organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­fluoro-N-(2-pyrid­yl)benzamide

aSchool of Chemical Sciences, Dublin City University, Dublin 9, Ireland, bSchool of Chemical Sciences, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland, and cDepartment of Chemistry, 80 St George Street, University of Toronto, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: john.gallagher@dcu.ie

(Received 14 November 2008; accepted 17 November 2008; online 20 November 2008)

The title compound, C12H8F2N2O, crystallizes with two independent mol­ecules in the asymmetric unit. The independent mol­ecules differ slightly in conformation; the dihedral angles between the benzene and pyridine rings are 51.58 (5) and 49.97 (4)°. In the crystal structure, mol­ecules aggregate via N—H⋯Npyridine inter­actions as hydrogen-bonded dimers with the structural motif R22(8), and these dimers are linked via C—H⋯O inter­actions to form a supra­molecular chain.

Related literature

For background information, see: Chopra & Row (2008[Chopra, D. & Row, T. N. G. (2008). CrystEngComm, 10, 54-67.]); Donnelly et al. (2008[Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335-o340.]); Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); McMahon et al. (2008[McMahon, J., Anderson, F. P., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o493-o497.]). For a related structure, see: Forbes et al. (2001[Forbes, C. C., Beatty, A. M. & Smith, B. D. (2001). Org. Lett. 3, 3595-3598.]). For the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8F2N2O

  • Mr = 234.20

  • Monoclinic, P 21 /n

  • a = 11.8515 (4) Å

  • b = 9.0554 (2) Å

  • c = 20.1075 (7) Å

  • β = 100.2620 (15)°

  • V = 2123.42 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 (1) K

  • 0.26 × 0.20 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.875, Tmax = 0.981

  • 5113 measured reflections

  • 4803 independent reflections

  • 3170 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.128

  • S = 1.04

  • 4803 reflections

  • 316 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯N22B 0.894 (19) 2.076 (19) 2.968 (2) 175.9 (16)
N1B—H1B⋯N22A 0.90 (2) 2.10 (2) 2.999 (2) 175.4 (17)
C25B—H25B⋯O1Ai 0.95 2.48 3.379 (2) 159
C25A—H25A⋯O1Bii 0.95 2.67 3.542 (2) 153
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZOSMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZOSMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SORTX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); mol­ecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998[Ferguson, G. (1998). PREP8. University of Guelph, Canada.]).

Supporting information


Comment top

Our group is completing a structural systematic study of fluoro-N'-(pyridyl)benzamide isomers (Donnelly et al., 2008) and are adding to our research with the analogous difluoro-N-(pyridyl)benzamide series (McMahon et al., 2008) (Scheme 1). A total of 18 isomers are possible via amide formation and resulting through condensation of the 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, 3,5-difluorobenzoyl chlorides with the 4-/3-/2-aminopyridines. The 2,3-, 2,4- and 2,5-difluoro-N-(4-pyridyl)benzamides have already been reported by us (McMahon et al., 2008). Systematic structural analyses have recently been reported for related fluoro derivatives (Chopra & Row, 2008) and isomeric series (Gelbrich et al., 2007).

There is a dearth of structural information in the literature on all six possible difluorobenzene derivatives F2C6H3Z (Z = remainder of molecule) from analysis of structural data in the Cambridge Structural Database (Allen 2002; v5.29, Nov 2007 issue + 2 updates). In this structural report the structure of 2,3-difluoro-N-(2-pyridyl)benzamide (I), Fig. 1, is described.

Compound (I) crystallizes with two molecules, A and B (which differ slightly in conformation) in the asymmetric unit: the C6/C5N internal angles are 51.58 (5)° and 49.97 (4)°, respectively, see overlay diagram, Fig. 2. Molecules aggregate via N—H···N interactions as hydrogen bonded dimers with structural motif R22(8); see Table 1 for geometric parameters. The [N1A/C21A/N22A/H1A] and [N1B/C21B/N22B/H1B] interplanar angle is 36.2 (3)° and deviates considerably from co-planarity therefore highlighting a degree of twist between the two interacting molecules. Hydrogen bonded dimers are linked into a supramolecular chain via C—H···O=C intermolecular interactions, Table 1 and Fig. 3.

An analysis of the Cambridge Structural Database reveals a related structure pentafluoro-N-(2-pyridyl)benzamide (II) [CSD code IDALAA] (Forbes et al., 2001) where molecules also form hydrogen bonded dimers in space group P1 (No. 2) with Z'=2. The N···N intermolecular distances in (II) are 2.9568 (14) and 3.0734 (15) Å.

Related literature top

For background information, see: Chopra & Row (2008); Donnelly et al. (2008); Gelbrich et al. (2007); McMahon et al. (2008). For a related structure, see: Forbes et al. (2001). For the Cambridge Structural Database, see: Allen (2002).

Experimental top

Compound (I) was synthesized via standard condensation procedures and similar to the related syntheses reported previously (Donnelly et al., 2008; McMahon et al., 2008).

Typical organic workup and washing gave the product (I) in modest yield of 15–20%. Crystals suitable for diffraction were grown from CHCl3 solution as colourless blocks over a period of 1–2 weeks. The compounds gave clean 1H and 13C NMR spectra in δ6-DMSO and infrared spectra (in CHCl3 solution, and as KBr disks).

For (I), m.p. 348–352 K (uncorrected). IR (νC=O cm-1): 1644(s), (CHCl3); 1695(s) (KBr). 1H NMR (400 MHz, DMSO): δ 11.02 (s, 1H, N—H), 8.38 (d, 1H), 8.18 (d, 1H), 7.87 (t, 1H), 7.61 (q, 1H), 7.50 (t, 1H), 7.34 (q, 1H), 7.19 (t, 1H).

Refinement top

H atoms attached to C atoms were treated as riding with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C). N-bound H atoms were refined freely with isotropic displacement parameters to bond lengths of 0.894 (19) (for N1—H1A) and 0.90 (2) Å (for N2—H2A).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and SORTX (McArdle, 1995); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. A view of the hydrogen bonded dimeric unit in (I) with the atomic numbering scheme for the two independent molecules A and B. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. An overlay of the non-H atoms in molecules A and B in (I).
[Figure 3] Fig. 3. A view of the primary interactions in the crystal structure of (I) with H atoms not involved in hydrogen bonding removed for clarity. Molecules in the hydrogen bonded dimer with suffixes A and B are linked to symmetry related dimers at positions * and # via C—H···O interactions.
2,3-Difluoro-N-(2-pyridyl)benzamide top
Crystal data top
C12H8F2N2OF(000) = 960
Mr = 234.20Dx = 1.465 Mg m3
Monoclinic, P21/nMelting point: 350 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.8515 (4) ÅCell parameters from 19375 reflections
b = 9.0554 (2) Åθ = 2.6–27.5°
c = 20.1075 (7) ŵ = 0.12 mm1
β = 100.2620 (15)°T = 150 K
V = 2123.42 (11) Å3Block, colorless
Z = 80.26 × 0.20 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
4803 independent reflections
Radiation source: fine-focus sealed X-ray tube3170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ, ω scans with κ offsetsθmax = 27.4°, θmin = 2.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1515
Tmin = 0.875, Tmax = 0.981k = 1111
5113 measured reflectionsl = 2526
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.0466P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4803 reflectionsΔρmax = 0.22 e Å3
316 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0082 (18)
Crystal data top
C12H8F2N2OV = 2123.42 (11) Å3
Mr = 234.20Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.8515 (4) ŵ = 0.12 mm1
b = 9.0554 (2) ÅT = 150 K
c = 20.1075 (7) Å0.26 × 0.20 × 0.15 mm
β = 100.2620 (15)°
Data collection top
Nonius KappaCCD
diffractometer
4803 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3170 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.981Rint = 0.045
5113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
4803 reflectionsΔρmin = 0.23 e Å3
316 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F12A0.56446 (8)0.44877 (11)0.07324 (5)0.0425 (3)
F13A0.78621 (9)0.51655 (11)0.10099 (5)0.0488 (3)
O1A0.42720 (10)0.20016 (14)0.08253 (6)0.0395 (3)
C1A0.47361 (14)0.22193 (17)0.02420 (8)0.0305 (4)
N1A0.42289 (12)0.20469 (17)0.03102 (7)0.0335 (3)
C11A0.59705 (14)0.26753 (17)0.00730 (8)0.0290 (4)
C12A0.63682 (14)0.37604 (18)0.03976 (8)0.0321 (4)
C13A0.75099 (15)0.41319 (18)0.05327 (9)0.0355 (4)
C14A0.82865 (15)0.3464 (2)0.02003 (9)0.0393 (4)
C15A0.79011 (15)0.2389 (2)0.02769 (9)0.0381 (4)
C16A0.67583 (15)0.20015 (18)0.04120 (8)0.0325 (4)
C21A0.30662 (14)0.18055 (17)0.03269 (8)0.0299 (4)
N22A0.28635 (11)0.16084 (15)0.09545 (7)0.0314 (3)
C23A0.17744 (14)0.13679 (18)0.10248 (9)0.0346 (4)
C24A0.08688 (15)0.13592 (19)0.04919 (9)0.0377 (4)
C25A0.10971 (15)0.1603 (2)0.01501 (10)0.0410 (4)
C26A0.22090 (15)0.18089 (18)0.02435 (9)0.0350 (4)
F12B0.29582 (9)0.49048 (12)0.14007 (5)0.0443 (3)
F13B0.06988 (10)0.53646 (13)0.11073 (6)0.0554 (3)
O1B0.45792 (11)0.38227 (17)0.31766 (6)0.0555 (4)
C1B0.40611 (15)0.34390 (19)0.26233 (8)0.0354 (4)
N1B0.45292 (12)0.27166 (16)0.21504 (7)0.0325 (3)
C11B0.27918 (14)0.37060 (18)0.24278 (8)0.0328 (4)
C12B0.22995 (15)0.44225 (18)0.18387 (8)0.0345 (4)
C13B0.11332 (16)0.46598 (19)0.16891 (9)0.0386 (4)
C14B0.04218 (16)0.4186 (2)0.21145 (10)0.0421 (4)
C15B0.08962 (16)0.3480 (2)0.27087 (10)0.0445 (5)
C16B0.20703 (16)0.3250 (2)0.28624 (9)0.0395 (4)
C21B0.56780 (14)0.22849 (17)0.21788 (8)0.0303 (4)
N22B0.58589 (12)0.16736 (16)0.16024 (7)0.0344 (3)
C23B0.69244 (15)0.1202 (2)0.15795 (9)0.0384 (4)
C24B0.78295 (15)0.1326 (2)0.21110 (9)0.0389 (4)
C25B0.76225 (16)0.1964 (2)0.27011 (9)0.0427 (5)
C26B0.65348 (15)0.2447 (2)0.27418 (9)0.0390 (4)
H1A0.4709 (16)0.1978 (19)0.0706 (9)0.035 (5)*
H14A0.90740.37320.02950.047*
H15A0.84280.19160.05120.046*
H16A0.65050.12640.07410.039*
H23A0.16210.11950.14660.042*
H24A0.01080.11910.05630.045*
H25A0.04860.16280.05270.049*
H26A0.23840.19490.06820.042*
H1B0.4059 (17)0.240 (2)0.1778 (10)0.043 (5)*
H14B0.03830.43400.20030.051*
H15B0.04180.31530.30110.053*
H16B0.23880.27700.32730.047*
H23B0.70630.07580.11740.046*
H24B0.85730.09830.20730.047*
H25B0.82270.20690.30770.051*
H26B0.63750.28810.31450.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F12A0.0384 (6)0.0438 (6)0.0455 (6)0.0052 (4)0.0084 (5)0.0136 (5)
F13A0.0455 (7)0.0452 (6)0.0519 (7)0.0065 (5)0.0018 (5)0.0134 (5)
O1A0.0386 (7)0.0519 (8)0.0264 (7)0.0028 (5)0.0015 (5)0.0038 (5)
C1A0.0317 (9)0.0328 (9)0.0258 (9)0.0030 (7)0.0020 (7)0.0014 (7)
N1A0.0241 (8)0.0508 (9)0.0244 (8)0.0028 (6)0.0008 (6)0.0018 (6)
C11A0.0311 (9)0.0313 (8)0.0243 (8)0.0017 (6)0.0040 (7)0.0021 (7)
C12A0.0321 (9)0.0333 (9)0.0315 (9)0.0058 (7)0.0073 (7)0.0006 (7)
C13A0.0371 (10)0.0326 (9)0.0342 (9)0.0036 (7)0.0008 (8)0.0017 (8)
C14A0.0286 (9)0.0461 (10)0.0428 (11)0.0013 (8)0.0055 (8)0.0042 (9)
C15A0.0334 (10)0.0468 (10)0.0352 (10)0.0067 (8)0.0093 (8)0.0025 (8)
C16A0.0373 (10)0.0337 (9)0.0266 (9)0.0030 (7)0.0056 (7)0.0006 (7)
C21A0.0286 (9)0.0308 (8)0.0296 (9)0.0011 (6)0.0035 (7)0.0006 (7)
N22A0.0286 (8)0.0353 (8)0.0300 (8)0.0001 (6)0.0047 (6)0.0010 (6)
C23A0.0357 (10)0.0339 (9)0.0354 (10)0.0019 (7)0.0095 (8)0.0022 (7)
C24A0.0296 (9)0.0401 (10)0.0426 (11)0.0049 (7)0.0041 (8)0.0015 (8)
C25A0.0322 (10)0.0476 (11)0.0389 (10)0.0033 (8)0.0048 (8)0.0009 (8)
C26A0.0320 (10)0.0417 (10)0.0292 (9)0.0011 (7)0.0003 (7)0.0016 (8)
F12B0.0424 (6)0.0497 (6)0.0426 (6)0.0017 (5)0.0121 (5)0.0126 (5)
F13B0.0462 (7)0.0643 (7)0.0531 (7)0.0097 (5)0.0014 (5)0.0206 (6)
O1B0.0459 (8)0.0824 (10)0.0345 (8)0.0130 (7)0.0024 (6)0.0221 (7)
C1B0.0376 (10)0.0408 (10)0.0272 (9)0.0025 (7)0.0041 (8)0.0026 (8)
N1B0.0296 (8)0.0422 (8)0.0243 (7)0.0018 (6)0.0008 (6)0.0035 (6)
C11B0.0360 (10)0.0340 (9)0.0286 (9)0.0021 (7)0.0060 (7)0.0057 (7)
C12B0.0374 (10)0.0356 (9)0.0320 (9)0.0011 (7)0.0103 (8)0.0003 (8)
C13B0.0389 (11)0.0376 (10)0.0377 (10)0.0043 (8)0.0022 (8)0.0030 (8)
C14B0.0336 (10)0.0465 (10)0.0459 (11)0.0018 (8)0.0063 (8)0.0054 (9)
C15B0.0417 (11)0.0544 (11)0.0402 (11)0.0027 (9)0.0148 (9)0.0056 (9)
C16B0.0420 (11)0.0489 (11)0.0284 (9)0.0032 (8)0.0084 (8)0.0017 (8)
C21B0.0330 (9)0.0310 (8)0.0266 (9)0.0001 (6)0.0043 (7)0.0011 (7)
N22B0.0331 (8)0.0393 (8)0.0292 (8)0.0037 (6)0.0015 (6)0.0024 (6)
C23B0.0364 (10)0.0424 (10)0.0355 (10)0.0076 (8)0.0045 (8)0.0038 (8)
C24B0.0303 (10)0.0458 (10)0.0387 (10)0.0035 (7)0.0014 (8)0.0024 (8)
C25B0.0350 (10)0.0552 (12)0.0342 (10)0.0007 (8)0.0037 (8)0.0006 (9)
C26B0.0367 (10)0.0504 (11)0.0280 (9)0.0002 (8)0.0006 (8)0.0023 (8)
Geometric parameters (Å, º) top
F12A—C12A1.3520 (18)C12B—C13B1.378 (2)
F13A—C13A1.3522 (19)C13B—C14B1.373 (3)
O1A—C1A1.2195 (19)C14B—C15B1.383 (3)
C1A—N1A1.363 (2)C15B—C16B1.386 (3)
C1A—C11A1.500 (2)C21B—N22B1.336 (2)
N1A—C21A1.402 (2)C21B—C26B1.387 (2)
C11A—C12A1.387 (2)N22B—C23B1.342 (2)
C11A—C16A1.391 (2)C23B—C24B1.377 (2)
C12A—C13A1.374 (2)C24B—C25B1.380 (3)
C13A—C14A1.371 (2)C25B—C26B1.377 (3)
C14A—C15A1.386 (3)N1A—H1A0.894 (19)
C15A—C16A1.378 (2)C14A—H14A0.9500
C21A—N22A1.338 (2)C15A—H15A0.9500
C21A—C26A1.390 (2)C16A—H16A0.9500
N22A—C23A1.341 (2)C23A—H23A0.9500
C23A—C24A1.375 (2)C24A—H24A0.9500
C24A—C25A1.383 (3)C25A—H25A0.9500
C25A—C26A1.377 (2)C26A—H26A0.9500
F12B—C12B1.3493 (19)N1B—H1B0.90 (2)
F13B—C13B1.351 (2)C14B—H14B0.9500
O1B—C1B1.221 (2)C15B—H15B0.9500
C1B—N1B1.352 (2)C16B—H16B0.9500
C1B—C11B1.505 (2)C23B—H23B0.9500
N1B—C21B1.408 (2)C24B—H24B0.9500
C11B—C12B1.385 (2)C25B—H25B0.9500
C11B—C16B1.390 (2)C26B—H26B0.9500
O1A—C1A—N1A125.19 (16)O1B—C1B—N1B125.13 (16)
O1A—C1A—C11A121.14 (15)O1B—C1B—C11B120.60 (15)
N1A—C1A—C11A113.64 (14)N1B—C1B—C11B114.22 (14)
C1A—N1A—C21A128.01 (14)C1B—N1B—C21B128.38 (14)
C1A—N1A—H1A115.5 (11)C1B—N1B—H1B118.2 (12)
C21A—N1A—H1A116.1 (11)C21B—N1B—H1B113.3 (12)
C12A—C11A—C16A117.95 (15)C12B—C11B—C16B117.68 (16)
C12A—C11A—C1A123.29 (15)C12B—C11B—C1B123.21 (15)
C16A—C11A—C1A118.75 (15)C16B—C11B—C1B119.09 (15)
F12A—C12A—C11A121.07 (15)F12B—C12B—C11B120.36 (15)
F12A—C12A—C13A118.17 (15)F12B—C12B—C13B118.78 (15)
C13A—C12A—C11A120.76 (15)C13B—C12B—C11B120.86 (16)
F13A—C13A—C12A118.59 (15)F13B—C13B—C12B118.38 (16)
F13A—C13A—C14A120.15 (16)F13B—C13B—C14B120.37 (17)
C14A—C13A—C12A121.25 (16)C14B—C13B—C12B121.25 (17)
C13A—C14A—C15A118.72 (17)C13B—C14B—C15B118.86 (17)
C16A—C15A—C14A120.42 (16)C14B—C15B—C16B119.97 (17)
C15A—C16A—C11A120.89 (16)C15B—C16B—C11B121.37 (17)
N22A—C21A—C26A123.43 (15)N22B—C21B—C26B123.00 (16)
N22A—C21A—N1A112.70 (14)N22B—C21B—N1B112.55 (14)
C26A—C21A—N1A123.84 (15)C26B—C21B—N1B124.44 (15)
C21A—N22A—C23A117.32 (14)C21B—N22B—C23B117.33 (14)
N22A—C23A—C24A123.44 (16)N22B—C23B—C24B123.73 (17)
C23A—C24A—C25A118.11 (16)C23B—C24B—C25B117.90 (17)
C26A—C25A—C24A120.02 (16)C26B—C25B—C24B119.71 (17)
C25A—C26A—C21A117.62 (16)C25B—C26B—C21B118.32 (16)
C13A—C14A—H14A120.6C13B—C14B—H14B120.6
C15A—C14A—H14A120.6C15B—C14B—H14B120.6
C16A—C15A—H15A119.8C14B—C15B—H15B120.0
C14A—C15A—H15A119.8C16B—C15B—H15B120.0
C15A—C16A—H16A119.6C15B—C16B—H16B119.3
C11A—C16A—H16A119.6C11B—C16B—H16B119.3
C23A—C24A—H24A120.9N22B—C23B—H23B118.1
C25A—C24A—H24A120.9C24B—C23B—H23B118.1
C26A—C25A—H25A120.0C23B—C24B—H24B121.0
C24A—C25A—H25A120.0C25B—C24B—H24B121.0
N22A—C23A—H23A118.3C26B—C25B—H25B120.1
C24A—C23A—H23A118.3C24B—C25B—H25B120.1
C25A—C26A—H26A121.2C25B—C26B—H26B120.8
C21A—C26A—H26A121.2C21B—C26B—H26B120.8
O1A—C1A—N1A—C21A10.0 (3)O1B—C1B—N1B—C21B1.4 (3)
C11A—C1A—N1A—C21A171.67 (15)C11B—C1B—N1B—C21B179.18 (15)
O1A—C1A—C11A—C12A137.44 (17)O1B—C1B—C11B—C12B127.03 (19)
N1A—C1A—C11A—C12A44.2 (2)N1B—C1B—C11B—C12B55.1 (2)
O1A—C1A—C11A—C16A41.3 (2)O1B—C1B—C11B—C16B51.4 (2)
N1A—C1A—C11A—C16A137.08 (16)N1B—C1B—C11B—C16B126.52 (17)
C16A—C11A—C12A—F12A178.24 (14)C16B—C11B—C12B—F12B179.31 (15)
C1A—C11A—C12A—F12A0.5 (2)C1B—C11B—C12B—F12B0.9 (2)
C16A—C11A—C12A—C13A1.3 (2)C16B—C11B—C12B—C13B0.5 (2)
C1A—C11A—C12A—C13A179.93 (16)C1B—C11B—C12B—C13B178.94 (16)
F12A—C12A—C13A—F13A2.4 (2)F12B—C12B—C13B—F13B0.2 (2)
C11A—C12A—C13A—F13A178.07 (15)C11B—C12B—C13B—F13B180.00 (15)
F12A—C12A—C13A—C14A178.45 (15)F12B—C12B—C13B—C14B179.65 (16)
C11A—C12A—C13A—C14A1.1 (3)C11B—C12B—C13B—C14B0.5 (3)
F13A—C13A—C14A—C15A178.79 (16)F13B—C13B—C14B—C15B179.45 (16)
C12A—C13A—C14A—C15A0.4 (3)C12B—C13B—C14B—C15B1.1 (3)
C13A—C14A—C15A—C16A0.1 (3)C13B—C14B—C15B—C16B0.6 (3)
C14A—C15A—C16A—C11A0.1 (3)C14B—C15B—C16B—C11B0.5 (3)
C12A—C11A—C16A—C15A0.8 (2)C12B—C11B—C16B—C15B1.0 (3)
C1A—C11A—C16A—C15A179.64 (15)C1B—C11B—C16B—C15B179.48 (16)
C1A—N1A—C21A—N22A176.76 (16)C1B—N1B—C21B—N22B175.88 (16)
C1A—N1A—C21A—C26A4.9 (3)C1B—N1B—C21B—C26B5.0 (3)
C26A—C21A—N22A—C23A1.7 (2)C26B—C21B—N22B—C23B0.1 (2)
N1A—C21A—N22A—C23A179.97 (14)N1B—C21B—N22B—C23B179.03 (15)
C21A—N22A—C23A—C24A2.0 (2)C21B—N22B—C23B—C24B0.5 (3)
N22A—C23A—C24A—C25A0.4 (3)N22B—C23B—C24B—C25B0.4 (3)
C23A—C24A—C25A—C26A1.6 (3)C23B—C24B—C25B—C26B0.2 (3)
C24A—C25A—C26A—C21A1.9 (3)C24B—C25B—C26B—C21B0.6 (3)
N22A—C21A—C26A—C25A0.2 (3)N22B—C21B—C26B—C25B0.5 (3)
N1A—C21A—C26A—C25A177.96 (16)N1B—C21B—C26B—C25B179.45 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···N22B0.894 (19)2.076 (19)2.968 (2)175.9 (16)
N1B—H1B···N22A0.90 (2)2.10 (2)2.999 (2)175.4 (17)
C26A—H26A···O1A0.952.312.898 (2)120
C26B—H26B···O1B0.952.302.900 (2)120
C25B—H25B···O1Ai0.952.483.379 (2)159
C25A—H25A···O1Bii0.952.673.542 (2)153
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H8F2N2O
Mr234.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.8515 (4), 9.0554 (2), 20.1075 (7)
β (°) 100.2620 (15)
V3)2123.42 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.26 × 0.20 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.875, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
5113, 4803, 3170
Rint0.045
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.04
No. of reflections4803
No. of parameters316
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and SORTX (McArdle, 1995), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PREP8 (Ferguson, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···N22B0.894 (19)2.076 (19)2.968 (2)175.9 (16)
N1B—H1B···N22A0.90 (2)2.10 (2)2.999 (2)175.4 (17)
C25B—H25B···O1Ai0.952.483.379 (2)159
C25A—H25A···O1Bii0.952.673.542 (2)153
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: alough@chem.utoronto.ca.

Acknowledgements

JFG thanks Dublin City University for the grants in aid of undergraduate research. Thanks especially to Mr Damien McGuirk for providing excellent technical assistance in the undergraduate research laboratories.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChopra, D. & Row, T. N. G. (2008). CrystEngComm, 10, 54–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationDonnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFerguson, G. (1998). PREP8. University of Guelph, Canada.  Google Scholar
First citationForbes, C. C., Beatty, A. M. & Smith, B. D. (2001). Org. Lett. 3, 3595–3598.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationMcMahon, J., Anderson, F. P., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o493–o497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds