organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o59-o60

3,3′-Bis(4-chloro­phen­yl)-2,2′-(m-phenyl­enedi­­oxy)diquinazolin-4(3H)-one

aDepartment of Physical Education, Xianning College, Xianning 437100, Hubei, People's Republic of China, bDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, Hubei, People's Republic of China, and cDepartment of Chemistry and Life Science, Xianning College, Xianning 4371000, Hubei, People's Republic of China
*Correspondence e-mail: yxh502@163.com

(Received 24 November 2008; accepted 2 December 2008; online 10 December 2008)

In the title compound, C34H20Cl2N4O4, the two quinazoline heterocyclic systems and the adjacent chloro­benzene rings are not coplanar, but oriented at dihedral angles of 66.66 (13) and 52.48 (12)°, respectively. The quinazoline ring systems are nearly planar, with dihedral angles between the planes of the two rings of 5.43 (16) and 3.40 (14)°, and are oriented at dihedral angles of 79.73 (13) and 83.52 (13)° with respect to the adjacent benzene ring between them. Inter­molecular C—H⋯O hydrogen bonds contribute to the stability of the structure. In addition, weak ππ stacking inter­actions [centroid-to-centroid distances = 3.872 (1) and 3.876 (1) Å] are observed in the crystal structure.

Related literature

Many derivatives of quinazoline-4(3H)-one have been prepared, and their biological properties, such as anti­microbial, anti­diabetic, anti­convulsant, anti­bacterial and anti­fungal activities, and their action as protein tyrosine kinase inhibitors, EGFR inhibitors and PDGFR phospho­rylation inhibitors, have been studied by: Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & Cler, E. De. (1999). Pharm. Acta Helv. 74, 11-17.]); Shiba et al. (1997[Shiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189-194.]); Malamas & Millen (1991[Malamas, M. S. & Millen, J. (1991). J. Med. Chem. 34, 1492-1503.]); Mannschreck et al. (1984[Mannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381-383.]); Kung et al. (1999[Kung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. D. & Ecker, D. J. (1999). J. Med. Chem. 42, 4705-4713.]); Bartroli et al. (1998[Bartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem. 41, 1869-1882.]); Palmer et al. (1997[Palmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem. 40, 1519-1529.]); Tsou et al. (2001[Tsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F., Gruber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem. 44, 2719-2734.]); Matsuno et al. (2002[Matsuno, K., Ichimura, M., Nakajima, T., Tahara, K., Fujiwara, S., Kase, H., Ushiki, J., Giese, N. A., Pandey, A., Scarborough, R. M., Lokker, N. A., Yu, J. C., Irie, J., Tsukuda, E., Ide, S., Oda, S. & Nomoto, Y. (2002). J. Med. Chem. 45, 3057-3066.]). For the synthesis, see: Yang et al. (2008[Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365-1369.]). For related structures, see: Hu et al. (2006[Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457-o1459.]); Qu et al. (2008[Qu, Y.-N., Pan, L.-R. & Hu, Y.-G. (2008). Acta Cryst. E64, o137.]); Zeng et al. (2008[Zeng, G., Li, Q. & Hu, Y. (2008). Acta Cryst. E64, o535.]); Sun et al. (2008[Sun, Y., Zeng, G.-P. & Hu, Y.-G. (2008). Acta Cryst. E64, o311-o312.]).

[Scheme 1]

Experimental

Crystal data
  • C34H20Cl2N4O4

  • Mr = 619.44

  • Monoclinic, C 2/c

  • a = 28.043 (2) Å

  • b = 11.3563 (8) Å

  • c = 21.5497 (16) Å

  • β = 122.7440 (10)°

  • V = 5772.2 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 (2) K

  • 0.23 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 22711 measured reflections

  • 6251 independent reflections

  • 3432 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.160

  • S = 1.01

  • 6251 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O2i 0.93 2.34 3.234 (3) 162
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinazoline derivatives have broad biological properties. Some of these activities include antimicrobial (Pandeya et al., 1999; Shiba et al., 1997), antidiabetic (Malamas & Millen, 1991), anticonvulsant (Mannschreck et al., 1984), antibacterial (Kung et al., 1999), antifungal (Bartroli et al., 1998), protein tyrosine kinase inhibitors (Palmer et al., 1997), EGFR inhibitors (Tsou et al., 2001) and PDGFR phosphorylation inhibitors (Matsuno et al., 2002). We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. We present here the synthesis and the crystal structure of the title compound, (I) (Fig. 1), which can be used as a precursor for obtaining bioactive molecules.

In the crystal structure of (I), the quinazoline heterocycle N1—C7/C8–C13/N2—C14 and N3—C22/C23–C28/N4—C21 and the adjacent chlorobenzene ring C1–C6 and C29–C34 are not co-planar, but oriented at the dihedral angles of 66.66 (13) and 52.48 (12)°, respectively. The nearly planar quinazoline ring system N1—C7/C8–C13/N2—C14 and N3—C22/C23–C28/N4—C21 are oriented with respect to the adjacent ring C15–C20 at the dihedral angles of 79.73 (13) and 83.52 (13)°, respectively.

Significant intramolecular C—H···O hydrogen bonds contribute to the stability of the molecular configuration (Fig. 2 and Table 1). The crystal structure (Fig. 2) is also stabilized by weak ππ (Table 1) stacking interactions with centroid–centroid separations of 3.872 (1) and 3.876 (1) Å for Cg2···Cg2i and Cg2···Cg6i, respectively, where Cg2 and Cg6 are the centroids of rings N3/C21—N4/C28—C27/C22 and C22–C27, respectively [symmetry code: (i) 1 - x, -y, 1 - z].

Related literature top

Many derivatives of quinazoline-4(3H)-one have been prepared, and their biological properties, such as antimicrobial, antidiabetic, anticonvulsant, antibacterial and antifungal activities, and their action as protein tyrosine kinase inhibitors, EGFR inhibitors and PDGFR phosphorylation inhibitors, have been studied by: Pandeya et al. (1999); Shiba et al. (1997); Malamas & Millen (1991); Mannschreck et al. (1984); Kung et al. (1999); Bartroli et al. (1998); Palmer et al. (1997); Tsou et al. (2001); Matsuno et al. (2002). For the synthesis, see: Yang et al. (2008); Hu et al. (2006); Qu et al. (2008); Zeng et al. (2008); Sun et al. (2008).

Experimental top

To a solution of iminophosphorane (1.40 g, 3.0 mmol) in anhydrous THF (10 ml) was added 4-chlorophenyl isocyanate (3 mmol) under nitrogen at room temperature. After reaction, the mixture was allowed to stand for 10 h at 273–278 K, the solvent was removed under reduced pressure and diethyl ether/petroleum ether (1:2 v/v, 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed to give 1-(4-chlorophenyl)-3-(2-ethoxycarbonylphenyl) carbodiimide, which was used directly without further purification. To a solution of 1-(4-chlorophenyl)-3-(2-ethoxycarbonylphenyl) carbodiimide in THF (15 ml) was added m-dihydroxybenzene (0.18 g, 3 mmol). After the reaction mixture was allowed to stand for 0.5 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 2 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound, (I). The product was recrystallized from methanol–dichloromethane (1:1 v/v, 20 ml) at room temperature to give crystals suitable for X-ray diffraction [m.p. 444 K, yield 45%].

Refinement top

All H atoms were located in difference maps and treated as riding atoms with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for Csp2.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of (I), showing the formation of C—H···O hydrogen-bonds, as dashed lines.
3,3'-Bis(4-chlorophenyl)-2,2'-(m-phenylenedioxy)diquinazolin- 4(3H)-one top
Crystal data top
C34H20Cl2N4O4F(000) = 2544
Mr = 619.44Dx = 1.426 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1972 reflections
a = 28.043 (2) Åθ = 2.3–19.8°
b = 11.3563 (8) ŵ = 0.27 mm1
c = 21.5497 (16) ÅT = 296 K
β = 122.744 (1)°Block, colourless
V = 5772.2 (7) Å30.23 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3432 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 27.0°, θmin = 1.7°
ϕ and ω scansh = 3535
22711 measured reflectionsk = 1414
6251 independent reflectionsl = 2627
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0656P)2]
where P = (Fo2 + 2Fc2)/3
6251 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C34H20Cl2N4O4V = 5772.2 (7) Å3
Mr = 619.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.043 (2) ŵ = 0.27 mm1
b = 11.3563 (8) ÅT = 296 K
c = 21.5497 (16) Å0.23 × 0.10 × 0.10 mm
β = 122.744 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3432 reflections with I > 2σ(I)
22711 measured reflectionsRint = 0.069
6251 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
6251 reflectionsΔρmin = 0.28 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15141 (12)0.7594 (3)0.30121 (18)0.0559 (9)
C20.16014 (13)0.6517 (3)0.28105 (19)0.0618 (9)
H20.13490.59020.27050.074*
C30.20679 (12)0.6352 (3)0.27648 (17)0.0562 (9)
H30.21300.56240.26230.067*
C40.24445 (11)0.7262 (3)0.29288 (15)0.0425 (7)
C50.23582 (12)0.8331 (3)0.31471 (17)0.0545 (8)
H50.26170.89380.32690.065*
C60.18899 (12)0.8510 (3)0.31871 (19)0.0615 (9)
H60.18280.92370.33300.074*
C70.29051 (12)0.7746 (3)0.22679 (17)0.0502 (8)
C80.33543 (12)0.7466 (3)0.21498 (16)0.0485 (8)
C90.33834 (15)0.8010 (3)0.15926 (19)0.0705 (10)
H90.31320.86130.13180.085*
C100.37794 (16)0.7665 (4)0.1447 (2)0.0827 (12)
H100.37960.80310.10730.099*
C110.41546 (16)0.6774 (4)0.1854 (2)0.0776 (12)
H110.44190.65360.17460.093*
C120.41441 (13)0.6231 (3)0.24197 (17)0.0597 (9)
H120.44010.56340.26910.072*
C130.37438 (11)0.6583 (3)0.25844 (16)0.0460 (7)
C140.33712 (11)0.6382 (2)0.32842 (15)0.0384 (7)
C150.38186 (11)0.5356 (2)0.44066 (15)0.0359 (7)
C160.43022 (11)0.5918 (2)0.49417 (16)0.0434 (7)
H160.43410.67280.49230.052*
C170.47308 (12)0.5260 (3)0.55090 (16)0.0510 (8)
H170.50610.56290.58760.061*
C180.46706 (11)0.4053 (3)0.55324 (15)0.0430 (7)
H180.49580.36040.59120.052*
C190.41816 (11)0.3536 (2)0.49879 (15)0.0346 (6)
C200.37475 (10)0.4164 (2)0.44153 (15)0.0362 (6)
H200.34180.37940.40480.043*
C210.42029 (10)0.1591 (2)0.46272 (15)0.0365 (6)
C220.46375 (11)0.1061 (2)0.40343 (15)0.0402 (7)
C230.49672 (11)0.1357 (3)0.37574 (16)0.0507 (8)
H230.50960.21260.38030.061*
C240.51062 (12)0.0527 (3)0.34157 (18)0.0626 (9)
H240.53320.07360.32380.075*
C250.49123 (13)0.0619 (3)0.33343 (18)0.0616 (9)
H250.50110.11790.31080.074*
C260.45743 (11)0.0925 (3)0.35886 (17)0.0532 (8)
H260.44410.16920.35310.064*
C270.44305 (10)0.0085 (2)0.39337 (15)0.0388 (7)
C280.40453 (11)0.0402 (3)0.41594 (16)0.0432 (7)
C290.35068 (11)0.0301 (2)0.46823 (15)0.0404 (7)
C300.30465 (12)0.1049 (3)0.44078 (17)0.0490 (8)
H300.30160.17040.41290.059*
C310.26329 (13)0.0809 (3)0.45527 (19)0.0628 (9)
H310.23250.13150.43790.075*
C320.26727 (14)0.0164 (3)0.4949 (2)0.0614 (9)
C330.31256 (14)0.0906 (3)0.52176 (18)0.0628 (9)
H330.31500.15680.54870.075*
C340.35451 (12)0.0670 (3)0.50883 (16)0.0516 (8)
H340.38560.11700.52760.062*
Cl10.09206 (4)0.78360 (10)0.30638 (6)0.0883 (4)
Cl20.21428 (5)0.04566 (12)0.51094 (7)0.1140 (5)
N10.29124 (9)0.7099 (2)0.28274 (13)0.0414 (6)
N20.37633 (9)0.6075 (2)0.31840 (12)0.0417 (6)
N30.45216 (9)0.19030 (19)0.44073 (12)0.0405 (6)
N40.39348 (9)0.05110 (19)0.45116 (12)0.0384 (6)
O10.33518 (7)0.60201 (16)0.38599 (10)0.0447 (5)
O20.25236 (9)0.8446 (2)0.18965 (12)0.0715 (7)
O30.40913 (7)0.23167 (15)0.50289 (10)0.0408 (5)
O40.38040 (9)0.13455 (18)0.40336 (13)0.0649 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (16)0.061 (2)0.063 (2)0.0031 (16)0.0265 (16)0.0035 (18)
C20.0488 (18)0.049 (2)0.082 (3)0.0122 (16)0.0319 (18)0.0058 (19)
C30.0533 (18)0.0416 (19)0.068 (2)0.0043 (16)0.0293 (17)0.0063 (17)
C40.0335 (14)0.0388 (18)0.0436 (18)0.0036 (13)0.0132 (13)0.0048 (14)
C50.0429 (17)0.043 (2)0.069 (2)0.0033 (15)0.0247 (16)0.0038 (17)
C60.0452 (17)0.047 (2)0.082 (3)0.0029 (16)0.0282 (17)0.0100 (18)
C70.0454 (17)0.048 (2)0.0401 (19)0.0037 (15)0.0117 (15)0.0051 (16)
C80.0494 (17)0.051 (2)0.0359 (18)0.0070 (15)0.0172 (15)0.0045 (15)
C90.069 (2)0.081 (3)0.052 (2)0.010 (2)0.0263 (19)0.013 (2)
C100.072 (2)0.123 (4)0.054 (2)0.017 (3)0.035 (2)0.006 (3)
C110.075 (2)0.110 (4)0.062 (3)0.016 (2)0.046 (2)0.013 (2)
C120.0563 (19)0.074 (3)0.051 (2)0.0059 (17)0.0307 (17)0.0092 (18)
C130.0439 (16)0.050 (2)0.0389 (18)0.0101 (14)0.0189 (14)0.0082 (15)
C140.0393 (15)0.0325 (17)0.0362 (17)0.0018 (13)0.0158 (13)0.0015 (13)
C150.0382 (14)0.0334 (17)0.0399 (17)0.0063 (13)0.0235 (13)0.0072 (14)
C160.0502 (17)0.0269 (16)0.0521 (19)0.0039 (13)0.0270 (15)0.0011 (14)
C170.0451 (17)0.043 (2)0.047 (2)0.0094 (14)0.0135 (15)0.0039 (16)
C180.0419 (16)0.0392 (18)0.0384 (17)0.0024 (13)0.0156 (14)0.0055 (14)
C190.0432 (15)0.0255 (15)0.0422 (17)0.0030 (12)0.0278 (14)0.0001 (13)
C200.0329 (14)0.0360 (17)0.0365 (16)0.0042 (12)0.0167 (12)0.0052 (13)
C210.0370 (14)0.0288 (16)0.0414 (17)0.0008 (12)0.0197 (13)0.0009 (13)
C220.0365 (14)0.0397 (18)0.0420 (17)0.0023 (13)0.0197 (13)0.0031 (14)
C230.0518 (17)0.052 (2)0.054 (2)0.0095 (15)0.0329 (16)0.0074 (16)
C240.0541 (19)0.082 (3)0.063 (2)0.0146 (19)0.0385 (18)0.018 (2)
C250.0528 (18)0.069 (2)0.067 (2)0.0015 (18)0.0351 (18)0.018 (2)
C260.0444 (16)0.048 (2)0.064 (2)0.0031 (15)0.0278 (16)0.0148 (17)
C270.0325 (14)0.0362 (17)0.0429 (17)0.0004 (12)0.0171 (13)0.0052 (14)
C280.0417 (15)0.0326 (17)0.0532 (19)0.0014 (14)0.0243 (14)0.0015 (15)
C290.0385 (15)0.0370 (17)0.0476 (18)0.0055 (13)0.0247 (14)0.0008 (15)
C300.0478 (16)0.0437 (19)0.060 (2)0.0019 (15)0.0320 (16)0.0043 (16)
C310.0513 (19)0.066 (2)0.079 (3)0.0040 (17)0.0404 (19)0.005 (2)
C320.065 (2)0.070 (3)0.071 (2)0.0168 (19)0.051 (2)0.011 (2)
C330.073 (2)0.066 (2)0.058 (2)0.013 (2)0.0403 (19)0.0077 (19)
C340.0539 (18)0.046 (2)0.052 (2)0.0009 (15)0.0267 (16)0.0093 (16)
Cl10.0611 (5)0.0904 (8)0.1270 (9)0.0016 (5)0.0599 (6)0.0005 (7)
Cl20.1066 (8)0.1518 (12)0.1397 (11)0.0316 (8)0.1032 (8)0.0167 (9)
N10.0382 (12)0.0372 (14)0.0401 (14)0.0015 (11)0.0156 (11)0.0056 (12)
N20.0447 (13)0.0413 (15)0.0408 (14)0.0015 (11)0.0243 (12)0.0008 (12)
N30.0452 (13)0.0337 (14)0.0461 (15)0.0044 (11)0.0271 (12)0.0036 (12)
N40.0415 (12)0.0280 (13)0.0506 (15)0.0043 (10)0.0280 (12)0.0044 (11)
O10.0427 (10)0.0424 (12)0.0497 (12)0.0110 (9)0.0255 (10)0.0148 (10)
O20.0596 (13)0.0775 (17)0.0605 (15)0.0203 (13)0.0214 (12)0.0328 (14)
O30.0572 (11)0.0245 (10)0.0509 (13)0.0027 (9)0.0358 (10)0.0013 (9)
O40.0691 (14)0.0408 (13)0.1020 (19)0.0178 (11)0.0576 (14)0.0200 (13)
Geometric parameters (Å, º) top
C1—C21.364 (4)C17—H170.9300
C1—C61.380 (4)C18—C191.365 (4)
C1—Cl11.749 (3)C18—H180.9300
C2—C31.377 (4)C19—C201.374 (3)
C2—H20.9300C19—O31.419 (3)
C3—C41.380 (4)C20—H200.9300
C3—H30.9300C21—N31.268 (3)
C4—C51.370 (4)C21—O31.349 (3)
C4—N11.454 (3)C21—N41.389 (3)
C5—C61.377 (4)C22—C231.386 (4)
C5—H50.9300C22—C271.394 (4)
C6—H60.9300C22—N31.396 (3)
C7—O21.221 (3)C23—C241.376 (4)
C7—N11.402 (4)C23—H230.9300
C7—C81.449 (4)C24—C251.384 (4)
C8—C91.392 (4)C24—H240.9300
C8—C131.403 (4)C25—C261.372 (4)
C9—C101.364 (5)C25—H250.9300
C9—H90.9300C26—C271.396 (4)
C10—C111.379 (5)C26—H260.9300
C10—H100.9300C27—C281.450 (4)
C11—C121.380 (5)C28—O41.217 (3)
C11—H110.9300C28—N41.415 (3)
C12—C131.406 (4)C29—C341.376 (4)
C12—H120.9300C29—C301.382 (4)
C13—N21.389 (3)C29—N41.453 (3)
C14—N21.278 (3)C30—C311.381 (4)
C14—O11.336 (3)C30—H300.9300
C14—N11.385 (3)C31—C321.364 (5)
C15—C201.370 (4)C31—H310.9300
C15—C161.372 (4)C32—C331.364 (5)
C15—O11.415 (3)C32—Cl21.730 (3)
C16—C171.381 (4)C33—C341.374 (4)
C16—H160.9300C33—H330.9300
C17—C181.385 (4)C34—H340.9300
C2—C1—C6121.4 (3)C20—C19—O3117.5 (2)
C2—C1—Cl1120.1 (3)C15—C20—C19117.4 (2)
C6—C1—Cl1118.5 (3)C15—C20—H20121.3
C1—C2—C3119.0 (3)C19—C20—H20121.3
C1—C2—H2120.5N3—C21—O3121.6 (2)
C3—C2—H2120.5N3—C21—N4127.1 (2)
C2—C3—C4120.4 (3)O3—C21—N4111.3 (2)
C2—C3—H3119.8C23—C22—C27118.6 (3)
C4—C3—H3119.8C23—C22—N3119.9 (3)
C5—C4—C3119.9 (3)C27—C22—N3121.5 (2)
C5—C4—N1120.4 (3)C24—C23—C22120.8 (3)
C3—C4—N1119.6 (3)C24—C23—H23119.6
C4—C5—C6120.3 (3)C22—C23—H23119.6
C4—C5—H5119.9C23—C24—C25120.4 (3)
C6—C5—H5119.9C23—C24—H24119.8
C5—C6—C1119.0 (3)C25—C24—H24119.8
C5—C6—H6120.5C26—C25—C24119.8 (3)
C1—C6—H6120.5C26—C25—H25120.1
O2—C7—N1120.3 (3)C24—C25—H25120.1
O2—C7—C8124.4 (3)C25—C26—C27120.0 (3)
N1—C7—C8115.2 (3)C25—C26—H26120.0
C9—C8—C13120.4 (3)C27—C26—H26120.0
C9—C8—C7121.1 (3)C22—C27—C26120.3 (3)
C13—C8—C7118.5 (3)C22—C27—C28120.2 (2)
C10—C9—C8120.3 (4)C26—C27—C28119.4 (3)
C10—C9—H9119.8O4—C28—N4120.5 (3)
C8—C9—H9119.8O4—C28—C27124.7 (3)
C9—C10—C11120.0 (4)N4—C28—C27114.6 (2)
C9—C10—H10120.0C34—C29—C30119.9 (3)
C11—C10—H10120.0C34—C29—N4120.1 (2)
C10—C11—C12121.1 (3)C30—C29—N4119.9 (2)
C10—C11—H11119.5C31—C30—C29119.1 (3)
C12—C11—H11119.5C31—C30—H30120.5
C11—C12—C13119.8 (3)C29—C30—H30120.5
C11—C12—H12120.1C32—C31—C30120.5 (3)
C13—C12—H12120.1C32—C31—H31119.8
N2—C13—C8122.8 (3)C30—C31—H31119.8
N2—C13—C12118.8 (3)C31—C32—C33120.5 (3)
C8—C13—C12118.3 (3)C31—C32—Cl2119.5 (3)
N2—C14—O1123.0 (2)C33—C32—Cl2120.0 (3)
N2—C14—N1126.4 (3)C32—C33—C34119.8 (3)
O1—C14—N1110.6 (2)C32—C33—H33120.1
C20—C15—C16122.2 (3)C34—C33—H33120.1
C20—C15—O1117.5 (2)C33—C34—C29120.3 (3)
C16—C15—O1120.1 (2)C33—C34—H34119.9
C15—C16—C17118.9 (3)C29—C34—H34119.9
C15—C16—H16120.5C14—N1—C7119.7 (2)
C17—C16—H16120.5C14—N1—C4122.3 (2)
C16—C17—C18120.2 (3)C7—N1—C4117.9 (2)
C16—C17—H17119.9C14—N2—C13116.1 (2)
C18—C17—H17119.9C21—N3—C22117.0 (2)
C19—C18—C17118.7 (3)C21—N4—C28119.3 (2)
C19—C18—H18120.6C21—N4—C29122.7 (2)
C17—C18—H18120.6C28—N4—C29117.8 (2)
C18—C19—C20122.6 (2)C14—O1—C15116.9 (2)
C18—C19—O3119.8 (2)C21—O3—C19116.43 (19)
C6—C1—C2—C31.5 (5)C34—C29—C30—C310.5 (4)
Cl1—C1—C2—C3179.2 (3)N4—C29—C30—C31177.5 (3)
C1—C2—C3—C40.7 (5)C29—C30—C31—C321.3 (5)
C2—C3—C4—C50.8 (5)C30—C31—C32—C331.0 (5)
C2—C3—C4—N1175.6 (3)C30—C31—C32—Cl2178.9 (2)
C3—C4—C5—C61.5 (5)C31—C32—C33—C340.0 (5)
N1—C4—C5—C6174.9 (3)Cl2—C32—C33—C34180.0 (3)
C4—C5—C6—C10.7 (5)C32—C33—C34—C290.8 (5)
C2—C1—C6—C50.9 (5)C30—C29—C34—C330.5 (4)
Cl1—C1—C6—C5179.9 (2)N4—C29—C34—C33176.5 (3)
O2—C7—C8—C91.0 (5)N2—C14—N1—C712.6 (4)
N1—C7—C8—C9177.5 (3)O1—C14—N1—C7168.3 (2)
O2—C7—C8—C13175.6 (3)N2—C14—N1—C4170.8 (3)
N1—C7—C8—C131.0 (4)O1—C14—N1—C48.3 (3)
C13—C8—C9—C102.1 (5)O2—C7—N1—C14174.7 (3)
C7—C8—C9—C10174.3 (3)C8—C7—N1—C148.7 (4)
C8—C9—C10—C110.2 (6)O2—C7—N1—C42.1 (4)
C9—C10—C11—C121.0 (6)C8—C7—N1—C4174.6 (2)
C10—C11—C12—C130.3 (5)C5—C4—N1—C14112.2 (3)
C9—C8—C13—N2174.8 (3)C3—C4—N1—C1471.4 (3)
C7—C8—C13—N28.7 (4)C5—C4—N1—C764.5 (4)
C9—C8—C13—C122.8 (4)C3—C4—N1—C7112.0 (3)
C7—C8—C13—C12173.8 (3)O1—C14—N2—C13176.1 (2)
C11—C12—C13—N2176.1 (3)N1—C14—N2—C134.8 (4)
C11—C12—C13—C81.6 (5)C8—C13—N2—C146.0 (4)
C20—C15—C16—C170.2 (4)C12—C13—N2—C14176.5 (3)
O1—C15—C16—C17173.9 (2)O3—C21—N3—C22176.2 (2)
C15—C16—C17—C180.1 (4)N4—C21—N3—C222.9 (4)
C16—C17—C18—C190.2 (4)C23—C22—N3—C21177.8 (3)
C17—C18—C19—C200.3 (4)C27—C22—N3—C212.5 (4)
C17—C18—C19—O3175.2 (2)N3—C21—N4—C285.0 (4)
C16—C15—C20—C190.3 (4)O3—C21—N4—C28174.2 (2)
O1—C15—C20—C19174.0 (2)N3—C21—N4—C29169.8 (3)
C18—C19—C20—C150.3 (4)O3—C21—N4—C2911.0 (3)
O3—C19—C20—C15175.3 (2)O4—C28—N4—C21178.0 (3)
C27—C22—C23—C242.5 (4)C27—C28—N4—C211.5 (4)
N3—C22—C23—C24177.2 (3)O4—C28—N4—C292.9 (4)
C22—C23—C24—C250.8 (5)C27—C28—N4—C29173.5 (2)
C23—C24—C25—C260.7 (5)C34—C29—N4—C21130.7 (3)
C24—C25—C26—C270.5 (5)C30—C29—N4—C2152.3 (4)
C23—C22—C27—C262.7 (4)C34—C29—N4—C2854.4 (4)
N3—C22—C27—C26177.0 (3)C30—C29—N4—C28122.6 (3)
C23—C22—C27—C28174.8 (3)N2—C14—O1—C155.8 (4)
N3—C22—C27—C285.5 (4)N1—C14—O1—C15175.0 (2)
C25—C26—C27—C221.2 (4)C20—C15—O1—C14103.7 (3)
C25—C26—C27—C28176.3 (3)C16—C15—O1—C1482.0 (3)
C22—C27—C28—O4173.0 (3)N3—C21—O3—C1920.3 (4)
C26—C27—C28—O44.5 (4)N4—C21—O3—C19160.5 (2)
C22—C27—C28—N43.3 (4)C18—C19—O3—C2198.9 (3)
C26—C27—C28—N4179.3 (2)C20—C19—O3—C2185.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O2i0.932.343.234 (3)162
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC34H20Cl2N4O4
Mr619.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)28.043 (2), 11.3563 (8), 21.5497 (16)
β (°) 122.744 (1)
V3)5772.2 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.23 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22711, 6251, 3432
Rint0.069
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.160, 1.01
No. of reflections6251
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.28

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O2i0.932.343.234 (3)162.2
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to Xianning College for financial support of this work and providing laboratory and analytical facilities. The authors also acknowledge the Sophisticated Analytical Instrument Facility, Central China Normal University, Whuhan, for the data collection.

References

First citationBartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem. 41, 1869–1882.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457–o1459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. D. & Ecker, D. J. (1999). J. Med. Chem. 42, 4705–4713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalamas, M. S. & Millen, J. (1991). J. Med. Chem. 34, 1492–1503.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem. 19, 381–383.  CAS Google Scholar
First citationMatsuno, K., Ichimura, M., Nakajima, T., Tahara, K., Fujiwara, S., Kase, H., Ushiki, J., Giese, N. A., Pandey, A., Scarborough, R. M., Lokker, N. A., Yu, J. C., Irie, J., Tsukuda, E., Ide, S., Oda, S. & Nomoto, Y. (2002). J. Med. Chem. 45, 3057–3066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem. 40, 1519–1529.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Cler, E. De. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationQu, Y.-N., Pan, L.-R. & Hu, Y.-G. (2008). Acta Cryst. E64, o137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189–194.  CAS PubMed Web of Science Google Scholar
First citationSun, Y., Zeng, G.-P. & Hu, Y.-G. (2008). Acta Cryst. E64, o311–o312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F., Gruber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem. 44, 2719–2734.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365–1369.  CSD CrossRef CAS Google Scholar
First citationZeng, G., Li, Q. & Hu, Y. (2008). Acta Cryst. E64, o535.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o59-o60
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds