organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2322-o2323

N-Butyl-4-chloro­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 11 October 2008; accepted 6 November 2008; online 13 November 2008)

In the title benzamide derivative, C11H14ClNO, the chloro­benzene and butyl­amine groups are each planar, with mean deviations from the planes of 0.013 and 0.030 Å, respectively, and a dihedral angle of 2.54 (9)° between the two planes. In the crystal structure, N—H⋯O hydrogen bonds link mol­ecules in rows along a. Short inter­molecular Cl⋯Cl inter­actions [3.4225 (5) Å] link these rows into sheets in the ac plane. Additional weak C—H⋯O and C—H⋯π inter­actions generate a three-dimensional network.

Related literature

For details of the biological activity of benzanilides, see: Olsson et al., (2002[Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971-978.]); Lindgren et al. (2001[Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267-277.]); Calderone et al. (2006[Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761-767.]). For the use of benzamides in organic synthesis, see: Reinaud et al. (1991[Reinaud, O., Capdevielle, P. & Maumy, M. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 2129-2134,.]); Zhichkin et al. (2007[Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415-1418.]); Beccalli et al. (2005[Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61-68.]); For the fluorescence properties of benzanilides, see: Lewis & Long (1998[Lewis, F. D. & Long, T. M. (1998). J. Phys. Chem. A, 102, 5327-5332.]). For related structures see: Saeed et al. (2008[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.]); Hempel et al. (2005[Hempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (2005). Acta Cryst. E61, o2283-o2285.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related literature, see: Vega-Noverola et al. (1989[Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.]); Yoo et al. (2005[Yoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem. 70, 6941-6943.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14ClNO

  • Mr = 211.68

  • Triclinic, [P \overline 1]

  • a = 5.1702 (4) Å

  • b = 7.8979 (5) Å

  • c = 13.2978 (9) Å

  • α = 89.275 (3)°

  • β = 84.863 (4)°

  • γ = 77.165 (4)°

  • V = 527.29 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 81 (2) K

  • 0.42 × 0.30 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.820, Tmax = 0.974

  • 6632 measured reflections

  • 3445 independent reflections

  • 3050 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.04

  • 3445 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O1i 0.831 (15) 2.203 (15) 3.0164 (10) 166.3 (13)
C3—H3⋯O1ii 0.95 2.66 3.3146 (11) 127
C8—H8ACg1iii 0.99 2.84 3.697 (16) 145
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+2, -z; (iii) -x+1, -y, -z. Cg1 is the centroid of the C2–C7 benzene ring.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The benzanilide core is present in compounds with such a wide range of biological activities that it has been called a privileged structure. N-substituted benzamides are well known anticancer compounds and the mechanism of action for N-substituted benzamide-induced apoptosis has been studied, using declopramide as a lead compound (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor- B and nuclear factor of activated T cells activity while inducing activator protein 1 activity in T lymphocytes (Lindgren et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-noverola et al., 1989), while heterocyclic analogs of benzanilide derivatives are potassium channel activators (Calderone et al., 2006). o-Aryloxylation of N-substituted benzamides induced by the copper(II)/trimethylamine N-oxide system has been studied (Reinaud et al., 1991). N-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005). A one-pot conversion of 2-nitro-n-arylbenzamides to 2,3-dihydro-1H-quinazoline-4-ones has also been reported (Yoo et al., 2005). The anomalous dual fluorescence of benzanilides has been assigned to the two lowest benzanilide singlet states (Lewis & Long, 1998)

As part of our work on the structure of benzanildes and related compounds, we report here the structure of the title benzamide derivative, I, Fig. 1. The C1···C7/Cl system is planar with a maximum deviation of 0.0161 (7) Å from the least squares plane. The carbonyl oxygen atom O1 is displaced by 0.6102 (10) Å from this plane. The butylamine N1/C8···C11 fragment is also planar, maximum deviation 0.0365 (7) Å for C9. The dihedral angle between these two planes is 2.54 (9) °. Bond distances within the molecule are normal (Allen et al., 1987) and similar to those found in the structures of related 4-chlorobenzamide derivatives (Saeed et al., 2008, Hempel et al., 2005).

In the crystal structure N1—HN1···O1 hydrogen bonds, Table 1, link molecules into rows along a. Cl1···Cl1 interactions at 3.4225 (5) Å bridge these rows to form sheets in the ac plane, Fig. 2. The sheets are interconnected by weak C3—H3···O1 hydrogen bonds and C8—H8···π interactions involving the C2···C7 benzene ring to generate a three dimensional network, Fig. 3.

Related literature top

For details of the biological activity of benzanilides, see: Olsson et al., (2002); Lindgren et al. (2001); Calderone et al. (2006). For the use of benzamides in organic synthesis, see: Reinaud et al. (1991); Zhichkin et al. (2007); Beccalli et al. (2005); For the fluorescence properties of benzanilides, see: (Lewis & Long, 1998). For related structures see: Saeed et al. (2008); Hempel et al. (2005). For reference structural data, see: Allen et al. (1987). For related literature, see: Vega-noverola et al. (1989); Yoo et al. (2005). Cg1 is the centroid of the C2–C7 benzene ring.

Experimental top

2-Fluorobenzoyl chloride (1 mmol) in CHCl3 was treated with cyclohexyl amine (3.5 mmol) under a nitrogen atmosphere at reflux for 5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in ethanol afforded the title compound (79 %) as white needles: Anal. calcd. for C11H14ClNO: C 62.41, H 6.67, N 6.62%; found: C 62.34, H 7.16, N 6.57%.

Refinement top

The H atom bound to N1 was located in a difference electron density map and refined freely with an isotropic displacement parameter. All other H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso= 1.2Ueq (C) for aromatic, 0.99Å, Uiso = 1.2Ueq (C) for CH2, and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006) and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The structure of I showing the atom numbering with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Sheets of molecules of I formed in the ac plane by N—H···O hydrogen bonds and Cl···Cl interactions.
[Figure 3] Fig. 3. Crystal packing of I viewed down the b axis.
N-Butyl-4-chlorobenzamide top
Crystal data top
C11H14ClNOZ = 2
Mr = 211.68F(000) = 224
Triclinic, P1Dx = 1.333 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1702 (4) ÅCell parameters from 3494 reflections
b = 7.8979 (5) Åθ = 5.3–66.2°
c = 13.2978 (9) ŵ = 0.33 mm1
α = 89.275 (3)°T = 81 K
β = 84.863 (4)°Irregular fragment, colourless
γ = 77.165 (4)°0.42 × 0.30 × 0.08 mm
V = 527.29 (6) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3445 independent reflections
Radiation source: fine-focus sealed tube3050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 33.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 76
Tmin = 0.820, Tmax = 0.974k = 1111
6632 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.125P]
where P = (Fo2 + 2Fc2)/3
3445 reflections(Δ/σ)max = 0.002
132 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H14ClNOγ = 77.165 (4)°
Mr = 211.68V = 527.29 (6) Å3
Triclinic, P1Z = 2
a = 5.1702 (4) ÅMo Kα radiation
b = 7.8979 (5) ŵ = 0.33 mm1
c = 13.2978 (9) ÅT = 81 K
α = 89.275 (3)°0.42 × 0.30 × 0.08 mm
β = 84.863 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3445 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3050 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.974Rint = 0.017
6632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.43 e Å3
3445 reflectionsΔρmin = 0.22 e Å3
132 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51637 (16)0.82511 (10)0.10915 (6)0.01587 (15)
HN10.662 (3)0.8260 (18)0.0876 (11)0.026 (3)*
C10.31476 (17)0.79695 (10)0.04475 (6)0.01281 (15)
O10.08420 (13)0.81551 (8)0.06861 (5)0.01616 (14)
C20.38267 (17)0.73835 (10)0.05917 (6)0.01257 (15)
C30.18549 (19)0.78474 (11)0.13885 (7)0.01611 (17)
H30.01690.85450.12620.019*
C40.2331 (2)0.73001 (12)0.23650 (7)0.01847 (18)
H40.09950.76310.29080.022*
C50.4800 (2)0.62579 (11)0.25329 (7)0.01667 (17)
Cl10.54360 (5)0.55693 (3)0.375283 (17)0.02530 (8)
C60.67765 (19)0.57568 (12)0.17528 (7)0.01740 (17)
H60.84390.50270.18790.021*
C70.62886 (18)0.63406 (11)0.07801 (7)0.01532 (16)
H70.76420.60260.02410.018*
C80.47533 (19)0.87979 (13)0.21289 (7)0.01730 (17)
H8A0.42811.00820.21520.021*
H8B0.32420.83630.23520.021*
C90.72100 (18)0.81319 (12)0.28494 (7)0.01526 (16)
H9A0.76640.68470.28400.018*
H9B0.87330.85490.26230.018*
C100.67469 (19)0.87506 (12)0.39261 (7)0.01705 (17)
H10A0.51120.84350.41230.020*
H10B0.64581.00320.39430.020*
C110.9070 (2)0.79692 (14)0.46899 (8)0.02213 (19)
H11A1.06960.82770.45000.033*
H11B0.86910.84250.53630.033*
H11C0.93170.67030.46980.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0106 (3)0.0251 (4)0.0134 (3)0.0064 (3)0.0033 (3)0.0048 (3)
C10.0120 (4)0.0133 (3)0.0131 (4)0.0024 (3)0.0018 (3)0.0006 (3)
O10.0097 (3)0.0217 (3)0.0170 (3)0.0028 (2)0.0029 (2)0.0024 (2)
C20.0115 (4)0.0138 (3)0.0131 (4)0.0038 (3)0.0025 (3)0.0013 (3)
C30.0132 (4)0.0188 (4)0.0154 (4)0.0017 (3)0.0005 (3)0.0009 (3)
C40.0185 (4)0.0224 (4)0.0140 (4)0.0043 (3)0.0006 (3)0.0006 (3)
C50.0213 (4)0.0170 (4)0.0138 (4)0.0074 (3)0.0055 (3)0.0036 (3)
Cl10.03326 (15)0.02986 (13)0.01517 (12)0.00986 (10)0.00874 (9)0.00705 (8)
C60.0160 (4)0.0180 (4)0.0184 (4)0.0030 (3)0.0058 (3)0.0038 (3)
C70.0117 (4)0.0177 (4)0.0159 (4)0.0019 (3)0.0015 (3)0.0016 (3)
C80.0121 (4)0.0261 (4)0.0137 (4)0.0040 (3)0.0022 (3)0.0059 (3)
C90.0115 (4)0.0202 (4)0.0143 (4)0.0034 (3)0.0028 (3)0.0018 (3)
C100.0138 (4)0.0230 (4)0.0139 (4)0.0032 (3)0.0020 (3)0.0029 (3)
C110.0185 (5)0.0300 (5)0.0170 (4)0.0043 (4)0.0006 (3)0.0014 (3)
Geometric parameters (Å, º) top
N1—C11.3446 (12)C6—H60.9500
N1—C81.4598 (11)C7—H70.9500
N1—HN10.831 (15)C8—C91.5185 (13)
C1—O11.2378 (11)C8—H8A0.9900
C1—C21.4984 (12)C8—H8B0.9900
C2—C31.3952 (12)C9—C101.5290 (12)
C2—C71.3955 (12)C9—H9A0.9900
C3—C41.3891 (13)C9—H9B0.9900
C3—H30.9500C10—C111.5242 (13)
C4—C51.3918 (13)C10—H10A0.9900
C4—H40.9500C10—H10B0.9900
C5—C61.3848 (14)C11—H11A0.9800
C5—Cl11.7405 (9)C11—H11B0.9800
C6—C71.3931 (12)C11—H11C0.9800
C1—N1—C8121.48 (8)N1—C8—C9112.18 (7)
C1—N1—HN1119.5 (10)N1—C8—H8A109.2
C8—N1—HN1118.4 (10)C9—C8—H8A109.2
O1—C1—N1122.89 (8)N1—C8—H8B109.2
O1—C1—C2120.60 (8)C9—C8—H8B109.2
N1—C1—C2116.51 (8)H8A—C8—H8B107.9
C3—C2—C7119.40 (8)C8—C9—C10111.15 (7)
C3—C2—C1117.87 (8)C8—C9—H9A109.4
C7—C2—C1122.67 (8)C10—C9—H9A109.4
C4—C3—C2120.71 (8)C8—C9—H9B109.4
C4—C3—H3119.6C10—C9—H9B109.4
C2—C3—H3119.6H9A—C9—H9B108.0
C3—C4—C5118.78 (9)C11—C10—C9112.75 (8)
C3—C4—H4120.6C11—C10—H10A109.0
C5—C4—H4120.6C9—C10—H10A109.0
C6—C5—C4121.65 (8)C11—C10—H10B109.0
C6—C5—Cl1118.96 (7)C9—C10—H10B109.0
C4—C5—Cl1119.39 (7)H10A—C10—H10B107.8
C5—C6—C7118.95 (8)C10—C11—H11A109.5
C5—C6—H6120.5C10—C11—H11B109.5
C7—C6—H6120.5H11A—C11—H11B109.5
C6—C7—C2120.49 (9)C10—C11—H11C109.5
C6—C7—H7119.8H11A—C11—H11C109.5
C2—C7—H7119.8H11B—C11—H11C109.5
C8—N1—C1—O10.14 (13)C3—C4—C5—Cl1179.68 (7)
C8—N1—C1—C2179.00 (8)C4—C5—C6—C71.22 (14)
O1—C1—C2—C330.72 (12)Cl1—C5—C6—C7178.56 (7)
N1—C1—C2—C3150.11 (8)C5—C6—C7—C21.35 (13)
O1—C1—C2—C7146.41 (9)C3—C2—C7—C60.37 (13)
N1—C1—C2—C732.76 (12)C1—C2—C7—C6176.72 (8)
C7—C2—C3—C40.79 (13)C1—N1—C8—C9149.00 (8)
C1—C2—C3—C4178.01 (8)N1—C8—C9—C10178.91 (7)
C2—C3—C4—C50.92 (14)C8—C9—C10—C11174.52 (8)
C3—C4—C5—C60.10 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.831 (15)2.203 (15)3.0164 (10)166.3 (13)
C3—H3···O1ii0.952.663.3146 (11)127
C8—H8A···Cg1iii0.992.843.697 (16)145
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H14ClNO
Mr211.68
Crystal system, space groupTriclinic, P1
Temperature (K)81
a, b, c (Å)5.1702 (4), 7.8979 (5), 13.2978 (9)
α, β, γ (°)89.275 (3), 84.863 (4), 77.165 (4)
V3)527.29 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.42 × 0.30 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.820, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
6632, 3445, 3050
Rint0.017
(sin θ/λ)max1)0.768
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.04
No. of reflections3445
No. of parameters132
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.22

Computer programs: , APEX2 (Bruker, 2006) and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.831 (15)2.203 (15)3.0164 (10)166.3 (13)
C3—H3···O1ii0.952.663.3146 (11)126.7
C8—H8A···Cg1iii0.992.843.697 (16)145
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z; (iii) x+1, y, z.
 

Acknowledgements

NA gratefully acknowledges financial support for a PhD programme by the Higher Education Commission of Pakistan. We also thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBeccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (2005). Acta Cryst. E61, o2283–o2285.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationLewis, F. D. & Long, T. M. (1998). J. Phys. Chem. A, 102, 5327–5332.  Web of Science CrossRef CAS Google Scholar
First citationLindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267–277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOlsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReinaud, O., Capdevielle, P. & Maumy, M. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 2129–2134,.  CrossRef Web of Science Google Scholar
First citationSaeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationYoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem. 70, 6941–6943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2322-o2323
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds