organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­methyl-N,N′-bis­­(4-nitro­benzyl­­idene)propane-1,3-di­amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 1 November 2008; accepted 10 November 2008; online 13 November 2008)

In the title compound, C19H20N4O4, a potential bidentate Schiff base ligand, each imino (C=N) functional group is coplanar with the adjacent benzene ring. The two benzene rings form a dihedral angle of 10.52 (6)°. Inter­molecular C—H⋯O contacts link neighbouring mol­ecules into supra­molecular array with an R22(32) ring motif and a C—H⋯π contact is also present.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Li et al. (2005[Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156-o4157.]); Bomfim et al. (2005[Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53-o56.]); Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551-o3553.], 2006[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1-o4.]); Sun et al. (2004[Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707-o1708.]); Fun et al. (2008a[Fun, H.-K., Kargar, H. & Kia, R. (2008a). Acta Cryst. E64, o1308.],b[Fun, H.-K., Kargar, H. & Kia, R. (2008b). Acta Cryst. E64, o2273.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20N4O4

  • Mr = 368.39

  • Monoclinic, P 21 /c

  • a = 7.8219 (1) Å

  • b = 19.9716 (4) Å

  • c = 12.0125 (3) Å

  • β = 92.831 (1)°

  • V = 1874.25 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (1) K

  • 0.45 × 0.19 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.993

  • 21845 measured reflections

  • 6784 independent reflections

  • 4307 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.152

  • S = 1.04

  • 6784 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O4i 0.93 2.52 3.4330 (18) 168
C17—H17A⋯O2ii 0.93 2.48 3.4063 (18) 171
C19—H19ACg1iii 0.96 2.86 3.8058 (16) 171
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+1; (iii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]. Cg1 is the centroid of the C12–C17 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures. Structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound, (I), have been reported previously (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004; Fun et al., 2008a,b).

Each imino (C N) functional group in (I), Fig. 1, is co-planar with the adjacent benzene ring. Intramolecular C—H···O contacts form five-membered rings, producing S(5) ring motifs (Bernstein et al., 1995). The two benzene rings form a dihedral angle of 10.52 (6)°. Intermolecular C—H···O contacts link neighbouring molecules into supramolecular array with R22(32) ring motif, Fig. 2 and Table 1. The crystal structure is further stabilized by weak C—H···π interactions, ( Table 1.

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Li et al. (2005); Bomfim et al. (2005); Glidewell et al. (2005, 2006); Sun et al. (2004); Fun et al. (2008a,b). Cg1 is the centroid of the C12–C17 benzene ring.

Experimental top

The synthetic method has been described earlier (Fun et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution of (I) held at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 - 0.97 Å, and with Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the c-axis showing the linking of neighbouring molecules via R22(32) ring motifs. Intermolecular hydrogen bonds are shown as dashed lines.
2,2-Dimethyl-N,N'-bis(4-nitrobenzylidene)propane-1,3-diamine top
Crystal data top
C19H20N4O4F(000) = 776
Mr = 368.39Dx = 1.306 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3284 reflections
a = 7.8219 (1) Åθ = 2.7–28.9°
b = 19.9716 (4) ŵ = 0.09 mm1
c = 12.0125 (3) ÅT = 100 K
β = 92.831 (1)°Block, colourless
V = 1874.25 (6) Å30.45 × 0.19 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6784 independent reflections
Radiation source: fine-focus sealed tube4307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 32.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.959, Tmax = 0.993k = 3024
21845 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.063P)2 + 0.2454P]
where P = (Fo2 + 2Fc2)/3
6784 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H20N4O4V = 1874.25 (6) Å3
Mr = 368.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8219 (1) ŵ = 0.09 mm1
b = 19.9716 (4) ÅT = 100 K
c = 12.0125 (3) Å0.45 × 0.19 × 0.08 mm
β = 92.831 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6784 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4307 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.993Rint = 0.048
21845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
6784 reflectionsΔρmin = 0.23 e Å3
244 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.36590 (14)0.55914 (6)0.45685 (10)0.0335 (3)
O21.36634 (15)0.48567 (6)0.32431 (10)0.0376 (3)
O30.04816 (14)0.42804 (6)1.17606 (9)0.0317 (3)
O40.13096 (14)0.52456 (5)1.11560 (10)0.0313 (3)
N10.91963 (15)0.26572 (6)0.65265 (11)0.0229 (3)
N20.44695 (14)0.27677 (6)0.73309 (11)0.0232 (3)
N31.32746 (15)0.50399 (7)0.41710 (12)0.0263 (3)
N40.12292 (14)0.46308 (6)1.10932 (10)0.0240 (3)
C11.07594 (17)0.43692 (7)0.64720 (12)0.0214 (3)
H1A1.03480.45120.71460.026*
C21.17251 (17)0.48038 (7)0.58500 (12)0.0222 (3)
H2A1.19830.52340.61030.027*
C31.22894 (16)0.45767 (7)0.48441 (12)0.0212 (3)
C41.19437 (18)0.39416 (8)0.44352 (13)0.0254 (3)
H4A1.23370.38060.37530.031*
C51.09965 (17)0.35135 (7)0.50692 (13)0.0245 (3)
H5A1.07510.30830.48130.029*
C61.04054 (16)0.37232 (7)0.60928 (12)0.0195 (3)
C70.94133 (16)0.32672 (7)0.67822 (12)0.0205 (3)
H7A0.89360.34320.74210.025*
C80.81845 (17)0.22410 (7)0.72454 (12)0.0220 (3)
H8A0.78330.25060.78710.026*
H8B0.88850.18740.75370.026*
C90.65824 (17)0.19558 (7)0.66089 (12)0.0211 (3)
C100.52727 (18)0.25158 (7)0.63434 (13)0.0228 (3)
H10A0.58430.28830.59860.027*
H10B0.43910.23460.58210.027*
C110.44070 (16)0.33980 (7)0.74535 (12)0.0211 (3)
H11A0.49010.36730.69330.025*
C120.35718 (16)0.37059 (7)0.83998 (12)0.0192 (3)
C130.25521 (16)0.33267 (7)0.90909 (12)0.0214 (3)
H13A0.23840.28730.89460.026*
C140.17916 (17)0.36202 (7)0.99872 (12)0.0222 (3)
H14A0.11250.33691.04530.027*
C150.20531 (16)0.43004 (7)1.01696 (12)0.0203 (3)
C160.30321 (16)0.46938 (7)0.94913 (12)0.0210 (3)
H16A0.31730.51490.96270.025*
C170.37936 (17)0.43876 (7)0.86057 (12)0.0215 (3)
H17A0.44610.46410.81430.026*
C180.58134 (19)0.14167 (8)0.73376 (14)0.0289 (3)
H18A0.48110.12320.69590.043*
H18B0.55070.16110.80310.043*
H18C0.66390.10680.74810.043*
C190.70671 (19)0.16493 (7)0.54990 (13)0.0259 (3)
H19A0.60590.14770.51110.039*
H19B0.78700.12920.56380.039*
H19C0.75770.19870.50520.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0318 (6)0.0268 (6)0.0423 (7)0.0069 (5)0.0043 (5)0.0051 (5)
O20.0377 (6)0.0447 (7)0.0314 (7)0.0070 (5)0.0128 (5)0.0041 (5)
O30.0332 (6)0.0354 (6)0.0276 (6)0.0072 (5)0.0108 (5)0.0019 (5)
O40.0381 (6)0.0230 (6)0.0334 (7)0.0044 (4)0.0082 (5)0.0026 (5)
N10.0213 (5)0.0232 (6)0.0244 (7)0.0026 (4)0.0020 (5)0.0003 (5)
N20.0211 (5)0.0225 (6)0.0261 (7)0.0004 (4)0.0023 (5)0.0012 (5)
N30.0185 (5)0.0297 (7)0.0308 (7)0.0009 (5)0.0019 (5)0.0075 (6)
N40.0202 (5)0.0280 (7)0.0238 (7)0.0009 (5)0.0024 (5)0.0016 (5)
C10.0197 (6)0.0234 (7)0.0211 (7)0.0017 (5)0.0010 (5)0.0015 (6)
C20.0197 (6)0.0212 (7)0.0255 (8)0.0003 (5)0.0016 (5)0.0005 (6)
C30.0162 (6)0.0235 (7)0.0240 (7)0.0008 (5)0.0021 (5)0.0055 (6)
C40.0255 (7)0.0286 (8)0.0229 (8)0.0007 (6)0.0076 (6)0.0018 (6)
C50.0254 (7)0.0228 (7)0.0257 (8)0.0011 (5)0.0051 (6)0.0037 (6)
C60.0173 (6)0.0204 (6)0.0207 (7)0.0001 (5)0.0011 (5)0.0007 (5)
C70.0187 (6)0.0234 (7)0.0196 (7)0.0003 (5)0.0018 (5)0.0004 (6)
C80.0239 (6)0.0208 (7)0.0215 (7)0.0013 (5)0.0020 (5)0.0012 (6)
C90.0218 (6)0.0177 (6)0.0238 (7)0.0015 (5)0.0013 (5)0.0003 (6)
C100.0241 (6)0.0216 (7)0.0227 (8)0.0002 (5)0.0002 (5)0.0019 (6)
C110.0195 (6)0.0219 (7)0.0220 (7)0.0001 (5)0.0018 (5)0.0010 (6)
C120.0170 (6)0.0200 (6)0.0204 (7)0.0021 (5)0.0001 (5)0.0015 (5)
C130.0195 (6)0.0179 (6)0.0268 (8)0.0007 (5)0.0015 (5)0.0002 (6)
C140.0192 (6)0.0229 (7)0.0248 (8)0.0000 (5)0.0036 (5)0.0046 (6)
C150.0180 (6)0.0228 (7)0.0201 (7)0.0024 (5)0.0010 (5)0.0002 (5)
C160.0207 (6)0.0180 (6)0.0242 (7)0.0002 (5)0.0007 (5)0.0003 (6)
C170.0207 (6)0.0211 (7)0.0229 (7)0.0005 (5)0.0027 (5)0.0031 (6)
C180.0282 (7)0.0228 (7)0.0357 (9)0.0041 (6)0.0025 (6)0.0048 (7)
C190.0275 (7)0.0212 (7)0.0289 (8)0.0011 (5)0.0008 (6)0.0045 (6)
Geometric parameters (Å, º) top
O1—N31.2319 (17)C8—H8B0.9700
O2—N31.2256 (17)C9—C181.530 (2)
O3—N41.2330 (15)C9—C191.532 (2)
O4—N41.2316 (16)C9—C101.539 (2)
N1—C71.2657 (18)C10—H10A0.9700
N1—C81.4597 (17)C10—H10B0.9700
N2—C111.2687 (18)C11—C121.4732 (19)
N2—C101.4591 (18)C11—H11A0.9300
N3—C31.4714 (18)C12—C171.3931 (19)
N4—C151.4671 (18)C12—C131.4014 (18)
C1—C61.3914 (19)C13—C141.3857 (19)
C1—C21.3921 (19)C13—H13A0.9300
C1—H1A0.9300C14—C151.389 (2)
C2—C31.383 (2)C14—H14A0.9300
C2—H2A0.9300C15—C161.3890 (18)
C3—C41.382 (2)C16—C171.3868 (19)
C4—C51.3840 (19)C16—H16A0.9300
C4—H4A0.9300C17—H17A0.9300
C5—C61.3990 (19)C18—H18A0.9600
C5—H5A0.9300C18—H18B0.9600
C6—C71.4768 (18)C18—H18C0.9600
C7—H7A0.9300C19—H19A0.9600
C8—C91.544 (2)C19—H19B0.9600
C8—H8A0.9700C19—H19C0.9600
C7—N1—C8118.34 (12)C10—C9—C8110.49 (11)
C11—N2—C10117.20 (12)N2—C10—C9113.01 (12)
O2—N3—O1123.55 (13)N2—C10—H10A109.0
O2—N3—C3118.19 (13)C9—C10—H10A109.0
O1—N3—C3118.26 (13)N2—C10—H10B109.0
O4—N4—O3123.39 (12)C9—C10—H10B109.0
O4—N4—C15118.14 (12)H10A—C10—H10B107.8
O3—N4—C15118.47 (12)N2—C11—C12121.65 (13)
C6—C1—C2120.46 (13)N2—C11—H11A119.2
C6—C1—H1A119.8C12—C11—H11A119.2
C2—C1—H1A119.8C17—C12—C13119.50 (12)
C3—C2—C1118.00 (13)C17—C12—C11119.26 (12)
C3—C2—H2A121.0C13—C12—C11121.24 (12)
C1—C2—H2A121.0C14—C13—C12120.69 (13)
C4—C3—C2123.10 (13)C14—C13—H13A119.7
C4—C3—N3118.70 (13)C12—C13—H13A119.7
C2—C3—N3118.18 (13)C13—C14—C15118.07 (12)
C3—C4—C5118.16 (13)C13—C14—H14A121.0
C3—C4—H4A120.9C15—C14—H14A121.0
C5—C4—H4A120.9C16—C15—C14122.80 (13)
C4—C5—C6120.52 (14)C16—C15—N4117.69 (12)
C4—C5—H5A119.7C14—C15—N4119.48 (12)
C6—C5—H5A119.7C17—C16—C15118.07 (13)
C1—C6—C5119.75 (13)C17—C16—H16A121.0
C1—C6—C7119.33 (12)C15—C16—H16A121.0
C5—C6—C7120.92 (13)C16—C17—C12120.85 (12)
N1—C7—C6121.69 (13)C16—C17—H17A119.6
N1—C7—H7A119.2C12—C17—H17A119.6
C6—C7—H7A119.2C9—C18—H18A109.5
N1—C8—C9111.56 (12)C9—C18—H18B109.5
N1—C8—H8A109.3H18A—C18—H18B109.5
C9—C8—H8A109.3C9—C18—H18C109.5
N1—C8—H8B109.3H18A—C18—H18C109.5
C9—C8—H8B109.3H18B—C18—H18C109.5
H8A—C8—H8B108.0C9—C19—H19A109.5
C18—C9—C19109.76 (12)C9—C19—H19B109.5
C18—C9—C10110.70 (11)H19A—C19—H19B109.5
C19—C9—C10107.51 (12)C9—C19—H19C109.5
C18—C9—C8107.98 (12)H19A—C19—H19C109.5
C19—C9—C8110.41 (11)H19B—C19—H19C109.5
C6—C1—C2—C31.0 (2)C11—N2—C10—C9131.95 (13)
C1—C2—C3—C40.2 (2)C18—C9—C10—N249.59 (16)
C1—C2—C3—N3178.53 (12)C19—C9—C10—N2169.47 (11)
O2—N3—C3—C44.2 (2)C8—C9—C10—N269.98 (14)
O1—N3—C3—C4176.02 (13)C10—N2—C11—C12177.85 (12)
O2—N3—C3—C2174.58 (13)N2—C11—C12—C17168.88 (14)
O1—N3—C3—C25.17 (19)N2—C11—C12—C1311.5 (2)
C2—C3—C4—C50.4 (2)C17—C12—C13—C141.2 (2)
N3—C3—C4—C5179.16 (13)C11—C12—C13—C14179.15 (13)
C3—C4—C5—C60.2 (2)C12—C13—C14—C150.8 (2)
C2—C1—C6—C51.2 (2)C13—C14—C15—C160.3 (2)
C2—C1—C6—C7178.54 (12)C13—C14—C15—N4178.38 (13)
C4—C5—C6—C10.6 (2)O4—N4—C15—C166.84 (19)
C4—C5—C6—C7179.19 (13)O3—N4—C15—C16173.73 (12)
C8—N1—C7—C6179.39 (12)O4—N4—C15—C14171.35 (13)
C1—C6—C7—N1173.22 (14)O3—N4—C15—C148.09 (19)
C5—C6—C7—N16.5 (2)C14—C15—C16—C170.9 (2)
C7—N1—C8—C9118.97 (14)N4—C15—C16—C17179.01 (12)
N1—C8—C9—C18168.26 (11)C15—C16—C17—C120.4 (2)
N1—C8—C9—C1948.27 (15)C13—C12—C17—C160.6 (2)
N1—C8—C9—C1070.53 (14)C11—C12—C17—C16179.76 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4i0.932.523.4330 (18)168
C17—H17A···O2ii0.932.483.4063 (18)171
C19—H19A···Cg1iii0.962.863.8058 (16)171
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+1; (iii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC19H20N4O4
Mr368.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.8219 (1), 19.9716 (4), 12.0125 (3)
β (°) 92.831 (1)
V3)1874.25 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.19 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.959, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
21845, 6784, 4307
Rint0.048
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.152, 1.04
No. of reflections6784
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4i0.932.523.4330 (18)168
C17—H17A···O2ii0.932.483.4063 (18)171
C19—H19A···Cg1iii0.962.863.8058 (16)171
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+1; (iii) x, y1/2, z3/2.
 

Footnotes

Additional correspondence author, e-mail: hkargar@pnu.ac.ir.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008a). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008b). Acta Cryst. E64, o2273.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551–o3553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds