organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­chloro-2,2′-(piperazine-1,4-diyldi­methyl­ene)diphenol

aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp

(Received 15 October 2008; accepted 31 October 2008; online 13 November 2008)

In the titile compound, C18H20Cl2N2O2, the piperazine ring adopts a chair conformation. The mol­ecule has a non-crystallographic inversion centre in the middle of the piperazine ring at approximate position (3/4, 1/8, 3/8). There are intra­molecular O—H⋯N hydrogen bonds forming S(6) ring motifs. Inter­molecular C—H⋯O hydrogen bonds generate anti­parallel C(5) chain motifs propagating along the b axis, forming sheets parallel to the bc plane with a first-level graph-set S(6)C(5)R66(26).

Related literature

For graph-set notations for hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis of a ligand with two piperazine arms, see: Bharathi et al. (2006[Bharathi, K. S., Rahiman, A. K., Rajesh, K., Sreedaran, S., Aravindan, P. G., Velmurugan, D. & Narayanan, V. (2006). Polyhedron, 25, 2859-2868.]). For the use of piperazine derivatives as buffers, see: Good et al. (1966[Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. & Singh, R. M. (1966). Biochemistry, 5, 467-477.]). For the monoclinic and ortho­rhom­bic polymorphs of a tetra­chloro-2,2′-(piperazine-1,4-diyldimethyl­ene)diphenol, see: Kubono & Yokoi (2007[Kubono, K. & Yokoi, K. (2007). Acta Cryst. C63, o535-o537.]). For the structure of 1,4-bis­(2-hydr­oxy-5-methyl­benz­yl)piperazine, see: Kuppayee et al. (1999[Kuppayee, M., Kumaran, D., Ponnuswamy, M. N., Kandaswamy, M., Violet, M. J., Chinnakali, K. & Fun, H.-K. (1999). Acta Cryst. C55, 2147-2149.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20Cl2N2O2

  • Mr = 367.26

  • Orthorhombic, P b c a

  • a = 14.055 (4) Å

  • b = 21.214 (11) Å

  • c = 11.873 (3) Å

  • V = 3540 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 298.1 K

  • 0.18 × 0.13 × 0.13 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: none

  • 5928 measured reflections

  • 4066 independent reflections

  • 2735 reflections with F2 > 2σ(F2)

  • Rint = 0.039

  • 3 standard reflections every 150 reflections intensity decay: 0.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.00

  • 2739 reflections

  • 237 parameters

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 1.88 2.649 (3) 150
O2—H20⋯N2 0.85 1.87 2.647 (3) 151
C7—H6⋯O2i 0.95 2.59 3.230 (3) 125
C12—H15⋯O1ii 0.95 2.56 3.300 (3) 134
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: WinAFC (Rigaku/MSC, 2006[Rigaku/MSC (2006). WinAFC and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). WinAFC and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13. ]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Piprazine derivatives are widly utilized as buffers, e.g., 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (Good et al., 1966), and can act as complexing reagents with metal ions (Bharathi et al., 2006).

The molecular structure of the title compound (Fig. 1) (I), consists of two chlorophenol arms and a piperazine ring, which adopt a chair conformation. The molecule has a pseudo-inversion centre in the middle of the piperazine ring at position (3/4, 1/8, 3/8). It is interesting to note that in the polymorh structures of dichlorophenol derivatives (Kubono & Yokoi, 2007) the molecules occupy crystallographic inversion centres (Z' = 1/2). The bond lengths and angles in (I) are normal and comparable with those in the monoclinic and orthorhombic polymorph structures (Kubono & Yokoi, 2007) and in the p-cresol derivative (Kuppayee et al., 1999). Intramolecular O—H···N hydrogen bonds in (I) have similar geometric parameters and higher level graph set notations as was observed in the polymorph structures. The torsion angles C1—C6—C7—N1 and N2—C12—C13—C18 are -34.8 (3) and 37.5 (3) °, respectively. The dihedral angles between the mean planes of two benzene rings are 4.68 (12) °.

In the crystal structure of (I), there are two intermolecular C—H···O hydrogen bonds (Table 1). Atom C7 in the molecule at (x, y, z) acts as hydrogen bond donor to atom O2 in the molecule at (x, 1/2 - y, z - 1/2), so forming a C(5) (Bernstein et al., 1995) chain running parallel to the [010] direction and generated by the c-glide plane at y = 1/4. In addition, atom C12 in the molecule at (x, y, z) acts as hydrogen bond donor to atom O1 atom in the molecule at (3/2 - x, -y, 1/2 + z), so forming a C(5) chain running parallel to the [010] direction and generated by the 21 screw axis along (3/4, 0, z). The molecules are linked by the combination of the two S(6) rings and the two antiparalle C(5) chains into a sheet parallel to b,c-plane with a first level graph set S(6)C(5)R66(26) (Fig. 2).

Related literature top

For graph-set notations for hydrogen bonds, see: Bernstein et al. (1995). For the synthesis of a ligand with two piperazine arms, see: Bharathi et al. (2006). For the use of piperazine derivatives as buffers, see: Good et al. (1966). For the monoclinic and orthorhombic polymorphs of a tetrachloro-2,2'(piperazine-1,4-diyldimethylene)-diphenol, see: Kubono & Yokoi (2007). For the structure of 1,4-bis(2-hydroxy-5-methylbenzyl)-piperazine, see: Kuppayee et al. (1999).

Experimental top

A mixture of 4-chlorophenol (25.0 g, 194 mmol), piperazine (8.34 g, 97.2 mmol) and paraformaldehyde (5.82 g, 194 mmol) in methanol (80 ml) was refluxed for 6 h. The mixture was cooled to room temperature, then the solvent was evaporated under vacuum. The product was recrystallized from CHCl3—MeOH to give prismatic crystals of (I) [yeild 13.8 g (38.7%); m.p. 515.0–515.4 K]. Analysis calculated for C18H20Cl4N2O2: C 58.86, H 5.49, N 7.63%; found: C 58.50, H 5.44, N 7.55%. 1H-NMR(CDCl3, p.p.m., 400 MHz): 2.68 (brs, 8H, CH2), 3.69 (s, 4H, CH2), 6.75 (d, J = 2.4 Hz, 2H, ArH), 6.96 (s, 2H, ArH), 7.13 (d, J = 2.4 Hz, 2H, ArH), 10.6 (brs, 2H, OH).

Refinement top

The H atoms of the hydroxyl groups were found from a difference Fourier map. The other H atoms were placed at idealized positions with C—H = 0.95 Å. All the H atoms were refined as a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: WinAFC (Rigaku/MSC, 2006); cell refinement: WinAFC (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-labelling scheme and displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. The molecular packing of (I), showing the formation of a sheet with a first level graph set S(6)C(5)R66(26). The hydrogen bonds are shown as dashed lines. The H atoms not involved in the hydrogen bonds have been omitted for clarity.
4,4'-Dichloro-2,2'-(piperazine-1,4-diyldimethylene)diphenol top
Crystal data top
C18H20Cl2N2O2F(000) = 1536.00
Mr = 367.26Dx = 1.378 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 18 reflections
a = 14.055 (4) Åθ = 13.7–16.9°
b = 21.214 (11) ŵ = 0.38 mm1
c = 11.873 (3) ÅT = 298 K
V = 3540 (2) Å3Prismatic, colorless
Z = 80.18 × 0.13 × 0.13 mm
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.5°
ω scansh = 1018
5928 measured reflectionsk = 027
4066 independent reflectionsl = 815
2735 reflections with F2 > 2σ(F2)3 standard reflections every 150 reflections
Rint = 0.039 intensity decay: 0.7%
Refinement top
Refinement on F2All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.039 w = 1/[0.0011Fo2 + σ(Fo2)]/(4Fo2)
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.33 e Å3
2739 reflectionsΔρmin = 0.45 e Å3
237 parameters
Crystal data top
C18H20Cl2N2O2V = 3540 (2) Å3
Mr = 367.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.055 (4) ŵ = 0.38 mm1
b = 21.214 (11) ÅT = 298 K
c = 11.873 (3) Å0.18 × 0.13 × 0.13 mm
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.039
5928 measured reflections3 standard reflections every 150 reflections
4066 independent reflections intensity decay: 0.7%
2735 reflections with F2 > 2σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.039237 parameters
wR(F2) = 0.105All H-atom parameters refined
S = 1.00Δρmax = 0.33 e Å3
2739 reflectionsΔρmin = 0.45 e Å3
Special details top

Geometry. The molecule adopts a non-crystallographic inversion centre in the middle of the piperazine ring at an approximate position (3/4, 1/8, 3/8).

Refinement. Refinement was performed using reflections with F2 > 2.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43588 (6)0.27754 (4)0.07209 (8)0.0807 (3)
Cl21.07341 (7)0.01127 (5)0.83011 (9)0.0914 (4)
O10.75085 (15)0.11534 (9)0.07111 (17)0.0559 (7)
O20.74244 (15)0.13266 (9)0.67705 (18)0.0643 (8)
N10.73683 (16)0.16416 (11)0.2758 (2)0.0385 (7)
N20.77032 (17)0.08768 (10)0.4717 (2)0.0385 (8)
C10.6764 (2)0.15283 (15)0.0418 (2)0.0435 (10)
C20.6298 (2)0.14079 (15)0.0579 (2)0.0506 (11)
C30.5560 (2)0.17790 (18)0.0936 (2)0.0558 (12)
C40.5283 (2)0.22809 (16)0.0274 (3)0.0526 (12)
C50.5720 (2)0.24037 (15)0.0734 (2)0.0477 (11)
C60.6466 (2)0.20327 (14)0.1097 (2)0.0398 (10)
C70.6988 (2)0.21952 (13)0.2166 (2)0.0459 (10)
C80.8043 (2)0.18345 (14)0.3642 (2)0.0483 (10)
C90.8455 (2)0.12615 (13)0.4217 (2)0.0465 (10)
C100.7022 (2)0.06864 (13)0.3845 (2)0.0451 (10)
C110.6609 (2)0.12632 (13)0.3279 (2)0.0466 (10)
C120.8101 (2)0.03329 (13)0.5321 (2)0.0476 (10)
C130.8583 (2)0.05200 (14)0.6408 (2)0.0381 (10)
C140.9375 (2)0.01930 (13)0.6786 (2)0.0451 (11)
C150.9773 (2)0.03340 (15)0.7820 (3)0.0505 (11)
C160.9415 (2)0.08039 (17)0.8475 (2)0.0544 (12)
C170.8640 (2)0.11345 (15)0.8107 (3)0.0563 (12)
C180.8214 (2)0.09977 (14)0.7088 (2)0.0432 (11)
H10.76600.12470.13810.067*
H20.64880.10570.10220.061*
H30.52490.17020.16320.067*
H40.55060.27480.11780.057*
H50.65690.24150.26560.055*
H60.75100.24600.19770.055*
H70.85370.20740.33030.058*
H80.77240.20850.41870.058*
H90.88800.13900.47950.056*
H100.87900.10190.36740.056*
H110.73380.04420.32880.054*
H120.65300.04430.41780.054*
H130.63010.15090.38390.056*
H140.61610.11450.27180.056*
H150.75990.00470.54850.057*
H160.85570.01320.48530.057*
H170.96510.01270.63310.054*
H180.97010.08970.91810.065*
H190.83870.14660.85550.068*
H200.73460.12610.60690.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0581 (6)0.0946 (8)0.0893 (8)0.0015 (5)0.0153 (6)0.0291 (5)
Cl20.0782 (7)0.1153 (8)0.0806 (8)0.0288 (6)0.0241 (6)0.0050 (6)
O10.0720 (15)0.0498 (13)0.0459 (15)0.0121 (12)0.0003 (12)0.0089 (12)
O20.0803 (17)0.0591 (14)0.0534 (17)0.0224 (13)0.0010 (13)0.0097 (12)
N10.0419 (15)0.0361 (14)0.0377 (17)0.0053 (13)0.0039 (13)0.0012 (13)
N20.0441 (16)0.0304 (14)0.0410 (17)0.0081 (13)0.0031 (13)0.0035 (13)
C10.049 (2)0.041 (2)0.040 (2)0.0044 (18)0.0014 (18)0.0048 (18)
C20.064 (2)0.050 (2)0.037 (2)0.014 (2)0.005 (2)0.0001 (19)
C30.059 (2)0.067 (2)0.041 (2)0.025 (2)0.008 (2)0.007 (2)
C40.043 (2)0.058 (2)0.057 (2)0.0100 (19)0.004 (2)0.018 (2)
C50.045 (2)0.047 (2)0.051 (2)0.0007 (18)0.002 (2)0.0018 (18)
C60.049 (2)0.040 (2)0.031 (2)0.0032 (17)0.0062 (17)0.0026 (17)
C70.058 (2)0.0411 (19)0.039 (2)0.0042 (17)0.0026 (18)0.0027 (16)
C80.059 (2)0.044 (2)0.041 (2)0.0142 (18)0.0025 (18)0.0003 (17)
C90.050 (2)0.045 (2)0.045 (2)0.0105 (18)0.0053 (17)0.0001 (18)
C100.046 (2)0.039 (2)0.050 (2)0.0127 (16)0.0053 (18)0.0023 (16)
C110.045 (2)0.051 (2)0.044 (2)0.0080 (17)0.0043 (16)0.0036 (17)
C120.058 (2)0.0357 (19)0.049 (2)0.0029 (16)0.0037 (18)0.0009 (16)
C130.049 (2)0.0341 (19)0.031 (2)0.0020 (17)0.0026 (17)0.0038 (16)
C140.052 (2)0.040 (2)0.043 (2)0.0028 (18)0.011 (2)0.0008 (17)
C150.050 (2)0.054 (2)0.048 (2)0.0009 (18)0.002 (2)0.0006 (19)
C160.060 (2)0.064 (2)0.039 (2)0.007 (2)0.0029 (19)0.0019 (19)
C170.077 (2)0.053 (2)0.039 (2)0.000 (2)0.011 (2)0.010 (2)
C180.054 (2)0.0357 (19)0.040 (2)0.0063 (17)0.0106 (19)0.0029 (17)
Geometric parameters (Å, º) top
Cl1—C41.751 (3)C15—C161.361 (4)
Cl2—C151.746 (3)C16—C171.367 (5)
O1—C11.359 (3)C17—C181.381 (4)
O2—C181.364 (3)O1—H10.848
N1—C71.469 (3)O2—H200.852
N1—C81.472 (3)C2—H20.950
N1—C111.472 (3)C3—H30.950
N2—C91.461 (3)C5—H40.950
N2—C101.467 (3)C7—H50.950
N2—C121.469 (3)C7—H60.950
C1—C21.377 (4)C8—H70.950
C1—C61.404 (4)C8—H80.950
C2—C31.369 (4)C9—H90.950
C3—C41.380 (5)C9—H100.950
C4—C51.371 (5)C10—H110.950
C5—C61.380 (4)C10—H120.950
C6—C71.507 (4)C11—H130.950
C8—C91.509 (4)C11—H140.950
C10—C111.512 (3)C12—H150.950
C12—C131.510 (4)C12—H160.950
C13—C141.386 (4)C14—H170.950
C13—C181.395 (4)C16—H180.950
C14—C151.383 (4)C17—H190.950
C7—N1—C8110.6 (2)C2—C3—H3121.3
C7—N1—C11111.9 (2)C4—C3—H3119.9
C8—N1—C11108.6 (2)C4—C5—H4119.2
C9—N2—C10109.8 (2)C6—C5—H4120.4
C9—N2—C12111.2 (2)N1—C7—H5109.0
C10—N2—C12112.1 (2)N1—C7—H6107.8
O1—C1—C2118.5 (2)C6—C7—H5109.0
O1—C1—C6121.9 (2)C6—C7—H6108.1
C2—C1—C6119.5 (3)H5—C7—H6109.5
C1—C2—C3121.3 (3)N1—C8—H7108.5
C2—C3—C4118.8 (3)N1—C8—H8109.8
Cl1—C4—C3120.0 (2)C9—C8—H7110.0
Cl1—C4—C5118.9 (2)C9—C8—H8108.9
C3—C4—C5121.1 (3)H7—C8—H8109.5
C4—C5—C6120.3 (3)N2—C9—H9108.7
C1—C6—C5118.8 (2)N2—C9—H10109.4
C1—C6—C7120.9 (2)C8—C9—H9109.7
C5—C6—C7120.2 (2)C8—C9—H10108.7
N1—C7—C6113.4 (2)H9—C9—H10109.5
N1—C8—C9110.2 (2)N2—C10—H11109.6
N2—C9—C8110.9 (2)N2—C10—H12109.3
N2—C10—C11110.0 (2)C11—C10—H11108.2
N1—C11—C10110.5 (2)C11—C10—H12110.3
N2—C12—C13112.4 (2)H11—C10—H12109.5
C12—C13—C14120.3 (2)N1—C11—H13109.0
C12—C13—C18121.3 (2)N1—C11—H14109.3
C14—C13—C18118.3 (2)C10—C11—H13108.0
C13—C14—C15120.3 (2)C10—C11—H14110.6
Cl2—C15—C14119.1 (2)H13—C11—H14109.5
Cl2—C15—C16119.8 (2)N2—C12—H15108.6
C14—C15—C16121.0 (3)N2—C12—H16108.9
C15—C16—C17119.3 (3)C13—C12—H15109.0
C16—C17—C18121.1 (3)C13—C12—H16108.4
O2—C18—C13120.9 (2)H15—C12—H16109.5
O2—C18—C17119.1 (2)C13—C14—H17120.1
C13—C18—C17119.9 (3)C15—C14—H17119.6
C1—O1—H1107.2C15—C16—H18119.9
C18—O2—H20107.0C17—C16—H18120.8
C1—C2—H2119.1C16—C17—H19119.9
C3—C2—H2119.5C18—C17—H19118.9
C7—N1—C8—C9178.0 (2)C3—C4—C5—C61.4 (5)
C8—N1—C7—C6167.4 (2)C4—C5—C6—C10.2 (4)
C7—N1—C11—C10178.1 (2)C4—C5—C6—C7175.9 (2)
C11—N1—C7—C671.4 (3)C1—C6—C7—N134.8 (3)
C8—N1—C11—C1059.5 (2)C5—C6—C7—N1149.3 (2)
C11—N1—C8—C958.7 (2)N1—C8—C9—N258.8 (3)
C9—N2—C10—C1157.8 (2)N2—C10—C11—N159.6 (2)
C10—N2—C9—C857.8 (2)N2—C12—C13—C14146.3 (2)
C9—N2—C12—C1372.3 (3)N2—C12—C13—C1837.5 (3)
C12—N2—C9—C8177.5 (2)C12—C13—C14—C15175.2 (2)
C10—N2—C12—C13164.3 (2)C12—C13—C18—O22.4 (4)
C12—N2—C10—C11178.0 (2)C12—C13—C18—C17176.4 (2)
O1—C1—C2—C3178.2 (3)C14—C13—C18—O2178.6 (2)
O1—C1—C6—C5178.4 (2)C14—C13—C18—C170.1 (3)
O1—C1—C6—C72.4 (4)C18—C13—C14—C151.1 (4)
C2—C1—C6—C51.2 (4)C13—C14—C15—Cl2176.9 (2)
C2—C1—C6—C7177.2 (2)C13—C14—C15—C161.6 (4)
C6—C1—C2—C31.4 (5)Cl2—C15—C16—C17177.5 (2)
C1—C2—C3—C40.3 (5)C14—C15—C16—C171.0 (5)
C2—C3—C4—Cl1178.6 (2)C15—C16—C17—C180.2 (5)
C2—C3—C4—C51.2 (5)C16—C17—C18—O2178.0 (3)
Cl1—C4—C5—C6178.4 (2)C16—C17—C18—C130.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.851.882.649 (3)150
O2—H20···N20.851.872.647 (3)151
C7—H6···O2i0.952.593.230 (3)125
C12—H15···O1ii0.952.573.300 (3)134
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H20Cl2N2O2
Mr367.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)14.055 (4), 21.214 (11), 11.873 (3)
V3)3540 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.18 × 0.13 × 0.13
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correction
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
5928, 4066, 2735
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.00
No. of reflections2739
No. of parameters237
No. of restraints?
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.45

Computer programs: WinAFC (Rigaku/MSC, 2006), CrystalStructure (Rigaku/MSC, 2006), SIR92 (Altomare et al., 1993), CRYSTALS (Betteridge et al., 2003), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.8481.8812.649 (3)149.9
O2—H20···N20.8521.8682.647 (3)151.2
C7—H6···O2i0.9502.5893.230 (3)125.1
C12—H15···O1ii0.9502.5653.300 (3)134.3
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+3/2, y, z+1/2.
 

Acknowledgements

This study was supported financially in part by Grants-in-Aid (Nos. 19550040 and 20550075) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBharathi, K. S., Rahiman, A. K., Rajesh, K., Sreedaran, S., Aravindan, P. G., Velmurugan, D. & Narayanan, V. (2006). Polyhedron, 25, 2859–2868.  Web of Science CSD CrossRef CAS Google Scholar
First citationGood, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. & Singh, R. M. (1966). Biochemistry, 5, 467–477.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKubono, K. & Yokoi, K. (2007). Acta Cryst. C63, o535–o537.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuppayee, M., Kumaran, D., Ponnuswamy, M. N., Kandaswamy, M., Violet, M. J., Chinnakali, K. & Fun, H.-K. (1999). Acta Cryst. C55, 2147–2149.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2006). WinAFC and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.   Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds