C4173.96 (17)C15—C14—C19—C18179.6 (3)
C2—C3—C4—C52.0 (3)C13—C14—C19—C180.2 (4)
C1—N1—C5—C40.1 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3W3···O2W0.861.992.780 (3)152
O3W—H2W3···O3Wiii0.831.982.795 (4)164
O3W—H1W3···O1iv0.832.062.860 (2)161
O2W—H1W2···O2iv0.832.022.840 (2)173
O2W—H3W2···O2Wv0.841.932.748 (3)163
O2W—H2W2···O3W0.861.982.780 (3)155
O1W—H2W1···O2i0.821.972.7784 (19)168
O1W—H1W1···O3vi0.861.902.751 (2)167
Symmetry codes: (i) x+1, y, z; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+1, z; (vi) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Cd(C7H3NO4)(C12H8N2)(H2O)]·2H2O
Mr511.76
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8154 (5), 10.5854 (7), 13.0681 (8)
α, β, γ (°)70.934 (1), 77.940 (1), 68.698 (1)
V3)946.98 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.40 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.645, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
6124, 4194, 3979
Rint0.012
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.08
No. of reflections4194
No. of parameters272
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3W3···O2W0.861.992.780 (3)152.3
O3W—H2W3···O3Wi0.831.982.795 (4)164.1
O3W—H1W3···O1ii0.832.062.860 (2)161.4
O2W—H1W2···O2ii0.832.022.840 (2)173.4
O2W—H3W2···O2Wiii0.841.932.748 (3)162.8
O2W—H2W2···O3W0.861.982.780 (3)154.7
O1W—H2W1···O2iv0.821.972.7784 (19)168.4
O1W—H1W1···O3v0.861.902.751 (2)166.7
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y, z+2.
 

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant No. 20671074) and the Foundation of the Education Department of Hubei Province (No. Q20081705).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEisenberg, D. & Kauzmann, W. (1969). The Structure and Properties of Water. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGutschke, S. O. H., Slawin, A. M. Z. & Wood, P. T. (1995). J. Chem. Soc. Chem. Commun. pp. 2197–2198.  CrossRef Web of Science Google Scholar
First citationLi, M., Xiang, J. F., Yuan, L. J., Wu, S. M., Chen, S. P. & Sun, J. T. (2006). Cryst. Growth Des. 9, 2036–2040.  Web of Science CSD CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Z. T., Liao, Z. L., Jiang, Y. S., Li, G. H., Li, G. D. & Chen, J. S. (2004). Chem. Commun. pp. 1814–1815.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1554-m1555
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds