organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(4-Amino-3-pyrid­yl)imino­meth­yl]benzo­nitrile

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 7 November 2008; accepted 10 November 2008; online 13 November 2008)

The asymmetric unit of the potential mono-Schiff base ligand title compound, C13H10N4, contains two crystallographically independent mol­ecules, A and B. In mol­ecule A, the two rings are twisted from each other by 13.90 (18)°. By contrast, the dihedral angle between the two rings in mol­ecule B is 0.67 (19)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯N inter­actions via R44(32) motifs, forming two-dimensional arrays. The short distances between the centroids of the six-membered rings indicate the existence of ππ inter­actions [centroid–centroid distances = 3.6880 (17)–3.7466 (15) Å].

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Li et al. (2005[Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156-o4157.]); Bomfim et al. (2005[Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53-o56.]); Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551-o3553.], 2006[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1-o4.]); Sun et al. (2004[Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707-o1708.]); Fun et al. (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N4

  • Mr = 222.25

  • Monoclinic, P 21 /c

  • a = 13.5560 (8) Å

  • b = 12.3000 (7) Å

  • c = 15.7514 (8) Å

  • β = 124.651 (2)°

  • V = 2160.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100.0 (1) K

  • 0.45 × 0.09 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.994

  • 18251 measured reflections

  • 3810 independent reflections

  • 2372 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.219

  • S = 1.03

  • 3810 reflections

  • 323 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H2NA⋯N4Ai 0.92 (4) 2.26 (4) 3.155 (4) 165 (3)
N3A—H1NA⋯N1Bii 0.89 (4) 2.33 (5) 3.080 (4) 143 (4)
N3B—H2NB⋯N1Aiii 0.89 (4) 2.42 (4) 3.112 (4) 136 (4)
N3B—H1NB⋯N4Bi 0.90 (4) 2.36 (4) 3.220 (4) 159 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y, -z+1; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry and play an important role in the development of coordination chemistry (Fun et al., 2008). Structures of Schiff bases derived from substituted benzaldehydes have been reported previously (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004; Fun et al., 2008).

Each imino (C N) functional group is co-planar with the adjacent benzene ring in (I), Fig. 1. Two independent molecules, A and B, comprise the crystallographic asymmetric unit. In molecule A, the two phenyl rings are twisted from each other by 13.90 (18)°. The dihedral angle between the two phenyl rings in molecule B is 0.67 (19)° which indicates the molecule is planar. In the crystal structure, molecules are linked together through intermolecular N—H···N interactions via R44(32) motifs to form 2-D arrays parallel to the ab-plane, Fig. 2 & Table 1. The short distances between the centroids of the six-membered rings prove the existence of ππ interactions [Cg1···Cg4i = 3.7466 (15) Å, (i) x, 1/2 - y, -1/2 + z; Cg2···Cg3i = 3.6894 (14) Å; Cg3···Cg4ii, (ii) 1 - x,-y, 1 - z; Cg1, Cg2, Cg3, and Cg4 are the centroids of the N1A/C1A–C5A, C7A–C12A, N1B/C1B–C5B, and C7B–C12B rings, respectively.

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Li et al. (2005); Bomfim et al. (2005); Glidewell et al. (2005, 2006); Sun et al. (2004); Fun et al. (2008).

Experimental top

The synthetic method has been described earlier (Fun et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution of (I) held at room temperature.

Refinement top

The hydrogen atoms of the amino groups were located from the difference Fourier map and refined freely. The remaining hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq (H).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the c-axis showing a part of the 2-D array and R44(32) ring motifs. Intermolecular hydrogen bonds are shown as dashed lines.
4-[(4-Amino-3-pyridyl)iminomethyl]benzonitrile top
Crystal data top
C13H10N4F(000) = 928
Mr = 222.25Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1699 reflections
a = 13.5560 (8) Åθ = 2.3–30.1°
b = 12.3000 (7) ŵ = 0.09 mm1
c = 15.7514 (8) ÅT = 100 K
β = 124.651 (2)°Needle, yellow
V = 2160.5 (2) Å30.45 × 0.09 × 0.07 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3810 independent reflections
Radiation source: fine-focus sealed tube2372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1616
Tmin = 0.962, Tmax = 0.994k = 1413
18251 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1298P)2 + 0.1507P]
where P = (Fo2 + 2Fc2)/3
3810 reflections(Δ/σ)max < 0.001
323 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H10N4V = 2160.5 (2) Å3
Mr = 222.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.5560 (8) ŵ = 0.09 mm1
b = 12.3000 (7) ÅT = 100 K
c = 15.7514 (8) Å0.45 × 0.09 × 0.07 mm
β = 124.651 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3810 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2372 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.994Rint = 0.060
18251 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.219H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.63 e Å3
3810 reflectionsΔρmin = 0.29 e Å3
323 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.6639 (2)0.12555 (19)0.38263 (17)0.0217 (6)
N2A0.85668 (19)0.33048 (19)0.36498 (16)0.0148 (6)
N3A0.9556 (2)0.1387 (2)0.3572 (2)0.0277 (7)
N4A1.0578 (2)0.9061 (2)0.36363 (17)0.0227 (6)
C1A0.8618 (2)0.1349 (2)0.36579 (19)0.0185 (7)
C2A0.8126 (2)0.0361 (2)0.36880 (19)0.0200 (7)
H2AA0.84470.02920.36540.024*
C3A0.7163 (2)0.0359 (2)0.3769 (2)0.0210 (7)
H3AA0.68560.03120.37840.025*
C4A0.7119 (2)0.2198 (2)0.37969 (19)0.0184 (7)
H4AA0.67730.28330.38340.022*
C5A0.8084 (2)0.2316 (2)0.37159 (19)0.0156 (6)
C6A0.8305 (2)0.4207 (2)0.38827 (19)0.0173 (7)
H6AA0.77990.42070.41040.021*
C7A0.8790 (2)0.5238 (2)0.38050 (18)0.0140 (6)
C8A0.9575 (2)0.5272 (2)0.34913 (18)0.0189 (7)
H8AA0.97810.46320.33130.023*
C9A1.0037 (2)0.6245 (2)0.34472 (19)0.0203 (7)
H9AA1.05510.62630.32340.024*
C10A0.9739 (2)0.7212 (2)0.37224 (19)0.0156 (6)
C11A0.8961 (2)0.7180 (2)0.40366 (19)0.0185 (7)
H11A0.87550.78190.42170.022*
C12A0.8499 (2)0.6198 (2)0.40791 (19)0.0168 (7)
H12A0.79870.61790.42940.020*
C13A1.0218 (2)0.8236 (2)0.36773 (19)0.0173 (6)
C3B0.7831 (2)0.3515 (2)0.62159 (19)0.0202 (7)
H3BA0.81500.41830.62110.024*
N2B0.63747 (19)0.05867 (19)0.62738 (16)0.0183 (6)
N3B0.5661 (2)0.2465 (2)0.66987 (19)0.0236 (6)
N4B0.4350 (2)0.5212 (2)0.62229 (18)0.0269 (6)
C1B0.6482 (2)0.2527 (2)0.64597 (19)0.0160 (7)
C2B0.6988 (2)0.3504 (2)0.6444 (2)0.0191 (7)
H2BA0.67570.41520.65880.023*
N1B0.8223 (2)0.26157 (19)0.59977 (17)0.0225 (6)
C4B0.7739 (3)0.1680 (2)0.6022 (2)0.0232 (7)
H4BA0.79940.10470.58780.028*
C5B0.6885 (2)0.1573 (2)0.62439 (19)0.0153 (6)
C6B0.6661 (2)0.0318 (2)0.6087 (2)0.0207 (7)
H6BA0.72150.03250.59160.025*
C7B0.6158 (2)0.1352 (2)0.61273 (19)0.0156 (6)
C8B0.5309 (2)0.1391 (2)0.63648 (19)0.0177 (7)
H8BA0.50580.07510.65010.021*
C9B0.4837 (3)0.2381 (2)0.6398 (2)0.0197 (7)
H9BA0.42780.24070.65620.024*
C10B0.5212 (2)0.3334 (2)0.6183 (2)0.0183 (7)
C11B0.6066 (3)0.3310 (2)0.5956 (2)0.0219 (7)
H11B0.63210.39500.58230.026*
C12B0.6525 (3)0.2323 (2)0.5929 (2)0.0242 (7)
H12B0.70940.23030.57760.029*
C13B0.4722 (3)0.4381 (3)0.6207 (2)0.0222 (7)
H2NA0.999 (3)0.077 (3)0.366 (2)0.028 (9)*
H1NA0.996 (3)0.199 (3)0.365 (3)0.048 (12)*
H2NB0.527 (3)0.184 (3)0.654 (2)0.044 (11)*
H1NB0.538 (3)0.311 (3)0.675 (2)0.039 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0241 (14)0.0159 (14)0.0297 (13)0.0010 (11)0.0180 (12)0.0011 (11)
N2A0.0128 (12)0.0135 (14)0.0182 (11)0.0012 (10)0.0089 (10)0.0005 (9)
N3A0.0293 (16)0.0154 (17)0.0494 (17)0.0009 (13)0.0290 (14)0.0006 (13)
N4A0.0240 (14)0.0166 (15)0.0305 (13)0.0020 (11)0.0173 (12)0.0021 (11)
C1A0.0197 (15)0.0196 (18)0.0157 (13)0.0026 (12)0.0097 (12)0.0022 (12)
C2A0.0239 (16)0.0113 (17)0.0263 (15)0.0020 (13)0.0152 (13)0.0005 (12)
C3A0.0225 (16)0.0148 (17)0.0260 (15)0.0034 (13)0.0140 (13)0.0002 (12)
C4A0.0154 (15)0.0197 (18)0.0203 (14)0.0019 (12)0.0103 (13)0.0010 (12)
C5A0.0153 (14)0.0134 (16)0.0165 (13)0.0020 (12)0.0082 (12)0.0009 (11)
C6A0.0141 (14)0.0202 (18)0.0179 (13)0.0025 (12)0.0094 (12)0.0004 (12)
C7A0.0119 (13)0.0140 (16)0.0130 (12)0.0016 (11)0.0053 (11)0.0002 (11)
C8A0.0216 (15)0.0155 (17)0.0191 (14)0.0006 (12)0.0113 (13)0.0034 (12)
C9A0.0213 (16)0.0210 (18)0.0226 (14)0.0014 (13)0.0149 (13)0.0006 (12)
C10A0.0147 (14)0.0136 (16)0.0161 (13)0.0008 (12)0.0073 (12)0.0008 (11)
C11A0.0171 (15)0.0163 (17)0.0209 (14)0.0033 (12)0.0101 (13)0.0015 (12)
C12A0.0151 (14)0.0175 (17)0.0209 (14)0.0008 (12)0.0121 (12)0.0004 (12)
C13A0.0169 (15)0.0178 (17)0.0178 (14)0.0000 (13)0.0102 (12)0.0006 (12)
C3B0.0184 (15)0.0199 (18)0.0216 (15)0.0007 (12)0.0109 (13)0.0029 (12)
N2B0.0195 (13)0.0145 (15)0.0220 (12)0.0044 (10)0.0124 (11)0.0027 (10)
N3B0.0266 (15)0.0137 (17)0.0392 (15)0.0009 (13)0.0239 (13)0.0023 (12)
N4B0.0262 (14)0.0168 (16)0.0405 (15)0.0033 (12)0.0206 (13)0.0012 (12)
C1B0.0094 (13)0.0216 (18)0.0130 (13)0.0003 (12)0.0040 (11)0.0003 (11)
C2B0.0182 (15)0.0154 (17)0.0218 (14)0.0008 (12)0.0103 (13)0.0033 (12)
N1B0.0213 (14)0.0181 (15)0.0310 (13)0.0015 (11)0.0166 (12)0.0030 (11)
C4B0.0260 (16)0.0171 (18)0.0287 (15)0.0014 (13)0.0169 (14)0.0023 (13)
C5B0.0126 (14)0.0164 (17)0.0142 (13)0.0026 (11)0.0060 (11)0.0008 (11)
C6B0.0220 (15)0.0198 (18)0.0285 (15)0.0034 (13)0.0193 (13)0.0038 (13)
C7B0.0137 (14)0.0169 (17)0.0163 (13)0.0002 (12)0.0087 (12)0.0007 (11)
C8B0.0206 (16)0.0141 (17)0.0195 (14)0.0015 (12)0.0120 (13)0.0015 (11)
C9B0.0192 (15)0.0211 (18)0.0238 (14)0.0015 (13)0.0152 (13)0.0001 (12)
C10B0.0188 (15)0.0151 (17)0.0168 (13)0.0004 (12)0.0077 (12)0.0021 (11)
C11B0.0264 (16)0.0172 (18)0.0264 (15)0.0005 (13)0.0175 (14)0.0001 (12)
C12B0.0269 (17)0.0200 (18)0.0345 (17)0.0018 (13)0.0227 (15)0.0034 (13)
C13B0.0192 (15)0.0229 (19)0.0246 (15)0.0025 (14)0.0124 (13)0.0000 (13)
Geometric parameters (Å, º) top
N1A—C3A1.343 (3)C3B—N1B1.354 (3)
N1A—C4A1.343 (3)C3B—C2B1.379 (4)
N2A—C6A1.281 (3)C3B—H3BA0.9300
N2A—C5A1.413 (3)N2B—C6B1.267 (3)
N3A—C1A1.354 (4)N2B—C5B1.411 (3)
N3A—H2NA0.93 (3)N3B—C1B1.366 (4)
N3A—H1NA0.88 (4)N3B—H2NB0.88 (4)
N4A—C13A1.143 (3)N3B—H1NB0.90 (4)
C1A—C2A1.399 (4)N4B—C13B1.147 (4)
C1A—C5A1.422 (4)C1B—C2B1.391 (4)
C2A—C3A1.381 (4)C1B—C5B1.415 (4)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—H3AA0.9300N1B—C4B1.336 (4)
C4A—C5A1.392 (4)C4B—C5B1.393 (4)
C4A—H4AA0.9300C4B—H4BA0.9300
C6A—C7A1.466 (4)C6B—C7B1.461 (4)
C6A—H6AA0.9300C6B—H6BA0.9300
C7A—C12A1.389 (4)C7B—C12B1.396 (4)
C7A—C8A1.406 (4)C7B—C8B1.399 (4)
C8A—C9A1.370 (4)C8B—C9B1.390 (4)
C8A—H8AA0.9300C8B—H8BA0.9300
C9A—C10A1.402 (4)C9B—C10B1.394 (4)
C9A—H9AA0.9300C9B—H9BA0.9300
C10A—C11A1.398 (4)C10B—C11B1.393 (4)
C10A—C13A1.437 (4)C10B—C13B1.458 (4)
C11A—C12A1.379 (4)C11B—C12B1.375 (4)
C11A—H11A0.9300C11B—H11B0.9300
C12A—H12A0.9300C12B—H12B0.9300
C3A—N1A—C4A114.9 (2)N1B—C3B—C2B124.1 (3)
C6A—N2A—C5A120.6 (2)N1B—C3B—H3BA117.9
C1A—N3A—H2NA121.2 (19)C2B—C3B—H3BA117.9
C1A—N3A—H1NA123 (2)C6B—N2B—C5B121.8 (2)
H2NA—N3A—H1NA112 (3)C1B—N3B—H2NB115 (2)
N3A—C1A—C2A121.7 (3)C1B—N3B—H1NB115 (2)
N3A—C1A—C5A121.2 (3)H2NB—N3B—H1NB125 (3)
C2A—C1A—C5A117.0 (3)N3B—C1B—C2B122.7 (3)
C3A—C2A—C1A119.9 (3)N3B—C1B—C5B120.4 (3)
C3A—C2A—H2AA120.0C2B—C1B—C5B116.8 (3)
C1A—C2A—H2AA120.0C3B—C2B—C1B120.2 (3)
N1A—C3A—C2A124.6 (3)C3B—C2B—H2BA119.9
N1A—C3A—H3AA117.7C1B—C2B—H2BA119.9
C2A—C3A—H3AA117.7C4B—N1B—C3B115.3 (3)
N1A—C4A—C5A126.3 (3)N1B—C4B—C5B125.4 (3)
N1A—C4A—H4AA116.9N1B—C4B—H4BA117.3
C5A—C4A—H4AA116.9C5B—C4B—H4BA117.3
C4A—C5A—N2A126.5 (3)C4B—C5B—N2B125.6 (3)
C4A—C5A—C1A117.2 (3)C4B—C5B—C1B118.2 (3)
N2A—C5A—C1A116.2 (2)N2B—C5B—C1B116.2 (2)
N2A—C6A—C7A121.0 (2)N2B—C6B—C7B122.8 (3)
N2A—C6A—H6AA119.5N2B—C6B—H6BA118.6
C7A—C6A—H6AA119.5C7B—C6B—H6BA118.6
C12A—C7A—C8A119.3 (3)C12B—C7B—C8B118.8 (3)
C12A—C7A—C6A119.3 (2)C12B—C7B—C6B120.0 (2)
C8A—C7A—C6A121.3 (3)C8B—C7B—C6B121.2 (3)
C9A—C8A—C7A120.2 (3)C9B—C8B—C7B120.4 (3)
C9A—C8A—H8AA119.9C9B—C8B—H8BA119.8
C7A—C8A—H8AA119.9C7B—C8B—H8BA119.8
C8A—C9A—C10A120.3 (3)C8B—C9B—C10B119.2 (3)
C8A—C9A—H9AA119.8C8B—C9B—H9BA120.4
C10A—C9A—H9AA119.8C10B—C9B—H9BA120.4
C11A—C10A—C9A119.6 (3)C11B—C10B—C9B121.0 (3)
C11A—C10A—C13A119.7 (3)C11B—C10B—C13B118.9 (3)
C9A—C10A—C13A120.7 (3)C9B—C10B—C13B120.1 (3)
C12A—C11A—C10A119.8 (3)C12B—C11B—C10B118.9 (3)
C12A—C11A—H11A120.1C12B—C11B—H11B120.5
C10A—C11A—H11A120.1C10B—C11B—H11B120.5
C11A—C12A—C7A120.8 (3)C11B—C12B—C7B121.6 (3)
C11A—C12A—H12A119.6C11B—C12B—H12B119.2
C7A—C12A—H12A119.6C7B—C12B—H12B119.2
N4A—C13A—C10A178.6 (3)N4B—C13B—C10B178.8 (3)
N3A—C1A—C2A—C3A179.5 (3)N1B—C3B—C2B—C1B0.1 (4)
C5A—C1A—C2A—C3A0.1 (4)N3B—C1B—C2B—C3B178.8 (2)
C4A—N1A—C3A—C2A0.2 (4)C5B—C1B—C2B—C3B0.7 (4)
C1A—C2A—C3A—N1A0.3 (4)C2B—C3B—N1B—C4B0.4 (4)
C3A—N1A—C4A—C5A0.1 (4)C3B—N1B—C4B—C5B0.3 (4)
N1A—C4A—C5A—N2A177.7 (2)N1B—C4B—C5B—N2B179.8 (2)
N1A—C4A—C5A—C1A0.0 (4)N1B—C4B—C5B—C1B0.3 (4)
C6A—N2A—C5A—C4A15.3 (4)C6B—N2B—C5B—C4B0.4 (4)
C6A—N2A—C5A—C1A167.0 (2)C6B—N2B—C5B—C1B179.5 (2)
N3A—C1A—C5A—C4A179.6 (2)N3B—C1B—C5B—C4B178.9 (2)
C2A—C1A—C5A—C4A0.1 (3)C2B—C1B—C5B—C4B0.7 (4)
N3A—C1A—C5A—N2A1.7 (4)N3B—C1B—C5B—N2B1.1 (4)
C2A—C1A—C5A—N2A178.0 (2)C2B—C1B—C5B—N2B179.3 (2)
C5A—N2A—C6A—C7A179.3 (2)C5B—N2B—C6B—C7B179.1 (2)
N2A—C6A—C7A—C12A179.0 (2)N2B—C6B—C7B—C12B178.9 (3)
N2A—C6A—C7A—C8A1.2 (4)N2B—C6B—C7B—C8B0.9 (4)
C12A—C7A—C8A—C9A0.7 (4)C12B—C7B—C8B—C9B0.3 (4)
C6A—C7A—C8A—C9A178.5 (2)C6B—C7B—C8B—C9B179.9 (2)
C7A—C8A—C9A—C10A0.5 (4)C7B—C8B—C9B—C10B0.6 (4)
C8A—C9A—C10A—C11A0.4 (4)C8B—C9B—C10B—C11B1.2 (4)
C8A—C9A—C10A—C13A179.9 (2)C8B—C9B—C10B—C13B179.5 (2)
C9A—C10A—C11A—C12A0.4 (4)C9B—C10B—C11B—C12B1.0 (4)
C13A—C10A—C11A—C12A179.9 (2)C13B—C10B—C11B—C12B179.7 (2)
C10A—C11A—C12A—C7A0.5 (4)C10B—C11B—C12B—C7B0.1 (4)
C8A—C7A—C12A—C11A0.7 (4)C8B—C7B—C12B—C11B0.5 (4)
C6A—C7A—C12A—C11A178.6 (2)C6B—C7B—C12B—C11B179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H2NA···N4Ai0.92 (4)2.26 (4)3.155 (4)165 (3)
N3A—H1NA···N1Bii0.89 (4)2.33 (5)3.080 (4)143 (4)
N3B—H2NB···N1Aiii0.89 (4)2.42 (4)3.112 (4)136 (4)
N3B—H1NB···N4Bi0.90 (4)2.36 (4)3.220 (4)159 (2)
Symmetry codes: (i) x, y1, z; (ii) x+2, y, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H10N4
Mr222.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.5560 (8), 12.3000 (7), 15.7514 (8)
β (°) 124.651 (2)
V3)2160.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.09 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.962, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
18251, 3810, 2372
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.219, 1.03
No. of reflections3810
No. of parameters323
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR2004 (Burla et al., 2003), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H2NA···N4Ai0.92 (4)2.26 (4)3.155 (4)165 (3)
N3A—H1NA···N1Bii0.89 (4)2.33 (5)3.080 (4)143 (4)
N3B—H2NB···N1Aiii0.89 (4)2.42 (4)3.112 (4)136 (4)
N3B—H1NB···N4Bi0.90 (4)2.36 (4)3.220 (4)159 (2)
Symmetry codes: (i) x, y1, z; (ii) x+2, y, z+1; (iii) x+1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: hkargar@pnu.ac.ir.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551–o3553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds