organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-[2-(2,6-di­chloro­anilino)­phenyl]­acetate

aDepartment of Chemistry, University of Engineering and Technology, Lahore, Pakistan, bDepartment of Chemistry, Quaid-I-Azam Univeristy, Islamabad 45320, Pakistan, and cDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, People's Republic of China
*Correspondence e-mail: qadeerqau@yahoo.com

(Received 12 November 2008; accepted 17 November 2008; online 20 November 2008)

In the title compound, C15H13Cl2NO2, the dihedral angle between the aromatic rings is 63.80 (12)°. The conformation may be stabilized by a weak N—H⋯O hydrogen bond. In the crystal structure, a short C—Cl⋯π interaction occurs, with a Cl⋯π separation of 3.5706 (13) Å.

Related literature

For general background, see: Hashem et al. (2007[Hashem, A. I., Youssef, A. S. A., Kandeel, K. A. & Abou-Elmagd, W. S. I. (2007). Eur. J. Med. Chem. 42, 934-939.]); Husain et al. (2005[Husain, A., Khan, M. S. Y., Hasan, S. M. & Alam, M. M. (2005). Eur. J. Med. Chem. 40, 1394-1404.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13Cl2NO2

  • Mr = 310.16

  • Monoclinic, P 21 /n

  • a = 4.9319 (4) Å

  • b = 20.0288 (14) Å

  • c = 14.5542 (10) Å

  • β = 97.711 (1)°

  • V = 1424.66 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 173 (2) K

  • 0.38 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.850, Tmax = 1.000 (expected range = 0.776–0.913)

  • 8526 measured reflections

  • 3423 independent reflections

  • 2777 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.171

  • S = 1.04

  • 3423 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.88 2.64 3.152 (2) 118

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Esters are important intermediates in heterocyclic chemistry and have been used for the synthesis of various biologically active five-membered heterocyles such as butenolides, pyrrolones (Husain et al., 2005), oxadiazoles and triazoles (Hashem et al., 2007). In view of the versatility of these compounds, we have synthesized the title compound and report herein its crystal structure.

In the title compound (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The planar ester group (O1/O2/C13/C14/C15) is oriented with respect to the plane of the benzene ring (C7–C12) at an angle 41.33 (2)°. There is a short intramolecular N—H···O hydrogen bond (Table 1) and a π-ring interaction of the type C—Cl···Cg with Cl1···Cg1 (centroid of C1–C6 ring) perpendicular distance 3.5706 (13) Å.

Related literature top

For general background, see: Hashem et al. (2007); Husain et al.(2005). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 2-(2,6-dichlorophenylamino)benzoic acid (2.81 g, 10 mmol) and absolute methanol (50 ml) in the presence of a few drops of sulfuric acid was refluxed for 5 h. The excess of the solvent was removed by distillation. The solid residue was filltered off, washed with water and recystallized from ethanol (30%) to give the title compound. Suitable single crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature. (Yield, 88%; m.p. 331–332 K)

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å and C—H = 0.93, 0.97 and 0.96 Å for aryl, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(aryl and methylene C and O)

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme; thermal ellipsoids have been plotted at 50% probability level.
[Figure 2] Fig. 2. The formation of the title compound.
Methyl 2-[2-(2,6-dichloroanilino)phenyl]acetate top
Crystal data top
C15H13Cl2NO2F(000) = 640
Mr = 310.16Dx = 1.446 Mg m3
Monoclinic, P21/nMelting point: 331 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 4.9319 (4) ÅCell parameters from 9949 reflections
b = 20.0288 (14) Åθ = 2.4–28.3°
c = 14.5542 (10) ŵ = 0.46 mm1
β = 97.711 (1)°T = 173 K
V = 1424.66 (18) Å3Block, pale yellow
Z = 40.38 × 0.24 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3423 independent reflections
Radiation source: fine-focus sealed tube2777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and ϕ scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.850, Tmax = 1.000k = 2626
8526 measured reflectionsl = 1915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1042P)2 + 0.5254P]
where P = (Fo2 + 2Fc2)/3
3423 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C15H13Cl2NO2V = 1424.66 (18) Å3
Mr = 310.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9319 (4) ŵ = 0.46 mm1
b = 20.0288 (14) ÅT = 173 K
c = 14.5542 (10) Å0.38 × 0.24 × 0.20 mm
β = 97.711 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3423 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2777 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 1.000Rint = 0.020
8526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.04Δρmax = 0.62 e Å3
3423 reflectionsΔρmin = 0.52 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8063 (4)0.18670 (11)0.42183 (15)0.0459 (5)
C20.9559 (6)0.23352 (14)0.47685 (18)0.0592 (7)
H2A0.94010.23610.54110.071*
C31.1298 (6)0.27691 (13)0.4384 (2)0.0646 (7)
H3A1.23650.30840.47640.077*
C41.1462 (6)0.27396 (11)0.3451 (2)0.0572 (6)
H4A1.25860.30460.31780.069*
C50.9985 (5)0.22618 (10)0.29100 (16)0.0454 (5)
C60.8295 (4)0.17922 (9)0.32730 (13)0.0386 (4)
C70.6955 (4)0.06202 (9)0.29122 (13)0.0360 (4)
C80.8988 (5)0.03457 (12)0.35515 (15)0.0468 (5)
H8A1.03480.06240.38790.056*
C90.9027 (6)0.03407 (14)0.37114 (18)0.0614 (7)
H9A1.04100.05290.41530.074*
C100.7088 (7)0.07451 (13)0.3237 (2)0.0676 (8)
H10A0.71420.12130.33470.081*
C110.5040 (5)0.04753 (12)0.25957 (19)0.0549 (6)
H11A0.36960.07590.22710.066*
C120.4948 (4)0.02126 (10)0.24258 (14)0.0388 (4)
C130.2660 (4)0.04998 (12)0.17557 (15)0.0434 (5)
H13A0.19750.09070.20330.052*
H13B0.11400.01730.16700.052*
C140.3438 (4)0.06753 (10)0.08154 (14)0.0374 (4)
C150.1597 (4)0.09199 (12)0.07671 (14)0.0433 (5)
H15A0.02260.09580.11250.065*
H15B0.26260.05660.10320.065*
H15C0.25700.13450.07890.065*
Cl10.57692 (13)0.13766 (4)0.47192 (4)0.0602 (2)
Cl21.01835 (17)0.22543 (3)0.17271 (4)0.0654 (2)
N10.6851 (4)0.13126 (8)0.27114 (12)0.0425 (4)
H1A0.58200.14470.22050.051*
O10.5844 (3)0.07442 (10)0.06748 (12)0.0591 (5)
O20.1341 (3)0.07623 (9)0.01586 (12)0.0550 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0417 (11)0.0525 (12)0.0422 (11)0.0138 (9)0.0005 (8)0.0030 (9)
C20.0595 (15)0.0663 (15)0.0479 (12)0.0187 (12)0.0069 (10)0.0198 (11)
C30.0656 (16)0.0500 (13)0.0718 (17)0.0071 (11)0.0138 (13)0.0208 (12)
C40.0564 (14)0.0363 (10)0.0754 (17)0.0006 (9)0.0040 (12)0.0007 (10)
C50.0512 (12)0.0358 (9)0.0473 (11)0.0055 (8)0.0006 (9)0.0021 (8)
C60.0373 (10)0.0373 (9)0.0385 (10)0.0064 (7)0.0048 (7)0.0008 (7)
C70.0370 (9)0.0388 (9)0.0331 (9)0.0030 (7)0.0075 (7)0.0035 (7)
C80.0460 (11)0.0554 (12)0.0386 (10)0.0100 (9)0.0045 (8)0.0072 (9)
C90.0735 (17)0.0627 (15)0.0506 (13)0.0289 (13)0.0176 (12)0.0193 (11)
C100.097 (2)0.0419 (12)0.0690 (17)0.0124 (13)0.0313 (16)0.0124 (11)
C110.0661 (15)0.0420 (11)0.0606 (14)0.0056 (10)0.0230 (12)0.0000 (10)
C120.0384 (10)0.0412 (10)0.0385 (10)0.0019 (7)0.0111 (8)0.0003 (7)
C130.0311 (9)0.0565 (12)0.0430 (11)0.0068 (8)0.0073 (8)0.0036 (9)
C140.0286 (9)0.0407 (9)0.0436 (10)0.0040 (7)0.0075 (7)0.0060 (8)
C150.0329 (10)0.0601 (12)0.0359 (10)0.0045 (8)0.0005 (7)0.0023 (8)
Cl10.0537 (4)0.0771 (4)0.0521 (4)0.0141 (3)0.0159 (3)0.0074 (3)
Cl20.0911 (5)0.0551 (4)0.0509 (4)0.0072 (3)0.0123 (3)0.0118 (2)
N10.0489 (10)0.0383 (8)0.0363 (8)0.0016 (7)0.0084 (7)0.0037 (6)
O10.0273 (7)0.1015 (14)0.0486 (9)0.0057 (7)0.0057 (6)0.0102 (9)
O20.0413 (8)0.0703 (11)0.0532 (10)0.0023 (7)0.0060 (7)0.0026 (8)
Geometric parameters (Å, º) top
C1—C21.381 (3)C9—C101.367 (5)
C1—C61.404 (3)C9—H9A0.9500
C1—Cl11.731 (3)C10—C111.390 (4)
C2—C31.390 (4)C10—H10A0.9500
C2—H2A0.9500C11—C121.399 (3)
C3—C41.371 (4)C11—H11A0.9500
C3—H3A0.9500C12—C131.503 (3)
C4—C51.383 (3)C13—C141.511 (3)
C4—H4A0.9500C13—H13A0.9900
C5—C61.406 (3)C13—H13B0.9900
C5—Cl21.738 (2)C14—O11.239 (2)
C6—N11.393 (3)C14—O21.322 (3)
C7—C81.387 (3)C15—O21.406 (3)
C7—C121.400 (3)C15—H15A0.9800
C7—N11.417 (2)C15—H15B0.9800
C8—C91.394 (4)C15—H15C0.9800
C8—H8A0.9500N1—H1A0.8800
C2—C1—C6122.2 (2)C9—C10—H10A119.8
C2—C1—Cl1118.01 (19)C11—C10—H10A119.8
C6—C1—Cl1119.72 (17)C10—C11—C12120.3 (2)
C1—C2—C3120.1 (2)C10—C11—H11A119.8
C1—C2—H2A120.0C12—C11—H11A119.8
C3—C2—H2A120.0C11—C12—C7118.7 (2)
C4—C3—C2119.5 (2)C11—C12—C13119.7 (2)
C4—C3—H3A120.2C7—C12—C13121.54 (18)
C2—C3—H3A120.2C12—C13—C14114.64 (16)
C3—C4—C5119.8 (3)C12—C13—H13A108.6
C3—C4—H4A120.1C14—C13—H13A108.6
C5—C4—H4A120.1C12—C13—H13B108.6
C4—C5—C6122.8 (2)C14—C13—H13B108.6
C4—C5—Cl2118.4 (2)H13A—C13—H13B107.6
C6—C5—Cl2118.79 (16)O1—C14—O2122.7 (2)
N1—C6—C1123.1 (2)O1—C14—C13122.73 (18)
N1—C6—C5121.52 (19)O2—C14—C13114.61 (16)
C1—C6—C5115.29 (19)O2—C15—H15A109.5
C8—C7—C12120.44 (19)O2—C15—H15B109.5
C8—C7—N1121.95 (19)H15A—C15—H15B109.5
C12—C7—N1117.59 (17)O2—C15—H15C109.5
C7—C8—C9119.7 (2)H15A—C15—H15C109.5
C7—C8—H8A120.1H15B—C15—H15C109.5
C9—C8—H8A120.1C6—N1—C7123.53 (16)
C10—C9—C8120.5 (2)C6—N1—H1A118.2
C10—C9—H9A119.8C7—N1—H1A118.2
C8—C9—H9A119.8C14—O2—C15124.07 (17)
C9—C10—C11120.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.882.643.152 (2)118

Experimental details

Crystal data
Chemical formulaC15H13Cl2NO2
Mr310.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)4.9319 (4), 20.0288 (14), 14.5542 (10)
β (°) 97.711 (1)
V3)1424.66 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.38 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.850, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8526, 3423, 2777
Rint0.020
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.171, 1.04
No. of reflections3423
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.52

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.882.6363.152 (2)118
 

Acknowledgements

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHashem, A. I., Youssef, A. S. A., Kandeel, K. A. & Abou-Elmagd, W. S. I. (2007). Eur. J. Med. Chem. 42, 934–939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHusain, A., Khan, M. S. Y., Hasan, S. M. & Alam, M. M. (2005). Eur. J. Med. Chem. 40, 1394–1404.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds