organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2472-o2473

2,3,4,6-Tetra-O-acetyl-β-D-galacto­pyranosyl 2,3,4,6-tetra-O-acetyl-β-D-gluco­pyranosyl di­sulfide tetra­hydro­furan solvate

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartment of Organic Chemistry, University of Debrecen, H-4010 Debrecen Pf. 20, Hungary, and cInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 17 November 2008; accepted 24 November 2008; online 29 November 2008)

The asymmetric unit of title compound, C28H38O18S2·C4H8O, comprises one disulfide-bridged sugar molecule and one solvent molecule. No significant differences in structural parameters are found between the present structure and the previously determined unsolvated form [Brito, López-Rodríguez, Bényei & Szilagyi (2006[Brito, I., López-Rodríguez, M., Bényei, A. & Szilagyi, L. (2006). Carbohydr. Res. 341, 2967-2972.]). Carbohydr. Res. 341, 2967–2972]. The compounds are characterized by a compact structure with spatial proximity of the two pyranosyl rings. One of the carbonyl atoms is disordered over two sites [site occupancy = 0.69 (7) for major component] and the displacement parameters for the THF species are unsually large.

Related literature

For analysis of conformation, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis, see: Szilágyi et al. (2001[Szilágyi, L., Illyés, T. Z. & Herczegh, P. (2001). Tetrahedron Lett. 42, 3901-3903.]). For background to disulfide linkage and diglycosyl disulfides, see: André et al. (2006[André, S., Pei, Z. C., Siebert, H. C., Ramström, O. & Gabius, H. J. (2006). Bioorg. Med. Chem. 14, 6314-6326.]); Chakka et al. (2005[Chakka, N., Johnston, B. D. & Pinto, B. M. (2005). Can. J. Chem. 83, 929-936.]); Pérez et al. (1978[Pérez, S., Stpierre, J. & Marchessault, R. H. (1978). Can. J. Chem. 56, 2866-2871.]); Szilágyi & Varela (2006[Szilágyi, L. & Varela, O. (2006). Curr. Org. Chem. 10, 1745-1770.]). For the structure of the unsolvated form, see: Brito et al. (2006[Brito, I., López-Rodríguez, M., Bényei, A. & Szilagyi, L. (2006). Carbohydr. Res. 341, 2967-2972.]).

[Scheme 1]

Experimental

Crystal data
  • C28H38O18S2·C4H8O

  • Mr = 798.81

  • Monoclinic, P 21

  • a = 14.6499 (14) Å

  • b = 10.0096 (10) Å

  • c = 15.4029 (15) Å

  • β = 113.573 (2)°

  • V = 2070.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.920, Tmax = 0.960

  • 13257 measured reflections

  • 7410 independent reflections

  • 4763 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.151

  • S = 0.85

  • 7410 reflections

  • 497 parameters

  • 45 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack, (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3438 Friedel pairs

  • Flack parameter: 0.02 (9)

Table 1
Selected torsion angle (°)

C1—S1—S2—C21 −80.25 (19)

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The disulfide linkage which plays an essential role in stabilizing the tertiary structure of proteins, was not known in carbohydrate chemistry until recently when it was introduced as a new interglycosidic connecting element (Szilágyi & Varela, 2006). Diglycosyl disulfides were proposed as novel carbohydrate scaffolds with potential biological activity (Szilágyi & Varela, 2006, Chakka et al., 2005). This has recently been demonstrated in binding studies with galectins and in assays with tumor cells (André et al., 2006). We report herein the crystal and molecular structure of the title compound, (I), Fig. 1. The averaged bond lengths [C—O 1.429 (6), O—C 1.341 (8), C=O 1.181 (8), C—C 1.478 (10) Å] and other parameters, Table 1, compare well with those for the previously determined unsolvated form (Brito et al., 2006). The pyranosyl rings adopt chair conformations with Cremer & Pople (1975) puckering parameters: QT = 0.604 (6) (Glc) and 0.566 (5) Å (Gal), θ = 2.4 (5) (Glc) and 9.6 (6)°(Gal), ϕ = 15 (11) (Glc) and 9(4)° (Gal); these parameters are similar to those for the unsolvated form. The conformations of the acetyl groups are in agreement with the observation that in acetylated pyranoses, the carbonyl C=O bonds tend to align so that they nearly eclipse the axial-H atoms atoms on the common ring C atoms.

Related literature top

For analysis of conformation, see: Cremer & Pople (1975). For the synthesis, see: Szilágyi et al. (2001). For background to disulfide linkage and diglycosyl disulfides, see: André et al. (2006); Chakka et al. (2005); Pérez et al. (1978); Szilágyi & Varela (2006). For the structure of the unsolvated form, see: Brito et al. (2006).

Experimental top

Compound (I) was synthesized as described by Szilágyi et al. (2001).

Refinement top

The H atoms were geometrically placed (C—H = 0.96–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl-C). The O29 atom was refined over two sites using a disorder model, with occupancies of 0.69 (7) and 0.31 (7). The THF molecule is disordered and was modelled with restraints for distances and anisotropic displacement parameters using a 'rigid-bond' restraint to Uij, implemented as the DELU instruction in SHELXL97 (Sheldrick, 2008).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN(Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms have been omitted for clarity.
2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl disulfide tetrahydrofuran solvate top
Crystal data top
C28H38O18S2·C4H8OF(000) = 844
Mr = 798.81Dx = 1.281 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4312 reflections
a = 14.6499 (14) Åθ = 2.4–25.0°
b = 10.0096 (10) ŵ = 0.20 mm1
c = 15.4029 (15) ÅT = 298 K
β = 113.573 (2)°Prism, yellow
V = 2070.2 (4) Å30.40 × 0.30 × 0.20 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
7410 independent reflections
Radiation source: fine-focus sealed tube4763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ scans, and ω scans with κ offsetsθmax = 25.2°, θmin = 2.5°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1716
Tmin = 0.920, Tmax = 0.960k = 1211
13257 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0875P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max = 0.042
7410 reflectionsΔρmax = 0.34 e Å3
497 parametersΔρmin = 0.19 e Å3
45 restraintsAbsolute structure: Flack, (1983), 3438 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (9)
Crystal data top
C28H38O18S2·C4H8OV = 2070.2 (4) Å3
Mr = 798.81Z = 2
Monoclinic, P21Mo Kα radiation
a = 14.6499 (14) ŵ = 0.20 mm1
b = 10.0096 (10) ÅT = 298 K
c = 15.4029 (15) Å0.40 × 0.30 × 0.20 mm
β = 113.573 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
7410 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
4763 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.960Rint = 0.046
13257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.151Δρmax = 0.34 e Å3
S = 0.85Δρmin = 0.19 e Å3
7410 reflectionsAbsolute structure: Flack, (1983), 3438 Friedel pairs
497 parametersAbsolute structure parameter: 0.02 (9)
45 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.94859 (8)0.98543 (12)0.93468 (8)0.0609 (3)
O10.8235 (2)1.1214 (3)0.98368 (19)0.0587 (7)
O20.5745 (2)1.1063 (3)0.7358 (2)0.0692 (8)
O30.5648 (4)1.2681 (6)0.6357 (3)0.146 (2)
O40.7645 (2)1.0285 (3)0.7398 (2)0.0644 (8)
O50.6752 (4)0.8414 (4)0.7054 (3)0.1135 (14)
O60.8497 (3)1.2956 (4)1.1307 (2)0.0822 (9)
O70.8713 (4)1.0964 (5)1.2001 (3)0.1132 (14)
O80.5850 (2)1.2941 (3)0.8764 (2)0.0684 (8)
O90.5145 (3)1.1965 (4)0.9648 (3)0.1042 (13)
C10.8424 (3)1.0964 (4)0.9008 (3)0.0546 (10)
H10.86121.18140.88090.066*
C20.7471 (3)1.0494 (4)0.8225 (3)0.0548 (10)
H20.72530.96580.84120.066*
C30.6682 (3)1.1554 (4)0.8047 (3)0.0580 (11)
H30.68741.23650.78060.07*
C40.6549 (3)1.1872 (5)0.8953 (3)0.0624 (11)
H40.63011.10830.91660.075*
C50.7552 (3)1.2286 (4)0.9704 (3)0.0601 (11)
H50.77931.30790.94870.072*
C60.5307 (4)1.1702 (7)0.6531 (4)0.0865 (16)
C70.4395 (5)1.1036 (8)0.5895 (4)0.116 (2)
H7A0.38861.11440.61350.174*
H7B0.45241.01020.58590.174*
H7C0.41751.14260.52750.174*
C80.7260 (4)0.9197 (6)0.6875 (4)0.0773 (14)
C90.7533 (5)0.9114 (8)0.6047 (4)0.116 (2)
H9A0.77720.82310.60090.175*
H9B0.80460.97540.61170.175*
H9C0.69590.93020.54780.175*
C100.7520 (4)1.2569 (6)1.0644 (3)0.0802 (15)
H10A0.70491.32821.0580.096*
H10B0.73021.17791.08730.096*
C110.9038 (5)1.2052 (7)1.1941 (4)0.0896 (17)
C121.0060 (5)1.2548 (8)1.2510 (4)0.122 (2)
H12A1.04421.18551.29290.183*
H12B1.00251.33091.28750.183*
H12C1.03741.28011.20940.183*
C130.5199 (3)1.2900 (6)0.9193 (3)0.0704 (12)
C140.4608 (4)1.4138 (5)0.9033 (4)0.0890 (16)
H14A0.40281.39780.91610.133*
H14B0.44081.44170.83860.133*
H14C0.50051.48260.94470.133*
S20.89370 (8)0.80485 (11)0.95029 (7)0.0611 (3)
O210.98609 (19)0.7760 (3)1.13641 (18)0.0584 (7)
O220.7552 (2)0.5961 (3)1.1697 (2)0.0684 (8)
O230.6851 (3)0.7007 (4)1.2553 (3)0.0950 (11)
O240.7182 (2)0.7573 (3)1.0062 (2)0.0678 (8)
O250.6962 (4)0.5714 (5)0.9230 (3)0.1235 (16)
O261.1652 (2)0.8389 (4)1.2729 (2)0.0751 (9)
O271.1690 (4)0.9965 (5)1.3749 (4)0.1336 (17)
O280.9183 (2)0.7190 (4)1.3348 (2)0.0803 (9)
O29A0.988 (5)0.519 (4)1.3922 (18)0.103 (15)0.31 (7)
O29B0.921 (4)0.5063 (16)1.3697 (18)0.155 (9)0.69 (7)
C210.8909 (3)0.8131 (4)1.0674 (3)0.0531 (9)
H210.87390.90371.07990.064*
C220.8144 (3)0.7149 (4)1.0712 (3)0.0576 (10)
H220.82880.6261.05310.069*
C230.8154 (3)0.7094 (5)1.1694 (3)0.0601 (11)
H230.78530.7911.18150.072*
C240.9198 (3)0.6941 (4)1.2442 (3)0.0593 (11)
H240.9430.60281.24240.071*
C250.9914 (3)0.7911 (5)1.2309 (3)0.0593 (10)
H250.9740.88271.24070.071*
C260.6918 (4)0.6043 (5)1.2123 (4)0.0740 (13)
C270.6347 (5)0.4806 (6)1.2017 (5)0.1028 (18)
H27A0.5840.4941.22560.154*
H27B0.67850.41031.23670.154*
H27C0.60420.45661.1360.154*
C280.6681 (4)0.6785 (6)0.9334 (4)0.0798 (14)
C290.5757 (4)0.7449 (7)0.8683 (4)0.105 (2)
H29A0.59180.83060.85020.157*
H29B0.53130.75640.89970.157*
H29C0.54410.69070.81290.157*
C2101.0967 (3)0.7613 (5)1.2966 (3)0.0708 (13)
H21A1.10560.78081.36120.085*
H21B1.11020.66711.29280.085*
C2111.1968 (4)0.9552 (5)1.3177 (4)0.0830 (15)
C2121.2625 (6)1.0235 (7)1.2826 (6)0.128 (2)
H21C1.27371.11321.30670.191*
H21D1.23241.02571.21460.191*
H21E1.32490.97691.30320.191*
C2130.9328 (8)0.6160 (10)1.3954 (5)0.115 (3)
C2140.9212 (7)0.6644 (11)1.4834 (5)0.174 (4)
H21F0.97010.62191.53810.261*
H21G0.85570.64261.47920.261*
H21H0.93040.75951.48880.261*
O310.7418 (11)0.0601 (14)0.3640 (9)0.306 (5)
C310.6827 (15)0.2535 (13)0.4405 (8)0.301 (9)
H31A0.65590.33860.41130.361*
H31B0.710.2650.50870.361*
C320.7705 (12)0.2047 (18)0.4071 (10)0.291 (7)
H32A0.77510.26540.35990.349*
H32B0.83430.2030.46080.349*
C330.6337 (11)0.0251 (15)0.3603 (6)0.235 (5)
H33A0.58780.01380.29470.282*
H33B0.6370.0590.39270.282*
C340.5917 (12)0.1382 (19)0.4080 (8)0.281 (6)
H34A0.58180.10360.46240.337*
H34B0.52930.17460.3630.337*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0625 (6)0.0635 (6)0.0677 (7)0.0038 (6)0.0377 (5)0.0038 (6)
O10.0704 (18)0.0570 (17)0.0581 (17)0.0048 (13)0.0358 (15)0.0102 (15)
O20.0641 (19)0.0688 (19)0.071 (2)0.0002 (16)0.0228 (16)0.0020 (16)
O30.132 (4)0.165 (5)0.098 (3)0.056 (3)0.001 (3)0.036 (4)
O40.081 (2)0.0657 (19)0.0530 (17)0.0031 (15)0.0335 (15)0.0036 (16)
O50.157 (4)0.073 (3)0.121 (3)0.025 (2)0.066 (3)0.029 (3)
O60.110 (3)0.070 (2)0.0621 (19)0.0011 (18)0.0296 (19)0.023 (2)
O70.144 (4)0.103 (3)0.106 (3)0.029 (3)0.064 (3)0.023 (3)
O80.0714 (19)0.0543 (17)0.089 (2)0.0138 (16)0.0425 (17)0.0106 (16)
O90.117 (3)0.098 (3)0.135 (3)0.041 (3)0.090 (3)0.031 (2)
C10.063 (3)0.051 (2)0.059 (2)0.004 (2)0.033 (2)0.000 (2)
C20.061 (3)0.053 (2)0.055 (2)0.0059 (19)0.028 (2)0.002 (2)
C30.056 (3)0.054 (2)0.062 (3)0.002 (2)0.021 (2)0.002 (2)
C40.063 (3)0.058 (3)0.073 (3)0.011 (2)0.034 (2)0.007 (2)
C50.075 (3)0.048 (2)0.066 (3)0.004 (2)0.037 (2)0.008 (2)
C60.088 (4)0.098 (4)0.071 (4)0.003 (3)0.030 (3)0.001 (3)
C70.092 (4)0.161 (6)0.077 (4)0.009 (4)0.016 (3)0.015 (4)
C80.090 (4)0.069 (3)0.067 (3)0.005 (3)0.025 (3)0.003 (3)
C90.137 (6)0.140 (6)0.069 (4)0.033 (4)0.039 (4)0.000 (5)
C100.087 (4)0.087 (4)0.071 (3)0.001 (3)0.036 (3)0.020 (3)
C110.125 (5)0.082 (4)0.076 (4)0.014 (3)0.054 (4)0.030 (4)
C120.116 (5)0.149 (7)0.079 (4)0.012 (4)0.017 (4)0.024 (5)
C130.069 (3)0.075 (3)0.074 (3)0.000 (3)0.036 (2)0.006 (3)
C140.084 (4)0.081 (4)0.108 (4)0.003 (3)0.046 (3)0.013 (3)
S20.0789 (7)0.0549 (6)0.0570 (6)0.0025 (5)0.0350 (5)0.0060 (6)
O210.0597 (17)0.0695 (19)0.0547 (16)0.0044 (13)0.0320 (14)0.0082 (14)
O220.080 (2)0.0643 (18)0.080 (2)0.0035 (16)0.0514 (18)0.0061 (17)
O230.105 (3)0.095 (3)0.118 (3)0.019 (2)0.079 (2)0.014 (2)
O240.0570 (18)0.079 (2)0.0675 (18)0.0007 (16)0.0246 (16)0.0021 (16)
O250.129 (4)0.086 (3)0.124 (4)0.026 (3)0.017 (3)0.016 (3)
O260.070 (2)0.091 (3)0.0701 (19)0.0123 (18)0.0342 (16)0.0047 (18)
O270.186 (5)0.107 (3)0.133 (4)0.030 (3)0.090 (4)0.005 (4)
O280.095 (2)0.097 (2)0.0640 (19)0.0000 (19)0.0475 (18)0.002 (2)
O29A0.14 (3)0.077 (17)0.066 (10)0.025 (8)0.016 (13)0.010 (13)
O29B0.23 (3)0.128 (9)0.093 (8)0.030 (6)0.052 (14)0.045 (10)
C210.056 (2)0.054 (2)0.052 (2)0.005 (2)0.0246 (19)0.012 (2)
C220.064 (3)0.055 (2)0.060 (2)0.005 (2)0.031 (2)0.009 (2)
C230.067 (3)0.058 (3)0.068 (3)0.005 (2)0.041 (2)0.010 (2)
C240.078 (3)0.061 (3)0.051 (2)0.006 (2)0.038 (2)0.011 (2)
C250.062 (3)0.069 (3)0.054 (2)0.002 (2)0.031 (2)0.006 (2)
C260.081 (3)0.070 (3)0.092 (3)0.006 (3)0.055 (3)0.001 (3)
C270.124 (5)0.090 (4)0.130 (5)0.011 (4)0.088 (4)0.024 (4)
C280.074 (4)0.075 (4)0.087 (4)0.000 (3)0.028 (3)0.024 (3)
C290.073 (3)0.137 (5)0.086 (4)0.028 (4)0.013 (3)0.014 (4)
C2100.067 (3)0.091 (4)0.062 (3)0.005 (2)0.034 (2)0.007 (3)
C2110.094 (4)0.072 (4)0.082 (4)0.001 (3)0.035 (3)0.016 (3)
C2120.145 (6)0.086 (4)0.176 (7)0.019 (4)0.089 (6)0.021 (4)
C2130.156 (8)0.133 (7)0.066 (4)0.007 (5)0.055 (4)0.037 (7)
C2140.240 (10)0.230 (11)0.092 (5)0.013 (6)0.109 (6)0.051 (8)
O310.397 (14)0.285 (12)0.252 (10)0.024 (9)0.148 (11)0.016 (11)
C310.48 (2)0.171 (9)0.103 (7)0.016 (6)0.034 (11)0.121 (11)
C320.372 (14)0.227 (12)0.150 (11)0.082 (9)0.024 (10)0.003 (12)
C330.352 (13)0.214 (10)0.069 (5)0.032 (5)0.011 (7)0.003 (10)
C340.376 (13)0.332 (17)0.094 (7)0.074 (8)0.050 (9)0.126 (12)
Geometric parameters (Å, º) top
S1—C11.810 (4)O24—C221.429 (5)
S1—S22.0313 (16)O25—C281.182 (7)
O1—C51.425 (5)O26—C2111.339 (6)
O1—C11.432 (4)O26—C2101.427 (5)
O2—C61.338 (7)O27—C2111.183 (6)
O2—C31.445 (5)O28—C2131.349 (8)
O3—C61.178 (7)O28—C241.427 (5)
O4—C81.337 (6)O29A—C2131.27 (3)
O4—C21.410 (5)O29B—C2131.156 (17)
O5—C81.187 (6)C21—C221.509 (6)
O6—C111.335 (6)C21—H210.98
O6—C101.440 (6)C22—C231.509 (6)
O7—C111.207 (7)C22—H220.98
O8—C131.361 (5)C23—C241.510 (6)
O8—C41.428 (5)C23—H230.98
O9—C131.191 (6)C24—C251.503 (6)
C1—C21.510 (6)C24—H240.98
C1—H10.98C25—C2101.497 (6)
C2—C31.511 (6)C25—H250.98
C2—H20.98C26—C271.466 (7)
C3—C41.517 (6)C27—H27A0.96
C3—H30.98C27—H27B0.96
C4—C51.520 (6)C27—H27C0.96
C4—H40.98C28—C291.481 (7)
C5—C101.495 (6)C29—H29A0.96
C5—H50.98C29—H29B0.96
C6—C71.463 (8)C29—H29C0.96
C7—H7A0.96C210—H21A0.97
C7—H7B0.96C210—H21B0.97
C7—H7C0.96C211—C2121.450 (9)
C8—C91.484 (8)C212—H21C0.96
C9—H9A0.96C212—H21D0.96
C9—H9B0.96C212—H21E0.96
C9—H9C0.96C213—C2141.513 (9)
C10—H10A0.97C214—H21F0.96
C10—H10B0.97C214—H21G0.96
C11—C121.486 (9)C214—H21H0.96
C12—H12A0.96O31—C321.578 (16)
C12—H12B0.96O31—C331.601 (14)
C12—H12C0.96C31—C321.640 (17)
C13—C141.475 (7)C31—C341.68 (2)
C14—H14A0.96C31—H31A0.97
C14—H14B0.96C31—H31B0.97
C14—H14C0.96C32—H32A0.97
S2—C211.823 (4)C32—H32B0.97
O21—C211.424 (4)C33—C341.601 (15)
O21—C251.434 (4)C33—H33A0.97
O22—C261.337 (5)C33—H33B0.97
O22—C231.437 (5)C34—H34A0.97
O23—C261.196 (6)C34—H34B0.97
O24—C281.326 (6)
C1—S1—S2104.17 (14)C21—C22—C23110.7 (4)
C5—O1—C1112.2 (3)O24—C22—H22109.5
C6—O2—C3119.4 (4)C21—C22—H22109.5
C8—O4—C2118.8 (4)C23—C22—H22109.5
C11—O6—C10117.9 (5)O22—C23—C22105.8 (3)
C13—O8—C4117.6 (3)O22—C23—C24110.7 (4)
O1—C1—C2108.7 (3)C22—C23—C24111.6 (3)
O1—C1—S1107.5 (3)O22—C23—H23109.6
C2—C1—S1116.9 (3)C22—C23—H23109.6
O1—C1—H1107.8C24—C23—H23109.6
C2—C1—H1107.8O28—C24—C25107.8 (3)
S1—C1—H1107.8O28—C24—C23108.8 (3)
O4—C2—C1109.0 (3)C25—C24—C23112.4 (3)
O4—C2—C3110.0 (3)O28—C24—H24109.3
C1—C2—C3108.8 (3)C25—C24—H24109.3
O4—C2—H2109.7C23—C24—H24109.3
C1—C2—H2109.7O21—C25—C210106.7 (3)
C3—C2—H2109.7O21—C25—C24108.2 (3)
O2—C3—C2109.1 (3)C210—C25—C24111.5 (4)
O2—C3—C4108.3 (3)O21—C25—H25110.1
C2—C3—C4110.6 (3)C210—C25—H25110.1
O2—C3—H3109.6C24—C25—H25110.1
C2—C3—H3109.6O23—C26—O22123.2 (5)
C4—C3—H3109.6O23—C26—C27125.0 (4)
O8—C4—C3108.4 (3)O22—C26—C27111.8 (4)
O8—C4—C5110.3 (3)C26—C27—H27A109.5
C3—C4—C5108.4 (3)C26—C27—H27B109.5
O8—C4—H4109.9H27A—C27—H27B109.5
C3—C4—H4109.9C26—C27—H27C109.5
C5—C4—H4109.9H27A—C27—H27C109.5
O1—C5—C10107.2 (3)H27B—C27—H27C109.5
O1—C5—C4108.3 (3)O25—C28—O24123.3 (5)
C10—C5—C4113.1 (4)O25—C28—C29126.1 (6)
O1—C5—H5109.4O24—C28—C29110.6 (5)
C10—C5—H5109.4C28—C29—H29A109.5
C4—C5—H5109.4C28—C29—H29B109.5
O3—C6—O2121.9 (6)H29A—C29—H29B109.5
O3—C6—C7125.7 (6)C28—C29—H29C109.5
O2—C6—C7112.4 (6)H29A—C29—H29C109.5
C6—C7—H7A109.5H29B—C29—H29C109.5
C6—C7—H7B109.5O26—C210—C25111.0 (4)
H7A—C7—H7B109.5O26—C210—H21A109.4
C6—C7—H7C109.5C25—C210—H21A109.4
H7A—C7—H7C109.5O26—C210—H21B109.4
H7B—C7—H7C109.5C25—C210—H21B109.4
O5—C8—O4123.3 (5)H21A—C210—H21B108
O5—C8—C9124.9 (6)O27—C211—O26122.4 (6)
O4—C8—C9111.8 (5)O27—C211—C212126.2 (6)
C8—C9—H9A109.5O26—C211—C212111.2 (5)
C8—C9—H9B109.5C211—C212—H21C109.5
H9A—C9—H9B109.5C211—C212—H21D109.5
C8—C9—H9C109.5H21C—C212—H21D109.5
H9A—C9—H9C109.5C211—C212—H21E109.5
H9B—C9—H9C109.5H21C—C212—H21E109.5
O6—C10—C5109.3 (4)H21D—C212—H21E109.5
O6—C10—H10A109.8O29B—C213—O29A43.8 (10)
C5—C10—H10A109.8O29B—C213—O28121.9 (11)
O6—C10—H10B109.8O29A—C213—O28118.7 (18)
C5—C10—H10B109.8O29B—C213—C214123.7 (11)
H10A—C10—H10B108.3O29A—C213—C214125.3 (12)
O7—C11—O6122.0 (6)O28—C213—C214109.4 (8)
O7—C11—C12126.3 (6)C213—C214—H21F109.5
O6—C11—C12111.6 (6)C213—C214—H21G109.5
C11—C12—H12A109.5H21F—C214—H21G109.5
C11—C12—H12B109.5C213—C214—H21H109.5
H12A—C12—H12B109.5H21F—C214—H21H109.5
C11—C12—H12C109.5H21G—C214—H21H109.5
H12A—C12—H12C109.5C32—O31—C33108.0 (14)
H12B—C12—H12C109.5C32—C31—C34109.3 (9)
O9—C13—O8122.3 (4)C32—C31—H31A109.8
O9—C13—C14125.9 (4)C34—C31—H31A109.8
O8—C13—C14111.8 (5)C32—C31—H31B109.8
C13—C14—H14A109.5C34—C31—H31B109.8
C13—C14—H14B109.5H31A—C31—H31B108.3
H14A—C14—H14B109.5O31—C32—C31107.2 (12)
C13—C14—H14C109.5O31—C32—H32A110.3
H14A—C14—H14C109.5C31—C32—H32A110.3
H14B—C14—H14C109.5O31—C32—H32B110.3
C21—S2—S1104.10 (15)C31—C32—H32B110.3
C21—O21—C25111.7 (3)H32A—C32—H32B108.5
C26—O22—C23120.0 (4)C34—C33—O31112.7 (12)
C28—O24—C22118.2 (4)C34—C33—H33A109.1
C211—O26—C210118.4 (4)O31—C33—H33A109
C213—O28—C24118.9 (5)C34—C33—H33B109.1
O21—C21—C22108.8 (3)O31—C33—H33B109
O21—C21—S2108.9 (2)H33A—C33—H33B107.8
C22—C21—S2108.6 (3)C33—C34—C31102.6 (10)
O21—C21—H21110.2C33—C34—H34A111.2
C22—C21—H21110.2C31—C34—H34A111.3
S2—C21—H21110.2C33—C34—H34B111.2
O24—C22—C21108.6 (3)C31—C34—H34B111.3
O24—C22—C23108.9 (3)H34A—C34—H34B109.2
C5—O1—C1—C264.8 (4)S1—S2—C21—C22156.3 (2)
C5—O1—C1—S1167.8 (3)C28—O24—C22—C21116.5 (4)
S2—S1—C1—O174.3 (3)C28—O24—C22—C23122.8 (4)
S2—S1—C1—C248.2 (3)O21—C21—C22—O24176.3 (3)
C8—O4—C2—C1137.4 (4)S2—C21—C22—O2465.2 (3)
C8—O4—C2—C3103.4 (4)O21—C21—C22—C2356.8 (4)
O1—C1—C2—O4178.3 (3)S2—C21—C22—C23175.2 (3)
S1—C1—C2—O459.9 (4)C26—O22—C23—C22138.6 (4)
O1—C1—C2—C358.3 (4)C26—O22—C23—C24100.4 (4)
S1—C1—C2—C3179.9 (3)O24—C22—C23—O2271.7 (4)
C6—O2—C3—C2118.1 (4)C21—C22—C23—O22169.0 (3)
C6—O2—C3—C4121.5 (4)O24—C22—C23—C24167.9 (4)
O4—C2—C3—O265.7 (4)C21—C22—C23—C2448.5 (5)
C1—C2—C3—O2175.0 (3)C213—O28—C24—C25128.2 (6)
O4—C2—C3—C4175.3 (3)C213—O28—C24—C23109.8 (6)
C1—C2—C3—C456.0 (4)O22—C23—C24—O2875.1 (4)
C13—O8—C4—C3142.4 (4)C22—C23—C24—O28167.4 (4)
C13—O8—C4—C599.0 (4)O22—C23—C24—C25165.7 (3)
O2—C3—C4—O864.5 (4)C22—C23—C24—C2548.1 (5)
C2—C3—C4—O8175.9 (3)C21—O21—C25—C210175.0 (4)
O2—C3—C4—C5175.6 (3)C21—O21—C25—C2464.9 (4)
C2—C3—C4—C556.1 (4)O28—C24—C25—O21174.4 (3)
C1—O1—C5—C10172.6 (4)C23—C24—C25—O2154.6 (4)
C1—O1—C5—C465.0 (4)O28—C24—C25—C21068.6 (4)
O8—C4—C5—O1177.4 (3)C23—C24—C25—C210171.6 (4)
C3—C4—C5—O158.8 (4)C23—O22—C26—O233.7 (8)
O8—C4—C5—C1063.9 (5)C23—O22—C26—C27177.8 (4)
C3—C4—C5—C10177.6 (4)C22—O24—C28—O255.0 (7)
C3—O2—C6—O32.4 (8)C22—O24—C28—C29173.7 (4)
C3—O2—C6—C7176.9 (4)C211—O26—C210—C2593.8 (5)
C2—O4—C8—O52.4 (7)O21—C25—C210—O2652.3 (5)
C2—O4—C8—C9178.6 (4)C24—C25—C210—O26170.2 (4)
C11—O6—C10—C5102.8 (5)C210—O26—C211—O271.1 (8)
O1—C5—C10—O660.9 (5)C210—O26—C211—C212177.6 (5)
C4—C5—C10—O6179.8 (4)C24—O28—C213—O29B20 (3)
C10—O6—C11—O73.9 (7)C24—O28—C213—O29A31 (3)
C10—O6—C11—C12174.3 (4)C24—O28—C213—C214176.2 (6)
C4—O8—C13—O96.1 (7)C33—O31—C32—C315.7 (13)
C4—O8—C13—C14172.9 (4)C34—C31—C32—O314.8 (14)
C1—S1—S2—C2180.25 (19)C32—O31—C33—C344.8 (13)
C25—O21—C21—C2266.6 (4)O31—C33—C34—C311.7 (12)
C25—O21—C21—S2175.1 (3)C32—C31—C34—C331.9 (12)
S1—S2—C21—O2185.4 (3)

Experimental details

Crystal data
Chemical formulaC28H38O18S2·C4H8O
Mr798.81
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)14.6499 (14), 10.0096 (10), 15.4029 (15)
β (°) 113.573 (2)
V3)2070.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.920, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
13257, 7410, 4763
Rint0.046
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.151, 0.85
No. of reflections7410
No. of parameters497
No. of restraints45
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.19
Absolute structureFlack, (1983), 3438 Friedel pairs
Absolute structure parameter0.02 (9)

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN(Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
S1—C11.810 (4)S2—C211.823 (4)
S1—S22.0313 (16)
C1—S1—S2104.17 (14)O1—C1—S1107.5 (3)
C1—S1—S2—C2180.25 (19)
 

Acknowledgements

This study was supported by grants from the Hungarian National Science Fund [OTKA T48713 (to LSz)]. We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the Cambridge Structural Database.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAndré, S., Pei, Z. C., Siebert, H. C., Ramström, O. & Gabius, H. J. (2006). Bioorg. Med. Chem. 14, 6314–6326.  Web of Science PubMed Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrito, I., López-Rodríguez, M., Bényei, A. & Szilagyi, L. (2006). Carbohydr. Res. 341, 2967–2972.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChakka, N., Johnston, B. D. & Pinto, B. M. (2005). Can. J. Chem. 83, 929–936.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPérez, S., Stpierre, J. & Marchessault, R. H. (1978). Can. J. Chem. 56, 2866–2871.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzilágyi, L., Illyés, T. Z. & Herczegh, P. (2001). Tetrahedron Lett. 42, 3901–3903.  Google Scholar
First citationSzilágyi, L. & Varela, O. (2006). Curr. Org. Chem. 10, 1745–1770.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2472-o2473
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds