organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[4-(Methyl­sulfon­yl)phen­yl]acetic acid

aDepartment of Chemistry, Lishui University, 323000 Lishui, Zhejiang Province, People's Republic of China
*Correspondence e-mail: guosr9608@163.com

(Received 23 October 2008; accepted 7 November 2008; online 26 November 2008)

In the crystal structure of the title compound, C9H10O4S, centrosymmetrically related mol­ecules are linked into dimers by inter­molecular O—H⋯O hydrogen bonds. Unconventional C—H⋯O hydrogen-bond inter­actions are also present, connecting dimers into a three-dimensional network.

Related literature

For general background on the properties of the title compound and its derivatives, see: Parimalan et al. (2008[Parimalan, R., Giridhar, P. & Ravishankar, G. A. (2008). Ind. Crop. Prod. 28, 122-127.]); Giridhar et al. (2006[Giridhar, P., Vijaya Ramu, D. & Ravishankar, G. A. (2006). Trop. Sci. 43, 92-95.]). For the crystal structures of related compounds, see: Guo & Yuan (2006[Guo, S.-R. & Yuan, Y.-Q. (2006). Acta Cryst. E62, o5707-o5708.]); Hartung et al. (2004[Hartung, J., Špehar, K., Svoboda, I. & Fuess, H. (2004). Acta Cryst. E60, o95-o96.]); Hodgson & Asplund (1991[Hodgson, D. J. & Asplund, R. O. (1991). Acta Cryst. C47, 1986-1987.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10O4S

  • Mr = 214.23

  • Monoclinic, P 21 /c

  • a = 19.086 (7) Å

  • b = 4.9711 (18) Å

  • c = 10.724 (4) Å

  • β = 106.102 (6)°

  • V = 977.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 (2) K

  • 0.52 × 0.30 × 0.24 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.853, Tmax = 0.928

  • 4462 measured reflections

  • 1638 independent reflections

  • 1502 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.140

  • S = 1.11

  • 1638 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.82 1.87 2.693 (3) 175
C3—H3⋯O2ii 0.93 2.53 3.287 (3) 139
C1—H1B⋯O1iii 0.96 2.45 3.365 (4) 160
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C9H10O4S, and its substituted derivatives have been found to possess an auxin-like activity (Parimalan et al., 2008; Giridhar et al., 2006). These compounds, which are predominantly found in fruits, can be used in the synthesis of pharmaceutical intermediates, some perfumes and non-steroidal anti-inflammatory drugs.

In the molecule of the title compound (Fig. 1), bond lengths and angles agree well with those observed in similar compounds (Guo & Yuan, 2006; Hartung et al., 2004; Hodgson & Asplund, 1991). The SO bond lengths within the SO2Me group are not significantly different, with an average value of 1.4366 (10) Å. The average bond length for the two C—S bonds is 1.762 (3) Å. In the crystal packing, centrosymmetrically related molecules are linked into dimers by intermolecular O—H···O hydrogen bonds (Table 1) generating an eight-membered ring of graph set R22(8) (Bernstein et al., 1995). The dimers are further linked into a three-dimensional network by unconventional C—H···O hydrogen bonding interactions. The corresponding phenylacetic acid derive without the SO2Me group (Hartung et al., 2004) forms helical columns of single enantiomers linked by hydrogen bonds between the acidic proton of one molecule and the methoxy O atom of a neighbouring molecule, to give an overall racemic structure.

Related literature top

For general background on the properties of the title compound and it derivatives, see: Parimalan et al. (2008); Giridhar et al. (2006). For the crystal structures of related compounds, see: Guo & Yuan (2006); Hartung et al. (2004); Hodgson & Asplund (1991). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

1-(4-Methanesulfonyl-phenyl)-ethanone (20 mmol), morpholine (60 mmol) and elemental sulfur (40 mmol) were added in a round-bottom flask and refluxed for 2 h at 398 K. A 3N solution of NaOH (20 ml) was then added, and the reaction mixture refluxed for an additional 30 min. After cooling, the mixture was filtered and the filtrate was acidified with HCl to pH 6. The solution was again filtered off and washed with ethyl acetate. The resulting aqueous fraction was finally acidified with diluted HCl, to yield the pure product as a white solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol/water (1:1 v/v) solution.

Refinement top

All H atoms were placed at calculated positions and constrained to ride on their parent atoms, with O—H = 0.82 Å, C—H = 0.93-0.97 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for hydroxy and methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labeling scheme and 50% probability displacement ellipsoids.
[4-(Methylsulfonyl)phenyl]acetic acid top
Crystal data top
C9H10O4SF(000) = 448
Mr = 214.23Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2824 reflections
a = 19.086 (7) Åθ = 2.2–27.7°
b = 4.9711 (18) ŵ = 0.32 mm1
c = 10.724 (4) ÅT = 298 K
β = 106.102 (6)°Block, colourless
V = 977.5 (6) Å30.52 × 0.30 × 0.24 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
1638 independent reflections
Radiation source: fine-focus sealed tube1502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2222
Tmin = 0.853, Tmax = 0.928k = 55
4462 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0848P)2 + 0.3788P]
where P = (Fo2 + 2Fc2)/3
1638 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C9H10O4SV = 977.5 (6) Å3
Mr = 214.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.086 (7) ŵ = 0.32 mm1
b = 4.9711 (18) ÅT = 298 K
c = 10.724 (4) Å0.52 × 0.30 × 0.24 mm
β = 106.102 (6)°
Data collection top
Bruker APEX area-detector
diffractometer
1638 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1502 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.928Rint = 0.020
4462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.11Δρmax = 0.24 e Å3
1638 reflectionsΔρmin = 0.43 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38734 (3)0.64558 (12)1.01463 (5)0.0408 (3)
O10.41630 (11)0.5716 (4)0.90951 (18)0.0609 (6)
O20.36962 (11)0.4358 (4)1.09321 (19)0.0575 (5)
O30.07977 (10)0.9489 (5)0.6087 (2)0.0694 (7)
O40.00360 (10)1.2830 (5)0.6090 (2)0.0677 (6)
H40.01971.20970.54180.102*
C10.44823 (14)0.8670 (5)1.1176 (3)0.0487 (6)
H1A0.49470.78071.15010.073*
H1B0.42960.91591.18890.073*
H1C0.45371.02561.07010.073*
C20.30708 (12)0.8358 (4)0.9483 (2)0.0361 (5)
C30.30404 (13)1.0060 (5)0.8448 (2)0.0425 (6)
H30.34401.02260.81170.051*
C40.24133 (14)1.1507 (5)0.7913 (2)0.0481 (6)
H4A0.23931.26620.72210.058*
C50.18090 (13)1.1260 (5)0.8396 (2)0.0434 (6)
C60.18554 (13)0.9570 (6)0.9437 (3)0.0491 (6)
H60.14580.94130.97750.059*
C70.24791 (13)0.8111 (5)0.9986 (2)0.0457 (6)
H70.25020.69751.06850.055*
C80.11162 (14)1.2792 (6)0.7781 (3)0.0571 (7)
H8A0.08381.29550.84100.069*
H8B0.12441.45940.75740.069*
C90.06426 (13)1.1525 (5)0.6574 (3)0.0451 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0481 (4)0.0392 (4)0.0331 (4)0.0129 (2)0.0079 (3)0.0027 (2)
O10.0635 (11)0.0752 (13)0.0449 (11)0.0256 (10)0.0164 (9)0.0110 (10)
O20.0767 (13)0.0387 (10)0.0564 (12)0.0120 (9)0.0176 (10)0.0082 (8)
O30.0530 (11)0.0703 (14)0.0648 (13)0.0194 (10)0.0170 (9)0.0235 (11)
O40.0509 (11)0.0665 (13)0.0667 (14)0.0203 (10)0.0155 (9)0.0117 (11)
C10.0470 (13)0.0516 (15)0.0415 (14)0.0117 (11)0.0024 (11)0.0031 (11)
C20.0381 (11)0.0374 (12)0.0294 (11)0.0036 (9)0.0038 (9)0.0038 (9)
C30.0420 (12)0.0509 (14)0.0338 (13)0.0017 (10)0.0090 (10)0.0022 (10)
C40.0541 (14)0.0492 (15)0.0349 (13)0.0037 (11)0.0022 (11)0.0066 (10)
C50.0387 (12)0.0450 (14)0.0378 (13)0.0031 (10)0.0038 (10)0.0110 (10)
C60.0386 (12)0.0585 (15)0.0499 (15)0.0000 (11)0.0116 (11)0.0038 (13)
C70.0486 (13)0.0489 (14)0.0401 (14)0.0013 (11)0.0132 (11)0.0062 (11)
C80.0487 (14)0.0545 (16)0.0557 (17)0.0130 (13)0.0061 (12)0.0132 (13)
C90.0364 (12)0.0471 (15)0.0449 (14)0.0044 (10)0.0001 (10)0.0002 (11)
Geometric parameters (Å, º) top
S1—O11.4342 (19)C3—C41.378 (4)
S1—O21.439 (2)C3—H30.9300
S1—C11.752 (3)C4—C51.394 (4)
S1—C21.773 (2)C4—H4A0.9300
O3—C91.212 (3)C5—C61.380 (4)
O4—C91.303 (3)C5—C81.510 (3)
O4—H40.8200C6—C71.379 (4)
C1—H1A0.9600C6—H60.9300
C1—H1B0.9600C7—H70.9300
C1—H1C0.9600C8—C91.497 (4)
C2—C31.384 (3)C8—H8A0.9700
C2—C71.386 (3)C8—H8B0.9700
O1—S1—O2118.61 (12)C3—C4—H4A119.6
O1—S1—C1108.87 (13)C5—C4—H4A119.6
O2—S1—C1107.99 (13)C6—C5—C4118.7 (2)
O1—S1—C2107.44 (11)C6—C5—C8120.8 (2)
O2—S1—C2107.72 (12)C4—C5—C8120.5 (2)
C1—S1—C2105.44 (11)C7—C6—C5121.3 (2)
C9—O4—H4109.5C7—C6—H6119.3
S1—C1—H1A109.5C5—C6—H6119.3
S1—C1—H1B109.5C6—C7—C2119.2 (2)
H1A—C1—H1B109.5C6—C7—H7120.4
S1—C1—H1C109.5C2—C7—H7120.4
H1A—C1—H1C109.5C9—C8—C5114.3 (2)
H1B—C1—H1C109.5C9—C8—H8A108.7
C3—C2—C7120.6 (2)C5—C8—H8A108.7
C3—C2—S1119.18 (17)C9—C8—H8B108.7
C7—C2—S1120.22 (18)C5—C8—H8B108.7
C4—C3—C2119.5 (2)H8A—C8—H8B107.6
C4—C3—H3120.3O3—C9—O4122.7 (2)
C2—C3—H3120.3O3—C9—C8124.2 (2)
C3—C4—C5120.8 (2)O4—C9—C8113.0 (2)
O1—S1—C2—C335.3 (2)C3—C4—C5—C8178.3 (2)
O2—S1—C2—C3164.15 (19)C4—C5—C6—C71.0 (4)
C1—S1—C2—C380.7 (2)C8—C5—C6—C7178.4 (2)
O1—S1—C2—C7143.9 (2)C5—C6—C7—C20.2 (4)
O2—S1—C2—C715.0 (2)C3—C2—C7—C60.5 (4)
C1—S1—C2—C7100.1 (2)S1—C2—C7—C6178.71 (19)
C7—C2—C3—C40.3 (4)C6—C5—C8—C998.9 (3)
S1—C2—C3—C4178.84 (19)C4—C5—C8—C980.5 (3)
C2—C3—C4—C50.4 (4)C5—C8—C9—O32.1 (4)
C3—C4—C5—C61.1 (4)C5—C8—C9—O4177.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.872.693 (3)175
C3—H3···O2ii0.932.533.287 (3)139
C1—H1B···O1iii0.962.453.365 (4)160
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H10O4S
Mr214.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)19.086 (7), 4.9711 (18), 10.724 (4)
β (°) 106.102 (6)
V3)977.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.52 × 0.30 × 0.24
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.853, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
4462, 1638, 1502
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.140, 1.11
No. of reflections1638
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.43

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.872.693 (3)175.4
C3—H3···O2ii0.932.533.287 (3)138.6
C1—H1B···O1iii0.962.453.365 (4)159.5
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors thank Zhengjiang Natural Science Foundation for financial support (Y407240).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGiridhar, P., Vijaya Ramu, D. & Ravishankar, G. A. (2006). Trop. Sci. 43, 92-95.  CrossRef Google Scholar
First citationGuo, S.-R. & Yuan, Y.-Q. (2006). Acta Cryst. E62, o5707–o5708.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHartung, J., Špehar, K., Svoboda, I. & Fuess, H. (2004). Acta Cryst. E60, o95–o96.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHodgson, D. J. & Asplund, R. O. (1991). Acta Cryst. C47, 1986–1987.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParimalan, R., Giridhar, P. & Ravishankar, G. A. (2008). Ind. Crop. Prod. 28, 122-127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds