metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(Butane-1,4-di­yl)diisoquinolinium tetra­chloridozincate(II)

aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: gyhxxiaoxin@163.com

(Received 29 October 2008; accepted 20 November 2008; online 26 November 2008)

The crystal of the title compound, (C22H22N2)[ZnCl4], consists of 2,2′-(butane-1,4-di­yl)diisoquinolinium organic cations and [ZnCl4]2− complex anions. The cation is located across a twofold axis and the ZnII atom of the anion is located on the other twofold axis. The centroid–centroid distance between parallel pyridine rings of neighboring mol­ecules is 3.699 (3) Å, but the face-to-face separation of 3.601 (3) Å suggests there is no significant ππ stacking in the crystal structure.

Related literature

For general background, see: Day & Arnold (2000[Day, A. I. & Arnold, A. P. (2000). Cucurbiturils and Method for Synthesis,. Patent No. WO/2000/068 232.]); Day et al. (2002[Day, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed. 41, 275-277.]); Freeman et al. (1981[Freeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367-7368.]); Kim et al. (2000[Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540-541.]). For a related structure, see: Pan & Xu (2004[Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.]).

[Scheme 1]

Experimental

Crystal data
  • (C22H22N2)[ZnCl4]

  • Mr = 521.61

  • Monoclinic, C 2/c

  • a = 10.729 (3) Å

  • b = 11.040 (3) Å

  • c = 18.955 (4) Å

  • β = 99.179 (9)°

  • V = 2216.4 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 273 (2) K

  • 0.23 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.680, Tmax = 0.760

  • 12088 measured reflections

  • 2172 independent reflections

  • 1855 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.206

  • S = 1.13

  • 2172 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −1.15 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on quinoline compounds, we present here the crystal structure of the compound with multiple functional groups, which can develop strong intermolecular interactions with cucurbit[n]urils (CB[n]) (Freeman et al., 1981; Day & Arnold, 2000; Day et al., 2002; Kim et al., 2000).

The crystal structure of the title compound (Fig. 1) consists of organic cations and anionic (ZnCl4)2- complexes. The (ZnCl4)2- anion assumes a distorted tetrahedron coordination geometry with Zn–Cl bond distances of 2.3043 (14) Å and 2.3158 (12) Å. The centroids distance between parallel pyridine rings of neighboring molecules is 3.699 (3) Å, but the face-to-face separation of 3.601 (3) Å suggests no significant π-π stacking in the crystal structure (Pan & Xu, 2004).

Related literature top

For general background, see: Day & Arnold (2000); Day et al. (2002); Freeman et al. (1981); Kim et al. (2000). For a related structure, see: Pan & Xu (2004).

Experimental top

A solution of 1,4-dibromine-butane (2.16 g, 0.01 mol) was added to a stirred solution of isoquinoline (2.58 g, 0.02 mol) in 1,4-dioxane (50 ml) at 373 K in a period of 5 h. After cooling to room temperature, the mixture was filtered. The residue was added to an aqueous solution (50 ml) of ZnCl2 (0.01 mol, 1.37 g). After stirring for 2 h, the solution was filtered. Colorless single crystals of the title compound were obtained from the filtrate after 5 weeks.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C). The highest peak and deepest hole in the final d-map are 0.35 Å from Cl2 atom and 0.42 Å from Zn1 atom, respectively.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (a) -x, y, 3/2-z; (b) -x, y, 1/2-z].
2,2'-(Butane-1,4-diyl)diisoquinolinium tetrachloridozincate(II) top
Crystal data top
(C22H22N2)[ZnCl4]F(000) = 1064
Mr = 521.61Dx = 1.563 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2184 reflections
a = 10.729 (3) Åθ = 2.2–26.0°
b = 11.040 (3) ŵ = 1.60 mm1
c = 18.955 (4) ÅT = 273 K
β = 99.179 (9)°Prism, colorless
V = 2216.4 (10) Å30.23 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2172 independent reflections
Radiation source: fine-focus sealed tube1855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.680, Tmax = 0.760k = 1313
12088 measured reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1169P)2 + 12.0521P]
where P = (Fo2 + 2Fc2)/3
2172 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
(C22H22N2)[ZnCl4]V = 2216.4 (10) Å3
Mr = 521.61Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.729 (3) ŵ = 1.60 mm1
b = 11.040 (3) ÅT = 273 K
c = 18.955 (4) Å0.23 × 0.19 × 0.17 mm
β = 99.179 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2172 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1855 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.760Rint = 0.032
12088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1169P)2 + 12.0521P]
where P = (Fo2 + 2Fc2)/3
2172 reflectionsΔρmax = 1.28 e Å3
132 parametersΔρmin = 1.15 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.15361 (8)0.25000.0412 (3)
Cl20.12762 (10)0.03371 (11)0.19106 (6)0.0349 (4)
Cl10.12438 (13)0.27560 (13)0.33123 (8)0.0483 (4)
N10.4868 (4)0.1136 (4)0.3832 (2)0.0416 (10)
C110.4355 (5)0.1981 (5)0.2617 (3)0.0449 (13)
H11A0.42480.27440.28540.054*
H11B0.37150.19450.21930.054*
C30.6202 (6)0.1461 (5)0.5206 (3)0.0439 (13)
C90.5975 (6)0.0584 (5)0.4013 (3)0.0442 (13)
H90.62860.00980.36800.053*
C100.4120 (6)0.0967 (6)0.3108 (3)0.0463 (13)
H10A0.32280.09380.31430.056*
H10B0.43470.02030.29100.056*
C10.4382 (6)0.1876 (6)0.4311 (3)0.0528 (15)
H10.36140.22650.41710.063*
C80.6687 (5)0.0723 (5)0.4702 (3)0.0415 (12)
C60.8489 (7)0.0222 (6)0.5569 (4)0.0583 (16)
H60.92550.01770.57000.070*
C70.7856 (6)0.0107 (6)0.4893 (3)0.0533 (15)
H70.81820.03680.45600.064*
C50.7995 (7)0.0947 (6)0.6080 (3)0.0581 (17)
H50.84340.10030.65430.070*
C40.6894 (7)0.1560 (6)0.5902 (3)0.0524 (15)
H40.65940.20460.62390.063*
C20.5011 (7)0.2039 (6)0.4980 (3)0.0542 (15)
H20.46680.25320.52970.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0383 (5)0.0406 (6)0.0448 (6)0.0000.0074 (4)0.000
Cl20.0276 (6)0.0410 (7)0.0363 (6)0.0026 (4)0.0056 (4)0.0100 (5)
Cl10.0393 (7)0.0457 (8)0.0587 (9)0.0063 (6)0.0043 (6)0.0239 (6)
N10.038 (2)0.046 (3)0.040 (2)0.000 (2)0.0034 (18)0.0025 (19)
C110.048 (3)0.045 (3)0.039 (3)0.005 (2)0.001 (2)0.002 (2)
C30.047 (3)0.044 (3)0.041 (3)0.005 (2)0.008 (2)0.000 (2)
C90.050 (3)0.044 (3)0.038 (3)0.001 (2)0.006 (2)0.001 (2)
C100.041 (3)0.053 (3)0.043 (3)0.006 (3)0.002 (2)0.000 (2)
C10.045 (3)0.061 (4)0.054 (4)0.006 (3)0.012 (3)0.003 (3)
C80.043 (3)0.041 (3)0.040 (3)0.003 (2)0.005 (2)0.002 (2)
C60.052 (4)0.058 (4)0.061 (4)0.005 (3)0.001 (3)0.006 (3)
C70.056 (4)0.056 (4)0.045 (3)0.009 (3)0.000 (3)0.001 (3)
C50.066 (4)0.062 (4)0.042 (3)0.014 (3)0.005 (3)0.008 (3)
C40.066 (4)0.053 (4)0.039 (3)0.006 (3)0.009 (3)0.002 (2)
C20.060 (4)0.060 (4)0.045 (3)0.009 (3)0.016 (3)0.005 (3)
Geometric parameters (Å, º) top
Zn1—Cl1i2.3043 (14)C9—H90.9300
Zn1—Cl12.3043 (14)C10—H10A0.9700
Zn1—Cl2i2.3158 (12)C10—H10B0.9700
Zn1—Cl22.3158 (12)C1—C21.350 (9)
N1—C91.330 (7)C1—H10.9300
N1—C11.384 (8)C8—C71.423 (9)
N1—C101.488 (7)C6—C71.357 (9)
C11—C101.502 (8)C6—C51.423 (10)
C11—C11ii1.520 (12)C6—H60.9300
C11—H11A0.9700C7—H70.9300
C11—H11B0.9700C5—C41.356 (10)
C3—C41.412 (9)C5—H50.9300
C3—C81.416 (8)C4—H40.9300
C3—C21.431 (9)C2—H20.9300
C9—C81.411 (8)
Cl1i—Zn1—Cl1108.47 (9)N1—C10—H10B109.4
Cl1i—Zn1—Cl2i109.41 (5)C11—C10—H10B109.4
Cl1—Zn1—Cl2i109.62 (5)H10A—C10—H10B108.0
Cl1i—Zn1—Cl2109.62 (5)C2—C1—N1120.7 (6)
Cl1—Zn1—Cl2109.41 (5)C2—C1—H1119.7
Cl2i—Zn1—Cl2110.28 (7)N1—C1—H1119.7
C9—N1—C1121.0 (5)C9—C8—C3118.9 (5)
C9—N1—C10120.6 (5)C9—C8—C7120.6 (5)
C1—N1—C10118.4 (5)C3—C8—C7120.4 (5)
C10—C11—C11ii115.5 (4)C7—C6—C5120.7 (6)
C10—C11—H11A108.4C7—C6—H6119.7
C11ii—C11—H11A108.4C5—C6—H6119.7
C10—C11—H11B108.4C6—C7—C8119.0 (6)
C11ii—C11—H11B108.4C6—C7—H7120.5
H11A—C11—H11B107.5C8—C7—H7120.5
C4—C3—C8118.7 (6)C4—C5—C6121.1 (6)
C4—C3—C2123.8 (6)C4—C5—H5119.5
C8—C3—C2117.5 (5)C6—C5—H5119.5
N1—C9—C8121.2 (5)C5—C4—C3120.1 (6)
N1—C9—H9119.4C5—C4—H4120.0
C8—C9—H9119.4C3—C4—H4120.0
N1—C10—C11111.1 (5)C1—C2—C3120.7 (6)
N1—C10—H10A109.4C1—C2—H2119.7
C11—C10—H10A109.4C3—C2—H2119.7
C1—N1—C9—C80.7 (9)C2—C3—C8—C7179.1 (6)
C10—N1—C9—C8179.1 (5)C5—C6—C7—C80.0 (10)
C9—N1—C10—C1196.2 (6)C9—C8—C7—C6177.3 (6)
C1—N1—C10—C1183.9 (6)C3—C8—C7—C61.0 (9)
C11ii—C11—C10—N171.4 (7)C7—C6—C5—C41.3 (10)
C9—N1—C1—C21.2 (9)C6—C5—C4—C31.6 (10)
C10—N1—C1—C2178.6 (6)C8—C3—C4—C50.5 (9)
N1—C9—C8—C30.3 (8)C2—C3—C4—C5177.7 (6)
N1—C9—C8—C7178.6 (6)N1—C1—C2—C30.7 (10)
C4—C3—C8—C9177.6 (5)C4—C3—C2—C1178.0 (6)
C2—C3—C8—C90.7 (8)C8—C3—C2—C10.2 (10)
C4—C3—C8—C70.8 (9)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula(C22H22N2)[ZnCl4]
Mr521.61
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)10.729 (3), 11.040 (3), 18.955 (4)
β (°) 99.179 (9)
V3)2216.4 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.23 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.680, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
12088, 2172, 1855
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.206, 1.13
No. of reflections2172
No. of parameters132
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1169P)2 + 12.0521P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.28, 1.15

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDay, A. I. & Arnold, A. P. (2000). Cucurbiturils and Method for Synthesis,. Patent No. WO/2000/068 232.  Google Scholar
First citationDay, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed. 41, 275–277.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367–7368.  CSD CrossRef CAS Web of Science Google Scholar
First citationKim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540–541.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds